
Revisiting Key Switching Techniques with
Applications to Light-Key FHE

Ruida Wang1,2, Zhihao Li1,2, Benqiang Wei1,2, Chunling Chen1,2, Xianhui
Lu1,2∗, and Kunpeng Wang1,2∗

1 State Key Laboratory of Information Security, Institute of Information
Engineering, Chinese Academy of Sciences, Beijing, China

2 School of Cyber Security, University of Chinese Academy of Sciences, Beijing,
China

luxianhui@iie.ac.cn; wangkunpeng@iie.ac.cn

Abstract. Fully Homomorphic Encryption (FHE) allows for data pro-
cessing while it remains encrypted, enabling privacy-preserving outsourced
computation. However, FHE faces challenges in real-world applications,
such as communication overhead and storage limitations, due to the large
size of its evaluation key.
This paper revisits existing key switching algorithms widely used in FHE,
which may account for over 90% of the total evaluation key size. Although
these algorithms work towards the same goal, they differ significantly in
functionality, computational complexity, noise management and key size.
We close their functional gap and reanalyze them under a common stan-
dard, proposing theorems and comparative results to provide a flexible
time-space trade-off when designing FHE applications.
To validate the efficacy of our theoretical results, we propose a light-key
bootstrapping method using a lower-sized key switching variant. This
approach reduces the key size of the well-known GINX bootstrapping by
a factor of 88.8%. It also outperforms the state-of-the-art light-key FHE
by reducing 48.4% bootstrapping key size and 8% transfer key size.

Keywords: FHE · Key Switching · Light-Key Bootstrapping.

1 Introduction

Fully Homomorphic Encryption (FHE) allows data to be processed while en-
crypted, enabling users to delegate computation to an untrusted party without
the risk of data leakage. This opens up the potential for privacy-preserving out-
sourced computation in various applications, such as cloud computing [1,19],
the internet of things (IoT) [26,29] and machine learning [20,10]. The process
involves the client (data owner) encrypting their sensitive data, generating the
necessary evaluation keys for homomorphic operations, and transmitting them
to the server (computing party). The server performs homomorphic evaluations
on the ciphertext and returns the encrypted results, as shown in fig.1.

One issue faced by Fully Homomorphic Encryption (FHE) is the storage and
the communication cost. FHE is based on lattice encryption schemes, resulting in



2 Ruida Wang et al.

Fig. 1. Client-server model of FHE applications. Evk denotes the evaluation keys.

large ciphertext and key sizes. In word-wise encryption schemes, the evaluation
keys often have sizes of gigabytes [14,4,16,17]. While FHEW-like bit-wise encryp-
tion schemes reduce the evaluation key size by one order of magnitude, they still
face limitations in real-world applications due to their key size of about 200 MB.
More precisely, there is a strong preference for clients to generate and transmit
keys with the smallest possible size. This is due to the fact that clients typically
operate on devices with constrained computing power and limited storage space,
sometimes even on mobile devices [13,28].

From the server’s perspective, research has demonstrated that hardware ac-
celeration can yield over a ten times boost in the efficiency of homomorphic en-
cryption operations [15,30,25]. However, these solutions are memory-constrained
due to their limited on-chip storage. These challenges promote us to explore tech-
niques to reduce the size of evaluation keys.

This paper concentrates on the key switching algorithm, whose key size may
account for over 90 % of the total evaluation key in FHEW-like schemes, as
shown in tab.1.

Methods Evaluation key size Key switching key size Transfer key size

GINX ([21]) 250 MB 229.1 MB (91.6%) 16.48 MB

LFHE ([18]) 175 MB 84.6 MB (48.3%) 881 KB

GINXour 27.91 MB 27.2 KB (0.1 %) 13.96 MB

LFHEour 90.38 MB 54.2 KB (0.06 %) 810.1 KB

Table 1. The proportion of key switching key size in the total evaluation key size of
different bootstrapping methods. The parameters resources is within brackets. In the
transfer model [18], the transfer key is a seed of the evaluation key. Sec.6.4 provides a
detailed description of the transfer model.

Key switching is an essential operation in FHEW-like cryptosystems that
enables changing the encryption key without revealing the plaintext. Various
types of key switching have been described in this literature, including LWE-
to-(R)LWE key switching, and RLWE-to-RLWE key switching. Chillotti et al.



Revisiting Key Switching Techniques with Applications to Light-Key FHE 3

shows that the former scheme can evaluate a linear Lipschitz morphism on ci-
phertext almost for free during switching keys [7]. Depending on the confidential-
ity of the morphism, it can be further divided into public functional key switching
and private functional key switching. Even for the same switching type, there
are different computation methods, these algorithms differ in functionality, key
size, computational complexity, and noise management. A unified comparison
is currently lacking, and there is no theoretical basis for selecting proper key
switching algorithms when designing FHE applications. This motivates us to
comprehensively revisit known key switching algorithms.

Functional Key Switching Algorithms. Our first contribution is to fill the
functional gap in key switching algorithms. TFHE’s key switching can compute
a linear Lipschitz morphism while switching keys [7]. This property is not pre-
sented in the LWE-to-LWE key switching proposed by Chen et al. [3], or the
commonly used RLWE-to-RLWE key switching algorithm. We fill this gap by
decomposing all key switching algorithms into gadget products3, and embedding
the linear Lipschitz morphism in it. The linear property ensures that the mor-
phism can be correctly calculated by scalar multiplication, while the Lipschitz
property helps manage noise growth. As a result, we provide functional variants
of all known key switching algorithms, which may have independent interests
beyond this paper. For instance, we demonstrate that the scheme switching al-
gorithm [9] (or the same EvalSquareMult algorithm [18]) can be regarded as a
specific case of our proposed RLWE-to-RLWE private functional key switching
algorithm for the morphism f(x) = sk · x, where sk is the secret key.

Comparison Between Key Switching Algorithms. Comparing key switch-
ing algorithms can be challenging since they are proposed and analyzed using
different baselines, such as algebraic structures, the key distributions, and the
gadget decomposition methods4. In this work, we present a comprehensive re-
analysis of the existing key switching algorithms and our proposed functional
variants under a common standard. We use the power of two cyclotomic ring,
which is commonly used in FHE schemes, binary key distribution, and the canon-
ical approximate gadget decomposition [7]. We propose noise growth formulas
and provide performance data in terms of key sizes and computational com-
plexity. Our work serves as a theoretical basis for the practical selection of key
switching algorithms when designing FHE applications.

Light-Key Bootstrapping Algorithm. To validate the efficacy of our the-
oretical results, we propose the light-key bootstrapping variants using a lower-
sized key switching algorithm. For the well-known GINX bootstrapping, this
approach reduces the bootstrapping key size by 88.8 % and the transfer key

3 The gadget product is the computational units for scalar multiplication in FHEW-
like cryptosystems

4 The gadget decomposition is a technique used to decompose large numbers into
smaller digits. This helps control error growth in FHE algorithms.



4 Ruida Wang et al.

size by 15.3 %. For the state-of-the-art light-key bootstrapping, this approach
outperforms Kim et al.’s LFHE method [18] by reducing 48.4 % bootstrapping
key size and 8 % transfer key size.

Related Work. Fig.1 illustrates that the client must generate and transmit
two components: the ciphertext and the evaluation keys. This paper focuses on
reducing the size of the evaluation key. However, the ciphertext size is also sig-
nificantly larger than plaintext due to the lattice-based encryption. Currently,
Naehrig et al. have introduced techniques named hybrid homomorphic encryp-
tion (HHE or transciphering) [24,2,11,8]. This technique allows the client to
encrypt messages with a symmetric cipher. The server then evaluates the de-
cryption circuit homomorphically to obtain the ciphertext under HE form for
further processing. Our future work involves integrating HHE with our research,
to develop fully homomorphic encryption applications with minimal transmis-
sion size.

Organization. The rest of the paper is organized as follows: sec.2 reviews
the notations and crypto primitives; sec.3 revisits the gadget product as the
basic computational unit of key switching algorithms; sec.4 and sec.5 analyzes
the LWE-to-LWE key switching algorithms and RLWE-to-RLWE key switching
algorithms, respectively; sec.6 constructs the light-key bootstrapping algorithm
based on the analysis results; sec.7 concludes the paper.

2 Preliminaries

2.1 Notations

Let A be a set. Define An as the set of vectors with n elements in A, Aq as the
set A module q, where the elements’ scope is [−q/2, q/2) ∩ A. Use Z to denote
the set of integers, R to denote the set of real numbers, and B = Z2 represents
the set of binary numbers. Denote R as the set of integer coefficient polynomials
modulo XN + 1, where N is a power of 2 Then R is the 2N -th cyclotomic ring.

Use regular letters to represent (modular) integers like a ∈ Zq, while bold
letters to represent polynomials a ∈ R or vectors a ∈ Zn. The notation ai refers
to the i-th coefficient/term of a. The floor, ceiling, and rounding functions are
written as ⌊·⌋, ⌈·⌉ ⌊·⌉, respectively. A function f is R-Lipschitz means that it
satisfies ∥f(x)− f(y)∥∞ ≤ R∥x− y∥∞, where ∥ · ∥∞ is the infinity norm.

2.2 Gadget Decomposition

Given a gadget vector v = (v0, v1, ..., vl−1), the gadget decomposition of a ring
element t ∈ R is to find (t0, ..., tl−1) to minimize the decomposition error
εgadget(t) =

∑
i viti − t. ϵ denotes its infinite norm, that is, ∥

∑
i viti − t∥∞ ≤ ϵ.

In this paper, we use the canonical approximate gadget decomposition, where
v = (⌈ q

Bl ⌉, ⌈ q
Bl ⌉B, ..., ⌈ q

Bl ⌉Bl−1), thus ϵ ≤ 1
2⌈

q
Bl ⌉. We say B is the gadget base

and l is the gadget length.



Revisiting Key Switching Techniques with Applications to Light-Key FHE 5

2.3 Learning with Errors

The security of FHEW-like cryptosystem is based on the (ring) learning with
errors problem [27,22]. We summarize the three kinds of ciphertexts as follow:

– LWE: Giving positive integers n and q, the LWE encryption of the message
m ∈ Z is a vector (a, b) ∈ Zn+1

q , where b = −a · sk + m + e. The vector
a is uniformly sampled from Zn

q , the secret key sk is sampled from a key
distribution χ, the error e is sampled from an error distribution χ′.

– RLWE: RLWE is a ring version of LWE on Rq. The RLWE encryption of
the message m ∈ Rq is a pair (a,b) ∈ Rn+1

q , where b = −a ·sk+m+e. The
vector a is uniformly sampled from Rq, the secret key sk is sampled from a
key distribution χ, and each coefficient of the error ei is sampled from χ′.

– RGSW: The RGSW encryption of the message m ∈ Rq can be expressed
as: RGSWsk(m) = (RLWE′

sk(sk ·m),RLWE′
sk(m)), where RLWE′ is the

gadget RLWE ciphertext defined as follows:

Given a gadget vector v = (v0, v1, ..., vl−1), the notion (R)LWE′ refers to the
gadget (R)LWE ciphertext is defined as:

LWE′
sk(m) = (LWEsk(v0 ·m),LWEsk(v1 ·m), ...,LWEsk(vl−1 ·m)),

RLWE′
sk(m) = (RLWEsk(v0 ·m),RLWEsk(v1 ·m), ...,RLWEsk(vl−1 ·m)).

Remark 1. These definitions (following Micciancio and Polyakov [23]) use differ-
ent notions compared to the original TFHE papers [5,6,7]. Specifically, TFHE
uses real torus T = R/Z and TN [X] = R/Z to describe the message and ci-
phertext spaces, but implements T by Zq with q = 232 or q = 264. Thus we
straightforwardly use Zq instead of T.

Remark 2. In FHEW-like cryptosystem, the gadget (R)LWE is mainly used as
the evaluation key and appears as an auxiliary input in algorithms such as key
switching. To simplify the presentation and facilitate the understanding of the
key switching algorithm, which is the main focus of this paper, we provide a
formal definition and notation of gadget (R)LWE.

2.4 Bootstrapping

The error rate of the LWE/RLWE ciphertext will significantly affect the decryp-

tion failure probability, which can be calculated by 1−erf
(

q

8
√
2σ

)
, where σ is the

standard deviation of the error. We then introduce the bootstrapping algorithm
to reduce the error rate. FHEW-like bootstrapping can evaluate a 1-in/1-out
LUT function while refreshing ciphertext noise. It typically contains the follow-
ing operations: blind rotation (BR), sample extraction (SE), key switching, and
modulus switching (MS).



6 Ruida Wang et al.

As the goal of bootstrapping is to refresh the noise in the ciphertext, it is
necessary to pay extra attention and precisely control the noise generated in each
step of the bootstrapping algorithm itself. The basic strategy is to execute the
BR step, which mainly generates the new noise, under a large modulus. Then
recovering the LWE ciphertext form through SE, reducing the modulus while
eliminating the blind rotation noise size through MS, and recovering the original
key through key switching algorithm. We introduce two typical bootstrapping
work flows as follows:

GINX Bootstrapping [5,6,7]. LWE571,211
BR−−→ RLWE1024,225

SE−→ LWE1024,225

MS−−→ LWE1024,214
LtL−−→ LWE571,214

MS−−→ LWE571,211 .

Remark 3. The above parameters are taken from Lee’s recent article [21], with a
security level of 128-bit. Due to the update of attack methods, the security level
of the parameters in TFHE articles [5,6,7] has been reduced to 115-bit.

LFHE Bootstrapping [18]. LWE571,211
BR−−→ RLWE2048,254

MS−−→ RLWE2048,227

RtR−−→ RLWE1024,227
SE−→ LWE1024,227

MS−−→ LWE1024,214
LtL−−→ LWE571,214

MS−−→
LWE571,211 .

To display the switching of the keys and modulus, we use the form (R)LWEn,q

to represent ciphertexts, where n is the dimension of the secret key vector (or
polynomial) and q represents the modulus of the ciphertext. LtL stands for LWE
to LWE key switching, and both of the above bootstrapping algorithms use its
storage version (for a summary and comparison between different versions, see
sec. 4). RtR stands for RLWE to RLWE key switching.

3 Gadget Products

The gadget product is used to calculate the scalar multiplication in FHEW-like
cryptosystem. It works by gadget decomposing the plaintext scalar and then
multiplying the corresponding gadget (R)LWE ciphertexts. This algorithm can
reduce the noise growth of scalar multiplication and is widely used in core algo-
rithms such as external product [7] and key switching. This section summarizes
three types of gadget products, and analyze their differences in terms of noise
growth, auxiliary input size and computational complexity. The first one is the
canonical gadget product primarily used for external product. It was first ab-
stracted as a separate algorithm by Micheli et al. in 2023 [9].

Gadget Product: The canonical gadget product ⊙ : Z× (R)LWE
′ → (R)LWE

is defined as:



Revisiting Key Switching Techniques with Applications to Light-Key FHE 7

t⊙ (R)LWE
′
sk(m) :=

l−1∑
i=0

ti · (R)LWEsk (vi ·m)

= (R)LWEsk

(
l−1∑
i=0

vi · ti ·m

)
= (R)LWEsk (t ·m+ εgadget(t) ·m) ,

Lemma 1. [18] Let B and l denote the base and the length of the gadget decom-
position, respectively, then the error variance of the result of the gadget product
is bounded by

σ2
⊙,input ≤

1

12
lB2σ2

input +
1

3
Var(m)ϵ2

where σ2
input is the error variance of the input LWE′ ciphertext, and Var(m) is

the variance of the message m.

Lemma.1 is derived from [18] proposition.1 with the fact ϵ ≤ 1
2⌈

q
Bl ⌉. This

method use the modular multiplication to compute the gadget product. However,
for a fixed input (R)LWE

′
sk(m), there is an time-space trade-off that reduces

the computational complexity by using additional storage. Specifically, since the
range of ti is bounded by the gadget base B, one can pre-compute and store all
possible values of (R)LWE

′
sk(vi · ti · m), then use modular addition instead of

modular multiplication. This method was first used in the FHEW bootstrapping
algorithm proposed by Ducas et al. in 2015 [12], which inspired us to summarize
a store version of the gadget product. We denote this method using operator ⊕:

Gadget Product (Store Version): The store version ⊕ : Z × (R)LWE
′ →

(R)LWE is defined as:

t⊕ (R)LWE
′
sk(m) :=

l−1∑
i=0

(R)LWE
′
sk(vi · ti ·m)

= (R)LWEsk

(
l−1∑
i=0

vi · ti ·m

)
= (R)LWEsk (t ·m+ εgadget(t) ·m) ,

Corollary 1. Let B and l denote the base and the length of the gadget decom-
position, respectively, then the error variance of the result of the gadget product
(store version) is bounded by

σ2
⊕,input ≤ lσ2

input +
1

3
Var(m)ϵ2

where σ2
input is the error variance of the input LWE′ ciphertext, and Var(m) is

the variance of the message m.



8 Ruida Wang et al.

The store version of gadget product use l times modular addition instead of
modular multiplication. Thus corollary.1 can be directly derived from lemma.1
by replacing multiplication error growth with addition error growth.

Lastly, we introduce the ring version of the gadget product, denoted by ⊙R:

Gadget Product (Ring Version): The Ring gadget product ⊙R : R ×
RLWE′ → RLWE is defined as:

t⊙R RLWE′
sk(m) :=

l−1∑
i=0

ti · RLWEsk (vi ·m)

= RLWEsk

(
l−1∑
i=0

vi · ti ·m

)
= RLWEsk (t ·m+ εgadget(t) ·m) ,

Corollary 2. Let n denote the dimension of the ring polynomial of RLWE ci-
phertexts, B and l denote the base and the length of the gadget decomposition,
respectively, then the error variance of the result of the gadget product is bounded
by

σ2
⊙R,input ≤

1

12
nlB2σ2

input +
1

3
nVar(m)ϵ2

where σ2
input is the error variance of the input RLWE′ ciphertext, and Var(m) is

the variance of m.

This algorithm is a ring version of the gadget product. Notice that since
polynomial dimension n causes an exponential increase in polynomial gadget
decomposition results, it is impractical to accelerate computation by pre-storing
all possible RLWE′

sk(vi · ti · m). In other words, the store version of the ring
gadget product is not practical and we do not consider it. The error growth of
the ring gadget product needs to take into account the expansion factor of the
ring. In this paper, we use a power-of-two cyclotomic ring, with an expansion
factor of

√
n for the two-norm, resulting in a factor of n when evaluating the

noise variance. Then corollary.2 can be derived from lemma.1.

Comparison. The computational complexity and auxiliary input size of the
three gadget products are listed in tab.2. From lemma.1 and the corollaries in
this section, we can conclude that in terms of error growth, ⊙R = ⊙ > ⊕. From
tab.2, it is evident that in terms of computational complexity, ⊙R > ⊙ > ⊕, in
terms of the size of auxiliary inputs, ⊕ > ⊙R = ⊙.

As the key switching algorithm is always a combination of scalar multiplica-
tion and addition, these algorithms can be re-written using the three types of
gadget products. This novel perspective makes it easier to examine key switch-
ing algorithms, provides insights into their comparison in terms of correctness,
error growth, computational complexity, and key size. Our analysis can serve as
a guideline for time-space trade-offs in the implementation of the key switching.



Revisiting Key Switching Techniques with Applications to Light-Key FHE 9

Calculation Computation Complexity Auxiliary Input (in (R)LWE′)

⊙ ln MM 1

⊕ l MA B

⊙R l NTT+ln MM 1

Table 2. Comparison between different version of the gadget product, where l and
B are the gadget length and base, MA and MM denote the modular addition and
modular multiplication operations. NTT is the number theoretic transform algorithm
(with O(ln logn) MM computational complexity) used in polynomial multiplication.

We then revisit LWE-to-LWE key switching algorithms in sec.4, and RLWE-to-
RLWE key switching algorithms in sec.5.

4 LWE-to-LWE Key Switching

Chillotti et al. proposed in the TFHE series [5,6,7] that their key switching
algorithm can calculate a R-Lipschitz linear morphism while switching keys.
This section generalizes all existing LWE-to-LWE key switching algorithms into
functional versions, and classifies key switching algorithms into public functional
key switching and private functional key switching (following Chilloti et al. [7])
based on whether the Lipschitz morphism needs to be kept confidential.

Fig. 2. Six LWE-to-LWE key switching algorithms revisited in this section.

4.1 Public Functional Key Switching

LWE-to-LWE Using Canonical Gadget Product.

– Input: LWEsk(m) = (a, b), and a public R-Lipschitz linear morphism f :
Z → Z

– Switching key:LtLK = LWE′
sk′(ski)i∈[1,n]

– Output: LWEsk′(f(m))



10 Ruida Wang et al.

– Algorithm:

LtLfsk→sk′(LWEsk(m)) :=

n∑
i=1

f(ai)⊙ LWE′
sk′(ski) + (0, f(b)).

This algorithm was first proposed by Chillotti et al. [7], and we formalize it
using gadget product. We then re-analyze the error growth of this algorithm,
and update the theorem 4.1 in [7] for two reasons.

Firstly, TFHE used binary gadget decomposition for scalars in the key switch-
ing algorithm. But currently FHEW-like cryptosystems generally use the stan-
dard approximate gadget decomposition (power-of-B), as what we considered.
Secondly, TFHE utilized the torus algebraic structure in its theoretical analysis,
rather than the power of 2 cyclotomic ring used in the implementation. Thus it
did not consider the coefficient 1/12 when calculating the variance of the uniform
distribution, resulting in a less compact error bound in theorem 4.1 [7].

Correctness and error analysis:

Theorem 1. Let n denote the dimension of the LWE ciphertexts, B and l de-
note the base and the length of the gadget decomposition, respectively, then the
error variance of the result of the LWE to LWE public functional key switching
algorithm is bounded by:

σ2
LtL ≤ 1

12
nlB2σ2

LtLK +
1

6
nϵ2 +R2σ2

input,

where ϵ is the gadget decomposition error, σ2
input is the error variance of the

input LWE ciphertext, and σ2
LtLK is the error variance of the switching key.

Proof. Basing the correctness of the gadget product, we have,

n∑
i=1

f(ai)⊙ LWE′
sk′(ski) + (0, f(b))

= LWEsk′

(
n∑

i=1

f(ai · ski) + f(b)

)
= LWEsk′ (f(m) + f(e)) ,

then we measure the error variance based on lemma.1:

σ2
LtL = nσ2

⊙,LtLK + Var(f(e)) ≤ 1

12
nlB2σ2

LtLK +
1

6
nϵ2 +R2σ2

input.

Store Version. As we analyzed in sec.3, the LtL algorithm, which uses the
canonical gadget product, also has a corresponding store version. It only requires
modifications to the auxiliary input and calculation method:



Revisiting Key Switching Techniques with Applications to Light-Key FHE 11

– Switching key:LtLK = LWE′
sk′(j · ski)i∈[1,n],j∈[0,B−1]

– Algorithm:

LtLfsk→sk′(LWEsk(m)) :=

n∑
i=1

f(ai)⊕ LWE′
sk′(ski) + (0, f(b)).

It can be derived from tab.2 that, the store version is faster and has smaller
noise growth compared to the canonical LtL algorithm. However, the trade-off
is an increase in key size by a factor of B, where B is the base for gadget
decomposition.

LWE-to-LWE Using Ring Gadget Product.

– Input: LWEs⃗k(m) = (⃗a, b), and a public R-Lipschitz linear morphism f :
Z → Z

– Switching key: LtL2K = RLWE′
sk′(sk), where sk =

∑l−1
i=0 skiX

−i, sk′ =∑l−1
i=0 sk

′
iX

−i

– Output: LWE
s⃗k

′(f(m)) = (⃗a′, b′)
– Algorithm:

(a′,b′) :=

n∑
i=1

f(ai)X
i ⊙R RLWE′

sk′(sk) + (0, f(b)),

LtL2
f

s⃗k→s⃗k
′(LWEs⃗k(m)) := (a′0, a

′
1, ..., a

′
n−1, b

′
0).

Remark 4. This algorithm involves the conversion between vectors and polyno-
mials. Thus to avoid confusion, we use a⃗ to represent vectors in this algorithm,
while a to represent polynomials. The notation ai is the i-th term of the vector
a⃗, and [a]i is the i-th coefficient of the polynomial a.

This switching method was proposed by Chen et al. [3]. We formalize it using
ring gadget product, and first extend it to the functional version. Therefore, the
error growth of this algorithm must take into account the Lipschitz morphism.
In addition, Chen et al. only considered the exact gadget decomposition, which
is a special case (q ≤ Bl) of the canonical approximate gadget decomposition we
use. This also prompts us to re-analyze the error.

Correctness and error analysis:

Theorem 2. Let n denote the dimension of the LWE ciphertexts, B and l de-
note the base and the length of the gadget decomposition, respectively, then the
error variance of the result of the LWE to LWE using RtR algorithm is bounded
by:

σ2
LtL2

≤ 1

12
nlB2σ2

LtL2K +
1

6
nϵ2 +R2σ2

input,

where σ2
input is the error variance of the input LWE ciphertext, and σ2

LtL2K
is

the error variance of the switching key.



12 Ruida Wang et al.

Method Computation complexity Key size (in bits)

LtL,⊙ O(ln2) MM ln(n+ 1) log q

LtL,⊕ (ln+ n+ 1) MA Bln(n+ 1) log q

LtL2,⊙R O(ln log n) MM 2ln log q

Table 3. Comparison between different version of the public LWE-to-LWE key switch-
ing, where q is the ciphertext modulus, l and B are the gadget length and base, MA
and MM denote the modular addition and modular multiplication operations.

Proof. Basing the correctness of the ring gadget product, we have,

b′0 +
n∑

i=1

a′isk
′
i = [b′ + a′ · sk′]0

=

n∑
i=1

f(ai · ski) + f(b)

= f(m) + f(e),

thus (a′0, a
′
1, ..., a

′
n−1, b

′
0) is the LWE ciphertext of f(m) under secret key s⃗k

′
,

then we measure the error variance based on corollary.2:

σ2
LtL2

= σ2
⊙R,LtL2K + Var(f(e)) ≤ 1

12
nlB2σ2

LtLK +
1

6
nϵ2 +R2σ2

input

Comparison. The computational complexity and key size of LWE-to-LWE
public functional key switching algorithms are listed in tab.3. From the theorems
in this section, we can conclude that in terms of error growth, we have (LtL,⊙) =
(LtL2,⊙R) > (LtL,⊕). From tab.2, it is evident that (LtL,⊙) > (LtL2,⊙R) >
(LtL,⊕) in computational complexity. In terms of the key size, we have (LtL,⊕) >
(LtL,⊙) > (LtL2,⊙R).

Comparison results indicate that (LtL,⊙) is inferior to (LtL2,⊙R) in all as-
pects. Thus when we care more about the computational efficiency and error
control of the algorithm, (LtL,⊕) is the best choice. On the other hand, if key
size (which affects transfer size and storage space) is of greater concern, we
should use (LtL2,⊙R) as the substitute.

4.2 Private Functional Key Switching

In the public functional key switching algorithm, the Lipschitz morphism f is
used as a public input. However, f should be kept confidential in some cases.
For example, it is related to the secret key or derived from a protected model.
Chillotti et al. proposed private functional key switching algorithm for this sit-
uation [7], where the morphism f is secretly encoded within the algorithm’s
switching key. In this section, we first revisit this canonical algorithm. Then we



Revisiting Key Switching Techniques with Applications to Light-Key FHE 13

introduce two novel algorithms. The first is the store version of private functional
key switching, which we extended based on the method of Ducas et al. [12]. The
second is the ring version, extended based on Chen et al.’s methods [3].

Private LWE-to-LWE Using Canonical Gadget Product.

– Input: LWEsk(m) = (a, b)

– Switching key: PLtLK = (LWE′
sk′(f(ski))i∈[1,n],LWE′

sk′(f(1))), where f :
Z → Z is a private R-Lipschitz linear morphism

– Output: LWEsk′(f(m)) = (a′, b′)

– Algorithm:

PLtLfsk→sk′(LWEsk(m)) :=

n∑
i=1

ai ⊙ LWE′
sk′(f(ski)) + b⊙ LWE′

sk′(f(1)).

Store Version. This version only requires modifications to the switching key
and calculation method:

– Switching key:PLtLK = (LWE′
sk′(j · f(ski)),LWE′

sk′(j · f(1))), where i ∈
[1, n], j ∈ [0, B − 1], f : Z → Z is a private R-Lipschitz linear morphism

– Algorithm:

PLtLfsk→sk′(LWEsk(m)) :=

n∑
i=1

ai ⊕ LWE′
sk′(f(ski)) + b⊕ LWE′

sk′(f(1)).

Private LWE-to-LWE Using Ring Gadget Product.

– Input: LWEs⃗k(m) = (⃗a, b)

– Switching key: LtL2K = (RLWE′
sk′(sk),RLWE′

sk′(f(1))), where sk =
∑l−1

i=0

f(ski)X
−i, sk′ =

∑l−1
i=0 sk

′
iX

−i, f : Z → Z is a private R-Lipschitz linear
morphism

– Output: LWE
s⃗k

′(f(m)) = (⃗a′, b′)

– Algorithm:

(a′,b′) :=

n∑
i=1

aiX
i ⊙R RLWE′

sk′(sk) + b⊙R RLWE′
sk′(f(1)),

LtL2
f

s⃗k→s⃗k
′(LWEs⃗k(m)) := (a′0, a

′
1, ..., a

′
n−1, b

′
0).



14 Ruida Wang et al.

Method Computation complexity Key size (in bits)

PLtL,⊙ O(ln2) MM l(n+ 1)2 log q

PLtL,⊕ (ln+ n+ l + 1) MA Bl(n+ 1)2 log q

PLtL2,⊙R O(ln log n) MM 2l(n+ 1) log q

Table 4. Comparison between different versions of the private LWE-to-LWE key
switching, where q is the ciphertext modulus, l and B are the gadget length and base,
MA and MM denote the modular addition and modular multiplication operations.

Correctness, Error Growth and Comparison. The correctness and error
analysis of these algorithms are similar to those in section 4.1. For self com-
pleteness, we include them in A.1. The computational complexity and key size
of LWE-to-LWE private functional key switching algorithms are listed in tab.4.

A comparison of tab.3 and tab.4 reveals that the computational complexity
and key size of private algorithms are both larger than the corresponding public
algorithms. The comparison results between these three methods are similar to
those in sec.4.1: (PLtL,⊕) is more suitable for computation-priority scenarios,
while (PLtL2,⊙R) is more suitable for storage-priority scenarios.

5 RLWE-to-RLWE Key Switching

Besides LWE-to-LWE key switching, LWE-to-RLWE and RLWE-to-RLWE key
switching are also largely described in the literature. However, LWE-to-RLWE
algorithms are highly similar to LWE-to-LWE algorithms. Therefore, we put
the whole section in the Appendix A.3 for readers to refer to the algorithms
and theorems. RLWE-to-RLWE key switching is different. To the best of our
knowledge, it can only be calculated through ring gadget product.

In this section, we extend this method into functional versions, which support
calculation of both public and private Lipschitz functions. We also prove that
the widely-used scheme switching algorithm [9] (or EvalSquareMult algorithm
[18]) is a special case of our extended private functional key switching algorithm.

5.1 Public Functional Key Switching

RLWE-to-RLWE Using Ring Gadget Product.

– Input: RLWEsk(m) = (a,b), and a public R-Lipschitz linear morphism f :
R → R

– Switching key: RtRK = RLWE′
sk′(sk)

– Output: RLWEsk′(f(m)) = (a′,b′)
– Algorithm:

RtRsk→sk′(RLWEsk(m)) := f(a)⊙R RLWE′
sk′ (sk) + (0, f(b)).



Revisiting Key Switching Techniques with Applications to Light-Key FHE 15

Correctness and error analysis:

Theorem 3. Let n denote the dimension of the ring polynomial of RLWE ci-
phertexts, B and l denote the base and the length of the gadget decomposition,
respectively, then the error variance of the result of the LWE to LWE public
functional key switching algorithm is bounded by:

σ2
RtR ≤ 1

12
nlB2σ2

RtRK +
1

6
nϵ2 + σ2

input,

where σ2
input is the error variance of the input RLWE ciphertext, and σ2

RtLR is
the error variance of the switching key.

Proof. Basing the correctness of the Ring gadget product, we have,

f(a)⊙R RLWE′
sk′ (sk) + (0, f(b))

= RLWEsk′ (f(a · sk) + f(b))

= RLWEsk′ (f(m) + f(e)) .

then we measure the error variance based on lemma.2:

σ2
RtR = σ2

⊙R,RtRK + Var(e) ≤ 1

12
nlB2σ2

RtRK +
1

6
nϵ2 +R2σ2

input.

5.2 Private Functional Key Switching

Private RLWE-to-RLWE Using Ring Gadget Product.

– Input: RLWEsk(m) = (a,b)
– Switching key: RtRK = (RLWE′

sk′(f(sk)),RLWE′
sk′(f(1)), where f : R →

R is a private R-Lipschitz linear morphism
– Output: RLWEsk′(f(m)) = (a′,b′)
– Algorithm:

RtRsk→sk′(RLWEsk(m)) := a⊙RRLWE′
sk′ (f(sk))+b⊙RRLWE′

sk′ (f(1)) .

The correctness and error analysis of this algorithm is similar to theorem.3.
We put it in A.2 for self completeness. When the private Lipschitz morphism is
f(x) = sk·x, our algorithm becomes: a⊙RRLWE′

sk′

(
sk2)

)
+b⊙RRLWE′

sk′ (sk) =

a ⊙R RLWE′
sk′

(
sk2)

)
+ (b, 0), where the right side is the well-known scheme

switching algorithm [9] (or EvalSquareMult algorithm [18]).

6 Light-Key Bootstrapping

To illustrate the effectiveness of our result, we apply the above analysis to con-
struct light-key bootstrapping algorithms. First, we modify the classical GINX
bootstrapping [7], for which our method provides a time-space trade-off. We then
improve the LFHE (light-key FHE) bootstrapping proposed by Kim et al. [18],
which is specifically designed to reduce the key size. We optimize their result
and yield the bootstrapping algorithm with the smallest key.



16 Ruida Wang et al.

Parameters Q QRtR QLtL q N NRtR n lbr lak lsqk lRtR lLtL
GINX [21] 25 − 14 11 1024 − 571 4 − − − 2

GINX our 25 − 15 11 1024 − 571 4 − − − 13

LFHE [18] 54 27 14 11 2048 1024 571 3 5 2 2 3

LFHE our 54 27 15 11 2048 1024 571 3 5 2 2 13

Table 5. Security and Parameters.

6.1 Security and Parameters

GINX bootstrapping algorithm use (LtL,⊕) for key switching due to its higher
efficiency and lower noise growth. However, the large key size of (LtL,⊕) results
in the key switching key occupying 91.6 % of the GINX bootstrapping key (see
tab.1). LFHE replace part of the key switching from (LtL,⊕) to (RtR,⊙R), which
has a smaller key size. However, it still retains an (LtL,⊕) step, so that the key
switching key still occupies 48.3 % of the LFHE bootstrapping key.

In order to construct light-key bootstrapping algorithms, our idea is to use
(LtL2,⊙R) to replace (LtL,⊕) in GINX and LFHE bootstrapping. However, a
direct adoption would not work since the noise growth of (LtL2,⊙R) is much
higher than that of (LtL,⊕) under the same parameters. Therefore, to ensure
algorithm security and control noise introduced by bootstrapping itself, we made
necessary adjustments to the bootstrapping parameters, see tab.6.1. This set of
parameters ensures that the security level of algorithms exceeds 128-bit 5, and
the decryption failure rate due to noise accumulation is less than 2−32 6.

q and n denotes the modulus and dimension of the ciphertext before boot-
strapping. Q, N , lbr, lak, and lsqk are the parameters used for blind rotation,
representing the modulus and ring dimension of the blind rotation key, and the
gadget length in blind rotation, automorphism, and SquareKeyMult (the latter
two are used in LFHE), respectively. QRtR, NRtR, and lRtR denote the modulus,
ring dimension, and gadget decomposition length of the RtR key switching key.
QLtL and lLtL represent the modulus and gadget decomposition length of the LtL2
key switching key.

6.2 Work Flow

The improved GINX and LFHE bootstrapping are shown as follows (all abbre-
viations are defined in previous section, or check sec.2.4 for explanations):

GINXour : LWE571,211
BR−−→ RLWE1024,225

SE−→ LWE1024,225
MS−−→ LWE1024,215

LtL2−−→ LWE571,215
MS−−→ LWE571,211

LFHEour : LWE571,211
BR−−→ RLWE2048,254

MS−−→ RLWE2048,227
RtR−−→ RLWE1024,227

SE−→ LWE1024,227
MS−−→ LWE1024,215

LtL2−−→ LWE571,215
MS−−→ LWE571,211

5 test by LWE estimator, https://bitbucket.org/malb/lwe-estimator/src/master/
6 calculate by 1− erf

(
q

8
√
2σ

)
, where erf represents the Gaussian error function.



Revisiting Key Switching Techniques with Applications to Light-Key FHE 17

Fig. 3. The transfer model of TFHE bootstrapping.

6.3 Key Size

This section analyze the bootstrapping key size. Since the modulus switching
and sample extraction algorithms do not require evaluation keys, the bootstrap-
ping key includes two parts: the blind rotation key and the key switching key.

GINXour : The blind rotation key contains n RGSW ciphertexts, with each
having 4lbrN logQ bits. This results in a blind rotation key size of 27.88 MB.
We use LtL2 instead of LtL1, the key contains 1 RLWE′ ciphertext with a size
of 2nlLtL logQLtL bits. Thus the key switching key size is 27.2 KB. The total key
size is 27.91 MB.

LFHEour : The blind rotation key also contains n RGSW ciphertexts, resulting
in a blind rotation key size of 90.33 MB. The RtR key switching key contains 1
RLWE′ ciphertext with a size of 2NlRtR logQRtR bits, resulting in a key size of
27 KB. The LtL2 key switching key size is 27.2 KB. The total is 90.38 MB.

6.4 Transfer Model and Transfer Key Size

LFHE [18] proposed a transfer model, see fig.3. The client transmits a transfer
key (a seed) to the server. Then the server runs the reconstruction algorithm to
obtain the complete bootstrapping key, and performs the bootstrapping algo-
rithm. In this model, client and server utilize a common reference string (CRS)
to generate the a-components of each transferred LWE and RLWE ciphertext.
Thus only the b(or b for RLWE)-components of the ciphertext needs to be trans-
mitted. LFHE’s blind rotation algorithm is specifically designed for the transfer
model and uses a pached blind rotation key to reduce the bootstrapping transfer
key size to within 1 MB. We also calculate the transfer key size of our improved
algorithms under the transfer model.

GINXour : The blind rotation key contains n RGSW ciphertexts, with each
needing to transfer 2lbrN logQ bits. This results in a blind rotation transfer key



18 Ruida Wang et al.

Methods Transfer key size Bootstrapping key size

GINX 16.48 MB 250 MB

GINXour 13.96 MB 27.91 MB

LFHE 881 KB 175 MB

LFHEour 810.1 KB 90.38 MB

Table 6. Transfer key size and the bootstrapping key size in different methods.

size of 13.94 MB. We use LtL2 instead of LtL1, the key contains 1 RLWE′ cipher-
text, with a transfer key size of nlLtL logQLtL bits. This results in a key switching
transfer key size of 13.6 KB. The total is 13.96 MB.

LFHEour : The packed blind rotation key contains 1 RLWE ciphertext and
(logN+1) RLWE′ ciphertexts. Each RLWE ciphertext needs to transfer N logQ
bits, each RLWE′ ciphertext needs to transferNlak(lsqk) logQ bits. This results in
a blind rotation transfer key size of 783 KB. The RtR key switching key contains
1 RLWE′ ciphertext and has a transfer size of NlRtR logQRtR bits, resulting in
a transfer key size of 13.5 KB. The LtL2 transfer key size is 13.6 KB. The total
key size is 810.1 KB.

For GINX bootstrapping, our method reduces the bootstrapping key size by
88.8 % and the transfer key size by 15.3 %. We do not want to oversell this result,
but take it as a trade-off method towards practical TFHE applications. For
LFHE bootstrapping, our method outperforms Kim’s method [18] by reducing
48.4% bootstrapping key size and 8 % transfer key size.

7 Conclusion

The key switching algorithm is crucial in real-world fully homomorphic encryp-
tion (FHE) applications due to its significant impact on the key size and effi-
ciency of the FHE system. This paper revisits currently known key switching
algorithms, expands their functionality, carefully recalculates the error growth,
and provide a comparison of different algorithms under the same benchmark. Our
analysis is applied to the bootstrapping algorithm, resulting in optimal light-key
FHE. This paper can be served as an reference for the time-space trade-off of
key switching algorithms and assists to build FHE applications with different
computational and storage requirements.

Acknowledgments

We are grateful for the helpful comments from the anonymous reviewers of ICISC
2023. This work was supported by CAS Project for Young Scientists in Basic
Research (Grant No. YSBR-035).



Revisiting Key Switching Techniques with Applications to Light-Key FHE 19

References

1. Amuthan, A., Sendhil, R.: Hybrid gsw and dm based fully homomorphic encryption
scheme for handling false data injection attacks under privacy preserving data
aggregation in fog computing. Journal of Ambient Intelligence and Humanized
Computing 11, 5217–5231 (2020)

2. Canteaut, A., Carpov, S., Fontaine, C., Lepoint, T., Naya-Plasencia, M., Pail-
lier, P., Sirdey, R.: Stream ciphers: A practical solution for efficient homomorphic-
ciphertext compression. Journal of Cryptology 31(3), 885–916 (2018)

3. Chen, H., Dai, W., Kim, M., Song, Y.: Efficient homomorphic conversion between
(ring) lwe ciphertexts. In: International Conference on Applied Cryptography and
Network Security. pp. 460–479. Springer (2021)

4. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: Bootstrapping for approximate
homomorphic encryption. In: Annual International Conference on the Theory and
Applications of Cryptographic Techniques. pp. 360–384. Springer (2018)

5. Chillotti, I., Gama, N., Georgieva, M., Izabachene, M.: Faster fully homo-
morphic encryption: Bootstrapping in less than 0.1 seconds. ADVANCES IN
CRYPTOLOGY-ASIACRYPT 2016, PT I 10031, 3–33 (2016)

6. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster packed homomorphic
operations and efficient circuit bootstrapping for tfhe. In: Advances in Cryptology–
ASIACRYPT 2017: 23rd International Conference on the Theory and Applications
of Cryptology and Information Security, Hong Kong, China, December 3-7, 2017,
Proceedings, Part I. pp. 377–408. Springer (2017)

7. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Tfhe: fast fully homomor-
phic encryption over the torus. Journal of Cryptology 33(1), 34–91 (2020)

8. Cosseron, O., Hoffmann, C., Méaux, P., Standaert, F.X.: Towards case-optimized
hybrid homomorphic encryption: Featuring the elisabeth stream cipher. In: Inter-
national Conference on the Theory and Application of Cryptology and Information
Security. pp. 32–67. Springer (2022)

9. De Micheli, G., Kim, D., Micciancio, D., Suhl, A.: Faster amortized fhew boot-
strapping using ring automorphisms. Cryptology ePrint Archive (2023)

10. Deviani, R.: The application of fully homomorphic encryption on xgboost based
multiclass classification. JIEET (Journal of Information Engineering and Educa-
tional Technology) 7(1), 49–58 (2023)

11. Dobraunig, C., Eichlseder, M., Grassi, L., Lallemand, V., Leander, G., List, E.,
Mendel, F., Rechberger, C.: Rasta: a cipher with low anddepth and few ands per
bit. In: Advances in Cryptology–CRYPTO 2018: 38th Annual International Cryp-
tology Conference, Santa Barbara, CA, USA, August 19–23, 2018, Proceedings,
Part I 38. pp. 662–692. Springer (2018)

12. Ducas, L., Micciancio, D.: Fhew: bootstrapping homomorphic encryption in less
than a second. In: Advances in Cryptology–EUROCRYPT 2015: 34th Annual In-
ternational Conference on the Theory and Applications of Cryptographic Tech-
niques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I 34. pp. 617–640.
Springer (2015)

13. Gomes, F.A., de Matos, F., Rego, P., Trinta, F.: Analysis of the impact of ho-
momorphic algorithm on offloading of mobile application tasks. In: 2023 IEEE
20th Consumer Communications & Networking Conference (CCNC). pp. 961–962.
IEEE (2023)

14. Halevi, S., Shoup, V.: Bootstrapping for helib. Journal of Cryptology 34(1), 7
(2021)



20 Ruida Wang et al.

15. Jiang, L., Lou, Q., Joshi, N.: Matcha: A fast and energy-efficient accelerator
for fully homomorphic encryption over the torus. In: Proceedings of the 59th
ACM/IEEE Design Automation Conference. pp. 235–240 (2022)

16. Jutla, C.S., Manohar, N.: Modular lagrange interpolation of the mod function for
bootstrapping of approximate he. Cryptology ePrint Archive (2020)

17. Jutla, C.S., Manohar, N.: Sine series approximation of the mod function for boot-
strapping of approximate he. Springer-Verlag (2022)

18. Kim, A., Lee, Y., Deryabin, M., Eom, J., Choi, R.: Lfhe: Fully homomorphic en-
cryption with bootstrapping key size less than a megabyte. Cryptology ePrint
Archive (2023)

19. Kocabas, O., Soyata, T.: Towards privacy-preserving medical cloud computing us-
ing homomorphic encryption. In: Virtual and Mobile Healthcare: Breakthroughs
in Research and Practice, pp. 93–125. IGI Global (2020)

20. Lee, J.W., Kang, H., Lee, Y., Choi, W., Eom, J., Deryabin, M., Lee, E., Lee, J., Yoo,
D., Kim, Y.S., et al.: Privacy-preserving machine learning with fully homomorphic
encryption for deep neural network. IEEE Access 10, 30039–30054 (2022)

21. Lee, Y., Micciancio, D., Kim, A., Choi, R., Deryabin, M., Eom, J., Yoo, D.: Effi-
cient fhew bootstrapping with small evaluation keys, and applications to threshold
homomorphic encryption. In: Annual International Conference on the Theory and
Applications of Cryptographic Techniques. pp. 227–256. Springer (2023)

22. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Advances in Cryptology - EUROCRYPT 2010, 29th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques.
pp. 1–23. Springer, Heidelberg (2010)

23. Micciancio, D., Polyakov, Y.: Bootstrapping in fhew-like cryptosystems. In: Pro-
ceedings of the 9th on Workshop on Encrypted Computing & Applied Homomor-
phic Cryptography. pp. 17–28 (2021)

24. Naehrig, M., Lauter, K., Vaikuntanathan, V.: Can homomorphic encryption be
practical? In: Proceedings of the 3rd ACM workshop on Cloud computing security
workshop. pp. 113–124 (2011)

25. Nam, K., Oh, H., Moon, H., Paek, Y.: Accelerating n-bit operations over tfhe
on commodity cpu-fpga. In: Proceedings of the 41st IEEE/ACM International
Conference on Computer-Aided Design. pp. 1–9 (2022)

26. Peralta, G., Cid-Fuentes, R.G., Bilbao, J., Crespo, P.M.: Homomorphic encryp-
tion and network coding in iot architectures: Advantages and future challenges.
Electronics 8(8), 827 (2019)

27. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM 56(6), 34:1–34:40 (2009)

28. Ren, W., Tong, X., Du, J., Wang, N., Li, S.C., Min, G., Zhao, Z., Bashir, A.K.:
Privacy-preserving using homomorphic encryption in mobile iot systems. Computer
Communications 165, 105–111 (2021)

29. Shrestha, R., Kim, S.: Integration of iot with blockchain and homomorphic encryp-
tion: Challenging issues and opportunities. In: Advances in computers, vol. 115,
pp. 293–331. Elsevier (2019)

30. Ye, T., Kannan, R., Prasanna, V.K.: Fpga acceleration of fully homomorphic en-
cryption over the torus. In: 2022 IEEE High Performance Extreme Computing
Conference (HPEC). pp. 1–7. IEEE (2022)



Revisiting Key Switching Techniques with Applications to Light-Key FHE 21

A Appendix

A.1 LWE-to-LWE Key Switching

Private LWE-to-LWE Using Canonical Gadget Product

Theorem 4. Let n denote the dimension of the LWE ciphertexts, B and l de-
note the base and the length of the gadget decomposition, respectively, then the
error variance of the result of the LWE to LWE public functional key switching
algorithm is bounded by:

σ2
PLtL ≤ 1

12
(n+ 1)lB2σ2

LtLK +
1

6
R2nϵ2 ++

1

3
nVar(f(1))ϵ2 +R2σ2

input,

where σ2
input is the error variance of the input LWE ciphertext, and σ2

LtLK is
the error variance of the switching key.

Proof. Basing the correctness of the gadget product, we have,

n∑
i=1

ai ⊙ LWE′
sk′(f(ski)) + b⊙ LWE′

sk′(f(1))

= LWEsk′

(
n∑

i=1

f(ai · ski) + f(b)

)
= LWEsk′ (f(m) + f(e)) ,

then we measure the error variance based on lemma.1:

σ2
PLtL =

n∑
i=1

σ2
⊙,LWE′

sk′ (f(ski))
+ σ2

⊙,LWE′
sk′ (f(1))

+ Var(f(e))

≤ 1

12
(n+ 1)lB2σ2

LtLK +
1

3
nVar(f(ski)ϵ

2 +
1

3
nVar(f(1))ϵ2 +R2σ2

input.

≤ 1

12
(n+ 1)lB2σ2

LtLK +
1

6
R2nϵ2 ++

1

3
nVar(f(1))ϵ2 +R2σ2

input.

Private LWE-to-LWE Using Ring Gadget Product

Theorem 5. Let n denote the dimension of the LWE ciphertexts, B and l de-
note the base and the length of the gadget decomposition, respectively, then the
error variance of the result of the LWE to LWE using RtR algorithm is bounded
by:

σ2
PLtL2

≤ 1

6
NlB2σ2

LtL2K +
1

6
R2nϵ2 +

1

3
nVar(f(1))ϵ2 +R2σ2

input,

where σ2
input is the error variance of the input LWE ciphertext, and σ2

PLtL2K
is

the error variance of the switching key.



22 Ruida Wang et al.

Proof. Basing the correctness of the ring gadget product, we have,

b′0 +

n∑
i=1

a′isk
′
i = [b′ + a′ · sk′]0 =

n∑
i=1

f(ai · ski) + f(b) = f(m) + f(e),

thus (a′0, a
′
1, ..., a

′
n−1, b

′
0) is the LWE ciphertext of f(m) under secret key s⃗k

′
,

then we measure the error variance based on corollary.2:

σ2
LtL2

= σ2
⊙R,RLWE′

sk′ (sk)
+ σ2

⊙R,RLWE′
sk′ (f(1))

+ Var(f(e))

≤ 1

6
NlB2σ2

LtL2K +
1

3
nVar(f(ski)ϵ

2 +
1

3
nVar(f(1))ϵ2 +R2σ2

input

≤ 1

6
NlB2σ2

LtL2K +
1

6
R2nϵ2 +

1

3
nVar(f(1))ϵ2 +R2σ2

input.

A.2 RLWE-to-RLWE Key Switching

Private RLWE-to-RLWE

Theorem 6. Let n denote the dimension of the ring polynomial of RLWE ci-
phertexts, B and l denote the base and the length of the gadget decomposition,
respectively, then the error variance of the result of the LWE to LWE public
functional key switching algorithm is bounded by:

σ2
RtR ≤ 1

12
nlB2σ2

RtRK +
1

6
nϵ2 + σ2

input,

where σ2
input is the error variance of the input RLWE ciphertext, and σ2

RtLR is
the error variance of the switching key.

Proof. Basing the correctness of the Ring gadget product, we have,

a⊙R RLWE′
sk′ (f(sk)) + b⊙R RLWE′

sk′ (f(1))

= RLWEsk′ (f(a · sk) + f(b))

= RLWEsk′ (f(m) + f(e)) .

then we measure the error variance based on lemma.2:

σ2
RtR = σ2

⊙R,RLWE′
sk′ (f(sk))

+ σ2
⊙R,RLWE′

sk′ (f(1))
+ Var(f(e))

≤ 1

6
nlB2σ2

RtRK +
1

3
nVar(f(sk))ϵ2 +

1

3
nVar(f(1))ϵ2 +R2σ2

input

≤ 1

6
nlB2σ2

RtRK +
1

6
R2nϵ2 +

1

3
nVar(f(1))ϵ2 +R2σ2

input

A.3 LWE-to-RLWE Key Switching

Public LWE-to-RLWE Functional Key Switching



Revisiting Key Switching Techniques with Applications to Light-Key FHE 23

Input: LWEsk(m) = (a, b), and a public R-Lipschitz morphism f : Z → Z
Switching key: LtRK = RLWE′

sk′(ski)i∈[1,n]

Output: RLWEsk′(f(m)) = (a′,b′)
Algorithm:

LtRf
sk→sk′(LWEsk(m)) :=

n∑
i=1

f(ai)⊙ RLWE′
sk′(ski) + (0, f(b)).

Correctness and error analysis:

Theorem 7. Let n denote the dimension of the LWE ciphertexts, B and l de-
note the base and the length of the gadget decomposition, respectively, then the
error variance of the result of the LWE to LWE public functional key switching
algorithm is bounded by:

σ2
LtR ≤ 1

12
nlB2σ2

LtRK +
1

6
nϵ2 +R2σ2

input,

where σ2
input is the error variance of the input LWE ciphertext, and σ2

LtLK is
the error variance of the switching key.

Proof. Basing the correctness of the gadget product, we have,

n∑
i=1

f(ai)⊙ RLWE′
sk′(ski) + (0, f(b))

= RLWEsk′

(
n∑

i=1

f(ai · ski) + f(b)

)
= RLWEsk′ (f(m) + f(e)) ,

then we measure the error variance based on lemma.1:

σ2
LtR = nσ2

⊙,LtRK + Var(f(e)) ≤ 1

12
nlB2σ2

LtLK +
1

6
nϵ2 +R2σ2

input

Private LWE-to-RLWE Functional Key Switching

Input: LWEsk(m) = (a, b)
Switching key: PLtRK = (RLWE′

sk′(f(ski))i∈[1,n],RLWE′
sk′(f(1))), where f :

Z → Z is a private R-Lipschitz linear morphism
Output: RLWEsk′(f(m)) = (a′,b′)
Algorithm:

PLtRf
sk→sk′(LWEsk(m)) :=

n∑
i=1

ai ⊙ RLWE′
sk′(f(ski)) + b⊙ RLWE′

sk′(f(1)).

Correctness and error analysis:



24 Ruida Wang et al.

Theorem 8. Let n denote the dimension of the LWE ciphertexts, B and l de-
note the base and the length of the gadget decomposition, respectively, then the
error variance of the result of the LWE to LWE public functional key switching
algorithm is bounded by:

σ2
PLtR ≤ 1

12
(n+ 1)lB2σ2

LtLK +
1

6
R2(n+ 1)ϵ2 +R2σ2

input,

where σ2
input is the error variance of the input LWE ciphertext, and σ2

LtLK is
the error variance of the switching key.

Proof. Basing the correctness of the gadget product, we have,

n∑
i=1

ai ⊙ RLWE′
sk′(f(ski)) + b⊙ RLWE′

sk′(f(1))

= RLWEsk′

(
n∑

i=1

f(ai · ski) + f(b)

)
= RLWEsk′ (f(m) + f(e)) ,

then we measure the error variance based on lemma.1:

σ2
PLtR = (n+ 1)σ2

⊙,PLtRK + Var(f(e))

≤ 1

12
(n+ 1)lB2σ2

LtLK +
1

6
R2(n+ 1)ϵ2 +R2σ2

input.


	Revisiting Key Switching Techniques with Applications to Light-Key FHE

