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Abstract. HALFLOOP-96 is a 96-bit tweakable block cipher used in
high frequency radio to secure automatic link establishment messages.
In this paper, we concentrate on its differential properties in the contexts
of conventional, related-tweak, and related-key differential attacks. Us-
ing automatic techniques, we determine the minimum number of active
S-boxes and the maximum differential probability in each of the three
configurations. The resistance of HALFLOOP-96 to differential attacks
in the conventional and related-tweak configurations is good, and the
longest distinguishers in both configurations consist of five rounds. In
contrast, the security of the cipher against differential attacks in the
related-key configuration is inadequate. The most effective related-key
distinguisher we can find spans eight rounds. The 8-round related-key
differential distinguisher is then utilised to initiate a 9-round weak-key
attack. With 292.96 chosen-plaintexts, 38.77-bit equivalent information
about the keys can be recovered. Even though the attack does not pose
a significant security threat to HALFLOOP-96, its security margin in
the related-key configuration is exceedingly narrow. Therefore, improper
use must be avoided in the application.

Keywords: Differential cryptanalysis · Related-tweak · Related-key ·
HALFLOOP-96.

1 Introduction

HALFLOOP is a family of tweakable block ciphers. It was created to encrypt pro-
tocol data units before transmission during automatic link establishment (ALE).
HALFLOOP has been standardised in the most recent revision of MIL-STD-188-
141D [1], the interoperability and performance standards for medium and high
frequency radio systems issued by the United States Department of Defence.

The three versions of HALFLOOP, namely HALFLOOP-24, HALFLOOP-
48, and HALFLOOP-96, possess the same key size of 128 bits while exhibit-
ing differing state sizes of 24 bits, 48 bits, and 96 bits, correspondingly. The
three variants of HALFLOOP are used in various generations of ALE systems:
HALFLOOP-24 in the second generation (2G) system, HALFLOOP-48 in the
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third generation (3G) system, and HALFLOOP-96 in the fourth generation (4G)
system.

The announcement of HALFLOOP is not accompanied by a public crypt-
analysis. Dansarie et al. [12] presented the first public cryptanalytic result on
HALFLOOP-24 and proposed a number of differential attacks [5] for ciphertext-
only, known-plaintext, chosen-plaintext, and chosen-ciphertext scenarios. De-
spite having a 128-bit key size, the results of the attack indicate that HALFLOOP-
24 is incapable of providing 128-bit security. Note that [12] only assesses the
security of HALFLOOP-24 and does not examine the security of the other two
variants.

Despite the fact that many HALFLOOP operations are derived from AES
[2], HALFLOOP-96 is the most similar to AES of the three HALFLOOP vari-
ants. It is common knowledge that AES is susceptible to relate-key differential
attacks, and full-round attacks on AES-192 and AES-256 are proposed in [6,7].
Consequently, the similarity between AES and HALFLOOP-96 drives us to in-
vestigate the security of HALFLOOP-96 in the context of related-key differential
attacks.

1.1 Our Results

Motivated by recognising the resistance of HALFLOOP-96 to differential attack
in the relate-key setting, we examine its differential property in the contexts
of conventional, related-tweak, and related-key differential attacks. Automatic
methods based on the Boolean satisfiability problem (SAT) are employed to find
the lower bound on the number of active S-boxes and the upper bound on the
differential probability for each of the three configurations.

❖ The resistance of HALFLOOP-96 to standard differential attacks is accept-
able. The longest distinguisher with a probability above 2−95 covers five
rounds. The probability of the optimal 5-round differential characteristic is
2−92, whereas the accumulated probability of the best 5-round differential we
can discover is 2−89.18. Due to the limited accumulated effect of differential
characteristics, there is no effective 6-round distinguisher.

❖ Comparing the security of HALFLOOP-96 in the related-tweak setting to
the security of the cipher in the conventional differential setting, there is no
significant decline. The bounds on the active S-boxes and differential proba-
bility in the related-tweak setting are identical to those in the conventional
setting, commencing from the sixth round. For more than five rounds, the
differential characteristics returned by the SAT solver are the same as those
with zero tweak differences. Therefore, starting with the sixth round, the
performance of related-tweak differential characteristics is not superior to
that of traditional differential characteristics.

❖ In the related-key setting, HALFLOOP-96 has a low resistance to differential
attack. The maximum number of rounds covered by a related-key differential
characteristic is eight. The probability of the unique 8-round related-key
differential characteristic is 2−124, whereas the probability of the key schedule
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is 2−34 and the probability of the round function is 2−90. The security margin
in this case is limited, considering the ten rounds of HALFLOOP-96.

Using the newly discovered 8-round related-key differential distinguisher, we
launch a 9-round related-key differential attack to recover partial information
about the key pair. It takes 292.96 chosen-plaintexts and 292.96 9-round en-
cryptions to retrieve 38.77 bits of equivalent key information. The attack has
a 90% success probability and is effective against 294 key pairs with a speci-
fied difference. Although the attack does not pose an actual security threat to
HALFLOOP-96, the security margin of the cipher in the setting for related-key
attack is reduced to only one round. Hence, it is crucial to take measures to
avoid the improper use of the application.

Outline. Section 2 goes over the target cipher HALFLOOP-96 as well as differ-
ential cryptanalysis. Section 3 describes the procedure for developing SAT mod-
els to seek for differential distinguishers of HALFLOOP-96. Section 4 provides
the differential properties of the cipher in the conventional, related-tweak, and
related-key configurations. The 9-round related-key differential on HALFLOOP-
96 is detailed in Section 5. Section 6 serves as the conclusion of the paper.

2 Preliminaries

In this section, the cipher examined in the paper is initially reviewed. Next, the
primary concept of differential cryptanalysis is presented.

2.1 Description of HALFLOOP-96

HALFLOOP [1] is a tweakable block cipher family with three distinct variants.
HALFLOOP-96 employs 96-bit blocks and has 128-bit key K and 64-bit tweak
T . Many operations in HALFLOOP-96 are derived from AES [2].

Initialisation After receiving the plaintext m = m0∥m1∥ · · · ∥m11, where mi ∈
F8
2, 0 ⩽ i ⩽ 11, the internal state IS is created by setting IS as

IS =


m0 m4 m8

m1 m5 m9

m2 m6 m10

m3 m7 m11

.



4 Jinpeng Liu and Ling Sun

RKi

AddRoundKey

S

S

S

S

SubBytes

≪ 6

≪ 12

≪ 18

RotateRows

M

MixColumns

Fig. 1. Round function of HALFLOOP-96.

A single encryption round consists of the four operations depicted in Fig. 1:
AddRoundKey (ARK), SubBytes (SB), RotateRows (RR), and MixColumns (MC).
The encryption process consists of r = 10 rounds, with the last round replac-
ing the MixColumns operation with AddRoundKey. The definitions of the four
operations are as follows.

AddRoundKey (ARK) The round key RKi is bitwise added to the state in the i-th
round.

SubBytes (SB) An 8-bit S-box S is applied to each byte of the state, which is
identical to the S-box used by AES (cf. [2]).

RotateRows (RR) As shown in Fig. 1, this operation rotates the rows of the state
to the left by a variable number of bit positions.

MixColumns (MC) This operation is the same as the MixColumn transformation
used in AES. The columns of the state are regarded as polynomials over the
finite field F28 , with the irreducible binary polynomial denoted as m(x) =
x8 + x4 + x3 + x + 1. Each column is multiplied modulo x4 + 1 by a fixed
polynomial c(x) given by c(x) = 3 · x3 + x2 + x + 2. The aforementioned
process can instead be represented as a matrix multiplication utilising the
matrix M over F28 . In this case, the matrix M is defined as

M =


2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

. (1)
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Fig. 2. Key schedule of HALFLOOP-96.

Key Schedule The key schedule resembles that of AES-128 closely. Denote K
and T as K0∥K1∥K2∥K3 and T0∥T1, respectively, where Ki (0 ⩽ i ⩽ 3) and
Tj (j = 0, 1) are 32-bit words. K and T are utilised to generate a linear
array of 4-byte words W0, W1, . . ., W32, which are then employed to create
the round keys. The first four words are initialised with

W0 = K0 ⊕ T0,W1 = K1 ⊕ T1,W2 = K2,W3 = K3.

The remaining words are derived using the subsequent two functions.
RotWord The function accepts the input word a0∥a1∥a2∥a3, performs a cyclic

permutation, and returns the output word a1∥a2∥a3∥a0.
SubWord The function takes a 4-byte input word and applies the S-box S to

each of the four bytes to generate a 4-byte output word.
Each subsequent word Wi (4 ⩽ i ⩽ 16 and i mod 4 ̸= 0) is the XOR of
the two preceding words Wi−1 and Wi−4. For words in positions i that are
a multiple of four, g = SubWord ◦ RotWord is applied to Wi−1 prior to the
XOR, and a round constant Rconi/4 is XORed with the result. Eight round
constants are involved in the key schedule of HALFLOOP-96, which are

Rcon1 = 0x01000000, Rcon2 = 0x02000000, Rcon3 = 0x04000000,

Rcon4 = 0x08000000, Rcon5 = 0x10000000, Rcon6 = 0x20000000,

Rcon7 = 0x40000000, Rcon8 = 0x80000000.
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To obtain the round keys RK0, RK1, . . ., and RK10 for HALFLOOP-96,
it is necessary to repackage the 4-byte words into 12-byte words. The key
schedule is illustrated in Fig. 2.

2.2 Differential Cryptanalysis

The concept of differential cryptanalysis was initially introduced by Biham and
Shamir [5] at CRYPTO 1990. The fundamental methodology involves using
plaintext pairs (P, P ′) linked by a constant input difference ∆in, commonly de-
scribed as the XOR operation between two plaintexts. The attacker subsequently
calculates the difference between the two ciphertexts (C,C ′) to identify a non-
random occurrence of an output difference ∆out with a certain likelihood.

The pair of differences (∆in,∆out) is called a differential. The differential
probability of the differential over an n-bit primitive EK is computed as

PrEK
(∆in,∆out) =

{x ∈ Fn
2 | EK(x)⊕ EK(x⊕∆in) = ∆out}

2n
.

The weight of the differential is determined by taking the negative logarithm of
its probability, using a base of two.

The task of evaluating the differential probability of a differential in order
to discover a valid differential for a cryptographic algorithm with several iter-
ations is known to be quite challenging. The differential is usually localised by
constructing differential characteristics, which enable the tracking of differences
occurring after each round. Let (∆0 = ∆in,∆1, . . . ,∆r = ∆out) be an r-round dif-
ferential characteristic of the given differential (∆in,∆out). Suppose the r-round
encryption EK can be represented as the composition of r round functions de-
noted by fkr−1

◦ fkr−2
◦ · · · ◦ fk0

. Given the premise that the round keys k0, k1,
. . ., and kr−1 are independent and uniformly random, the differential probability
of the differential characteristic can be calculated as

PrEK
(∆0,∆1, . . . ,∆r) =

r−1∏
i=0

Prfki
(∆i,∆i+1).

As discussed in [14], a fixed differential might encompass several differential char-
acteristics, and the probability of the differential is determined by aggregating
the probabilities associated with each differential characteristic. This probability
may be computed as

PrEK
(∆in,∆out) =

∑
∆1,∆2,...,∆r−1∈Fn

2

PrEK
(∆in,∆1, . . . ,∆r−1,∆out).

In practical applications, the comprehensive search for all characteristics in-
side a differential and the precise calculation of their probabilities are unattain-
able due to the constraints imposed by limited computational resources. A com-
mon way of handling this is to find the differential characteristics with a higher



Distinguisher and Related-Key Attack on HALFLOOP-96 7

probability in the differential, and the summation of probabilities of these char-
acteristics approximates the probability of the differential.

After finding an r-round differential (∆in,∆out) with probability p0 (p0 >

21−n), we can launch an attack against the (r + 1)-round encryption ÊK =
fkr

◦ EK . The following is a summary of the attack procedure.

① Select N pairs of plaintexts (P, P ′) whose difference P⊕P ′ equals ∆in. Query
the encryption oracle to obtain pairs of corresponding ciphertexts (C,C ′).

② Create a counter Ctr[k(i)r ] for each possible value k
(i)
r of the subkey kr, 0 ⩽

i ⩽ 2n − 1. For each pair (C,C ′), determine the value of f−1

k
(i)
r

(C)⊕ f−1

k
(i)
r

(C ′)

for each k
(i)
r . If the equation f−1

k
(i)
r

(C) ⊕ f−1

k
(i)
r

(C ′) = ∆out is valid, increment

the counter Ctr[k(i)r ] by one.
③ If the threshold is set to τ , the key guess k

(i)
r is sorted into a candidate list

only if the counter value Ctr[k(i)r ] is at least τ .

The counter that keeps track of the number of pairs confirming the differential
conforms to the binomial distribution B(N, p0) when the correct key guess is
made, as the attack procedure specifies. The counter under the wrong key guess
follows a binomial distribution B(N, p), where p is the probability of a pair
matching the differential given a wrong key guess, which is equal to p = 21−n.

As a statistical cryptanalysis, differential cryptanalysis is inevitably con-
fronted with two errors. The symbol ε0 denotes the likelihood that the candidate
list does not include the right key. The likelihood of a key guess that is not cor-
rect remaining in the candidate list is represented by the symbol ε1. Hence, the
probability of success (PS) in the attack, denoting the likelihood of the right key
being included in the candidate list, may be expressed as 1−ε0. When the value
of N is sufficiently large, the approximations for ε0 and ε1 may be derived using
the methodology presented in [8] as

ε0 ≈ p0 ·
√
1− (τ − 1)/N(

p0 − (τ − 1)/N
)
·
√

2 · π · (τ − 1)
· exp

[
−N ·D

(
τ − 1

N

∥∥∥∥p0)],
ε1 ≈ (1− p) ·

√
τ/N

(τ/N − p) ·
√
2 · π ·N · (1− τ/N)

· exp
[
−N ·D

(
τ

N

∥∥∥∥p)],
(2)

where D(p∥q) ≜ p · ln
(

p
q

)
+ (1 − p) · ln

(
1−p
1−q

)
represents the Kullback-Leibler

divergence between two Bernoulli distributions with parameters p and q.

2.3 Related-Key and Related-Tweak Differential Cryptanalysis

One notable distinction between differential cryptanalysis and related-key differ-
ential cryptanalysis is the utilisation of differential propagations. In related-key
differential cryptanalysis, the focus is on exploiting the differential propagation



8 Jinpeng Liu and Ling Sun

while encrypting plaintexts P and P ′ with distinct keys, even if these plain-
texts happen to be identical. The formal representation of an r-round related-
key differential is denoted by the triple (∆in,∆out,∆key), where ∆key signifies the
difference between the keys. The probability is calculated as

PrEK
(∆in,∆out,∆key) =

{x ∈ Fn
2 | EK(x)⊕ EK⊕∆key(x⊕∆in) = ∆out}

2n
.

AES is widely acknowledged as vulnerable to related-key differential attacks, as
evidenced by the suggested full-round attacks on AES-192 and AES-256 in [6,7].
Given that HALFLOOP-96 has the highest degree of similarity to AES among
the three HALFLOOP variations, our focus lies on examining its differential
property in the context of a related-key attack.

It is also feasible to initialise related-tweak differential cryptanalysis for tweak-
able block ciphers. Differential propagation is utilised when P and P ′, which
might potentially be identical, are encrypted using the same key and distinct
tweaks. The related-tweak differential is denoted by (∆in,∆out,∆tweak), where
∆tweak signifies the difference between the tweaks. In contrast to related-key dif-
ferential cryptanalysis, related-tweak differential cryptanalysis is considered a
more feasible approach because the adversary knows the value of the tweak.

3 Automatic Search of Differential Distinguishers

Identifying a differential with a non-negligible probability is a pivotal and ar-
duous stage in a differential attack. At the EUROCRYPT 1994, Matsui [18]
introduced a pioneering approach called the branch and bound algorithm, which
offered a systematic methodology for investigating the best differential charac-
teristic. When considering tailored optimisations for certain ciphers, it is indis-
putable that branch and bound algorithms exhibit high efficiency [13]. However,
the ability to prevent memory overflow through the precise selection of search
nodes is a challenge requiring proficiency in cryptanalysis and programming.

The introduction of automatic search techniques [19] has dramatically sim-
plified the process of identifying differential characteristics. The main aim is to
transform the task of finding differential characteristics into some well-studied
mathematical problems. With some publicly accessible solvers for these mathe-
matical problems, the optimal differential characteristics can be identified. Due
to its relatively straightforward implementation, automatic approaches have
been widely employed in the search for distinguishers in various attacks.

The mathematical problems that are commonly encountered include mixed
integer linear programming (MILP), Boolean satisfiability problem (SAT), sat-
isfiability modulus theories (SMT), and constraint satisfaction problem (CSP).
The classification of automatic search methods is based on the mathematical
issues they address. The search for differential characteristics in ciphers with
8-bit S-boxes may be conducted using MILP method as described in [3,9,15],
SAT method as described in [4,23], and SMT method as described in [16]. In



Distinguisher and Related-Key Attack on HALFLOOP-96 9

this study, the SAT method proposed in [23] is chosen for efficiently generating
SAT models for S-boxes.

This section provides a comprehensive description of the SAT models neces-
sary for searching for differential characteristics of HALFLOOP-96.

3.1 Boolean Satisfiability Problem

A Boolean formula is comprised of Boolean variables, the operations AND (con-
junction, ∧), OR (disjunction, ∨), and NOT (negation, ·̄), and brackets. The
Boolean satisfiability problem (SAT) pertains to ascertaining the existence of a
valid assignment for all Boolean variables such that the given Boolean formula
holds. If this condition is met, the formula is known as satisfiable. In the absence
of such a designated task, the formula in question is considered unsatisfiable.
SAT is the first problem proven to be NP-complete [11]. However, significant
advancements have been made in developing efficient solvers capable of han-
dling a substantial volume of real-world SAT problems.

This work employs the solver CryptoMiniSat [21] for distinguisher search.
CryptoMiniSat necessitates that Boolean formulae be expressed in conjunc-
tive normal form (CNF), whereby many clauses are made in conjunction with
each other, and each clause consists of a disjunction of variables, which may be
negated. CryptoMiniSat additionally provides support for XOR clauses that are
formed of XOR operations on variables. This feature greatly simplifies the pro-
cess of constructing models for HALFLOOP-96. Converting distinguisher search-
ing problems into Boolean formulae is critical in developing automatic models.

3.2 SAT Models for Linear Operations of HALFLOOP-96

For the m-bit vector ∆, the i-th bit (0 ⩽ i ⩽ m − 1) is denoted by ∆[i], while
∆[0] represents the most significant bit.

Model 1 (XOR, [17]) For the m-bit XOR operation, the input differences are
represented by ∆0 and ∆1, and the output difference is denoted by ∆2. Differen-
tial propagation is valid if and only if the values of ∆0, ∆1 and ∆2 validate all
of the following XOR clauses.

∆0[i]⊕∆1[i]⊕∆2[i] = 0, 0 ⩽ i ⩽ m− 1.

To build the model for the MC operation, we employ the procedure described
in [24]. First, the primitive representation [22] M of the matrix M (cf. Eqn. (1))



10 Jinpeng Liu and Ling Sun

is created.

M =



0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 1 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0
1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0
1 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0


is the matrix representation of M over F2. The notation Mi,j represents the
element located in the i-th row and j-th column of the matrix M. The SAT
model can then be constructed using XOR clauses.

Model 2 (Matrix Multiplication) For matrix multiplication with the 32 ×
32 matrix M, the input and output differences are represented by ∆0 and ∆1

respectively. Differential propagation is valid if and only if the values of ∆0 and
∆1 satisfy all the XOR clauses in the subsequent.⊕

{j | 0⩽j⩽31 s.t. Mi,j=1}
∆0[j]⊕∆1[i] = 0, 0 ⩽ i ⩽ 31.

3.3 SAT Model for the S-box of HALFLOOP-48

The method in [23] is utilised to construct the SAT model for the S-box. We
commence our analysis with the SAT model that is focused on active S-boxes.
In addition to using 16 Boolean variables ∆0 = (∆0[0],∆0[1], . . . ,∆0[7]) and
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∆1 = (∆1[0],∆1[1], . . . ,∆1[7]) to represent the input and output differences of
the S-box, it is necessary to incorporate an auxiliary Boolean variable denoted
as w. The value assigned to w is one for active S-boxes and zero for inactive
S-boxes, assuming the propagation ∆0 → ∆1 is possible. Based on the given
criteria, the set

V1 =

∆0∥∆1∥w

∣∣∣∣∣∣∣
∆0,∆1 ∈ F8

2, w ∈ F2

w =

{
1, if PrS(∆0,∆1) < 1

0, if PrS(∆0,∆1) = 1


encompasses potential values for ∆0∥∆1∥w. In order to maintain the constraint
that ∆0∥∆1∥w remains within the bounds of the set V1, a clause is generated
for each 17-bit vector v /∈ V1,

7∨
i=0

(∆0[i]⊕ v[i]) ∨
7∨

i=0

(∆1[i]⊕ v[i+ 8]) ∨ (w ⊕ v[16]) = 1,

which may serve as a candidate for the SAT model of the S-box. These clauses
comprise an initial version of the SAT model for the search oriented to active
S-boxes. The use of the initial version of the SAT model without modification
would impede the search process of the automatic method due to the large size
of the set F17

2 \V1, which is 217 − 32386 = 98686. To reduce the size of the S-box
model, we employ the Espresso algorithm [10] to simplify the model4. The final
SAT model oriented to active S-boxes is composed of 7967 clauses.

The SAT model oriented to differential probability can be created similarly.
The probabilities of possible differential propagations ∆0 → ∆1 for the 8-bit
S-box S can take values from the set {2−7, 2−6, 1}. Motivated by the two-step
encoding method described in [23], we introduce two Boolean variables u0 and
u1 for each S-box to encode the differential probability of possible propagations.

V2 =

∆0∥∆1∥u0∥u1

∣∣∣∣∣∣∣∣∣
∆0,∆1 ∈ F8

2, u0, u1 ∈ F2

u0∥u1 =


1∥1, if PrS(∆0,∆1) = 2−7

0∥1, if PrS(∆0,∆1) = 2−6

0∥0, if PrS(∆0,∆1) = 1


is an optional set of values that may be assigned to the vector ∆0∥∆1∥u0∥u1.
Thus, the weight of a potential propagation can be determined by u0 + 6 · u1.
To ensure that ∆0∥∆1∥u0∥u1 never takes values outside of the set V2, we should
generate a clause for each 18-bit ν /∈ V2,

7∨
i=0

(∆0[i]⊕ ν[i]) ∨
7∨

i=0

(∆1[i]⊕ ν[i+ 8]) ∨ (u0 ⊕ ν[16]) ∨ (u1 ⊕ ν[17]) = 1.

4 A modern, compilable re-host of the Espresso heuristic logic minimizer can be found
at https://github.com/classabbyamp/espresso-logic.

https://github.com/classabbyamp/espresso-logic
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These clauses constitute an initial version of the SAT model oriented to differ-
ential probability. ESPRESSO algorithm is once again employed to reduce the
size of the model. The final S-box model oriented to differential probability is
composed of 8728 clauses.

3.4 SAT Model for the Objective Function

We aim to identify differential characteristics that exhibit fewer active S-boxes
and high probability. The objective function can be mathematically expressed

as
ℓ∑

i=0

ui ⩽ ϑ, where ui (0 ⩽ i ⩽ ℓ) are Boolean variables that indicate the

activation status of the S-boxes or encode the differential probability of possible
propagations for the S-boxes. Let ϑ denote a predetermined upper limit for either
the number of active S-boxes or the weight of the differential characteristics.
The sequential encoding method [20] is utilised to transform this inequality into
clauses.

Model 3 (Objective Function, [20]) The following clauses provide validity

assurance for the objective function
ℓ∑

i=0

ui ⩽ 0.

ui = 1, 0 ⩽ i ⩽ ℓ.

For the objective function
ℓ∑

i=0

ui ⩽ ϑ with ϑ > 0, it is necessary to incorporate

auxiliary Boolean variables ai,j (0 ⩽ i ⩽ ℓ − 1, 0 ⩽ j ⩽ ϑ − 1). The objective
function is valid if and only if the following clauses hold.

u0 ∨ a0,0 = 1

a0,j = 1, 1 ⩽ j ⩽ ϑ− 1

ui ∨ ai,0 = 1

ai−1,0 ∨ ai,0 = 1

ui ∨ ai−1,j−1 ∨ ai,j = 1

ai−1,j ∨ ai,j = 1

}
1 ⩽ j ⩽ ϑ− 1

ui ∨ ai−1,ϑ−1 = 1


1 ⩽ i ⩽ ℓ− 2

uℓ ∨ aℓ−1,ϑ−1 = 1

.

3.5 Finding More Differential Characteristics

Using the models presented in Sections 3.2 to 3.4, we can identify differential
characteristics with fewer active S-boxes and high probabilities. To improve the
probability evaluation of the differential, we should fix the input and output
differences in the automatic model and find as many other differential charac-
teristics as feasible. To prevent the solver from returning the same solution after
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obtaining a single differential characteristic, we should add a clause to the SAT
problem. Assume that v ∈ Fω

2 is a solution for the ω Boolean variables x0, x1,
. . ., xω−1 returned by the SAT solver. Two index sets

v|0 = {i|0 ⩽ i ⩽ ω − 1 s.t. v[i] = 0}, and v|1 = {i|0 ⩽ i ⩽ ω − 1 s.t. v[i] = 1}.
are generated based on the value of v. Adding the clause∨

i∈v|0
xi ∨

∨
i∈v|1

xi = 1

to the SAT problem guarantees that the solver will not find v again.

4 Differential Distinguishers of HALFLOOP-96

This section presents an analysis of the differential characteristics of HALFLOOP-
96 in three attack settings: conventional, related-tweak, and related-key. These
characteristics are determined using the methodology in Section 3.

Table 1. Differential properties of HALFLOOP-96.

Round 1 2 3 4 5 6 7 8 9 10

#S 1 5 8 11 14 17 20 23 26 29
#ST 0 1 3 8 14 17 20 23 26 29
#SK 0 0 1 5 11 14 16 19 24 29

P 2−6 2−30 2−48 2−70 2−92 2−113 2−134 2−155 2−176 2−197

PT 1 2−6 2−18 2−53 2−91 2−113 2−134 2−155 2−176 2−197

PK 1 1 2−6 2−31 2−66 2−87 2−106 2−124 2−154 2−197

#S, #ST, and #SK: The number of active S-boxes in conventional, related-tweak, and related-key settings.
P, PT, and PK: Differential probabilities in conventional, related-tweak, and related-key settings.

4.1 Conventional Differential Distinguishers of HALFLOOP-96

The lower bound on the number of active S-boxes and the upper bound on the
differential probability are calculated in the standard differential attack scenario.
The outcomes of 1 to 10 rounds of HALFLOOP-96 are displayed in Table 1.

Table 2. Information about three 5-round differentials with probability 2−89.18.

Index Input difference Output difference

1 0x000000580600000000660000 0x101030205f6a3535e8c09d2e

2 0x060000000066000000000058 0x5f6a3535e8c09d2e10103020

3 0x006600000000005806000000 0xe8c09d2e101030205f6a3535
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The longest differential characteristic with a probability greater than 2−95

spans five rounds, and the SAT solver indicates that there are 3207 5-round
differential characteristics with probability 2−92. A thorough analysis reveals
that the 3207 characteristics stem from 2214 distinct differentials. We search
for all differential characteristics in the 2214 differentials with probabilities more
significant than 2−110 by fixing the input and output differences in the automatic
search. The largest accumulated probability of the differential is 2−89.18, and
there are three differentials with the highest probability, whose input and output
differences are shown in Table 2. Six 5-round characteristics exist in the first
differential with the highest probability of 2−92, as depicted in Fig. 3.

(a) The first characteristic in the differential with probability 2−92.
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(b) The second characteristic in the differential with probability 2−92.
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(c) The third characteristic in the differential with probability 2−92.
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(d) The fourth characteristic in the differential with probability 2−92.
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(e) The fifth characteristic in the differential with probability 2−92.
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(f) The sixth characteristic in the differential with probability 2−92.
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Fig. 3. Six dominated characteristics in the first 5-round differential.

Even though the probability of the optimal 6-round differential characteristic
of HALFLOOP-96 is less than 2−95, we question the existence of 6-round differ-
entials with accumulated probabilities greater than 2−95. To find the answer, we
first search for all 6-round differential characteristics with a probability of 2−113

and determine that 1272 characteristics meet the condition. Note that the 1272
characteristics come from 1017 different differentials. Then, we fix the input and
output differences in the automatic search and discover all differential charac-
teristics with probabilities greater than 2−135 for each of the 1017 differentials.
The maximal accumulated probability of 6-round differentials reaches 2−110.87,
indicating that these differentials cannot support a valid differential attack. The
longest differential distinguisher for HALFLOOP-96 comprises five rounds.
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4.2 Related-Tweak Differential Distinguishers of HALFLOOP-96

The evaluation of active S-boxes and differential probabilities should include
the key schedule in the context of a related-tweak attack. Table 1 displays the
minimum number of active S-boxes and maximum differential probabilities for
one to ten rounds of HALFLOOP-96 in the related-tweak attack configuration.

From the sixth round, the bounds on the active S-boxes and probabilities
in the related-tweak setting are identical to those in the conventional setting,
as shown in Table 1. The differential characteristics returned by the SAT solver
for more than five rounds do not have non-zero tweak differences. Accordingly,
beginning with the sixth round, related-tweak differential characteristics do not
perform better than conventional ones. Given that the optimal differential in
the conventional differential attack setting has already reached five rounds, the
advantage of the adversary in the related-tweak setting is insignificant.

Difference in RK0

Difference in RK1

Difference in RK2

Difference in RK3

Difference in RK4

Differential propagations for the S-box with probability 2−7

Differential propagations for the S-box with probability 2−6
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Bytes with differences being zero

(a) Differential propagation in the key schedule for the two 5-round related-tweak differential characteristics.
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(b) Differential propagation in the round function for the first 5-round related-tweak differential characteristic.
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(c) Differential propagation in the round function for the second 5-round related-tweak differential characteristic.
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Fig. 4. Two 5-round related-tweak differential characteristics with probability 2−91.
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The minor advantage resides in the existence of 5-round related-tweak dif-
ferential characteristics with a probability of 2−91, whereas the probability of
the optimal 5-round characteristic in the conventional setting is 2−92. We find
two 5-round related-tweak differential characteristics with a probability of 2−91

using the SAT solver. The probability in the key schedule is 2−12 and the prob-
ability in the round function is 2−79 for both characteristics. In addition, after
searching exhaustively with the automatic procedure for all characteristics with
probabilities greater than 2−120, we are unable to identify a clustering effect for
the two characteristics. Figure 4 exhibits the two characteristics.

4.3 Related-Key Differential Distinguishers of HALFLOOP-96

In the context of a related-key attack, the calculation of active S-boxes and
differential probabilities must consider the key schedule. Table 1 displays the
bounds on the active S-boxes and differential probabilities from one to ten cycles
of HALFLOOP-96.

Note that in the related-key attack configuration, the characteristics may
be utilised in an attack if the probability is greater than 2−127. According to
Table 1, the effective related-key differential characteristic with the most rounds
is eight. We verify using the SAT solver that there is only one 8-round related-key
differential characteristic with probability 2−124. Figure 5 illustrates the 8-round
characteristic. The probability in the key schedule is 2−34, and the probability in
the round function is 2−90. In addition, we do not identify the clustering effect
for the 8-round distinguisher after exhaustively searching for all characteristics
with probability no less than 2−150.
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(a) Differential propagation in the key schedule. (b) Differential propagation in the round function.
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Fig. 5. 8-round related-key differential characteristics with probability 2−124.
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5 Related-Key Differential Attack on HALFLOOP-96

In this section, we employ the 8-round related-key differential distinguisher in
Section 4.3 to launch a 9-round related-key differential attack on HALFLOOP-
96. Note that the attack is a weak-key attack, as the probability of the key sched-
ule shown in Fig. 5 is 2−34. In other words, only one pair of keys out of 234 pairs
of keys with a difference of ∆key = 0xad0000f65af6f6f75af6f60100000000 is
susceptible to the following attack. In this circumstance, a valid attack must
ensure the time complexity is less than 294.

In the attack, one round is appended after the distinguisher, and the key-
recovery procedure is depicted in Fig. 6. S structures are prepared for the attack.
Each structure contains 280 plaintexts, where ten bytes P [0, 3-11] of the plain-
text P traverse all possible values while the remaining two are fixed to random
constants. Then, a single structure can be used to create 279 pairs with a dif-
ference of ∆P = 0xad0000f6c05df6f7f7f6f001, bringing the total number of
pairs to N = S · 279. Therefore, the data complexity of the attack is S · 280
chosen-plaintexts.

(a) Differential propagation in the key schedule.
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(b) Key-recovery procedure of the 9-round related-key attack.
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Fig. 6. 9-round related-key differential attack on HALFLOOP-96.

In the attack, an empty hash table H is created. For each output pair (O,O′)
returned by the encryption oracle, if the conditions

∆O[0-2] = 0x5af6f6, ∆O[5]⊕∆O[9] = ∆O[6]⊕∆O[10] = 0xf6.

are fulfilled, the quadruple (P, P ′, O[3, 4, 7, 11], O′[3, 4, 7, 11]) will be inserted
into H at index ∆O[8-10]. Consequently, H contains approximately N · 2−40

quadruples, and each index ∆O[8-10] corresponds to approximately N · 2−64

quadruples. The index ∆O[8-10] that renders differential propagation of either
0xf6 → ∆O[8] ⊕ ad or 0xf6 → ∆O[9] impossible for the S-box is then elimi-
nated from H. After this stage, there are approximately 224 · (127/256)2 = 221.98

indexes remaining in H. The time complexity of this phase is dominated by the
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time to query the encryption oracle, which corresponds to line 3 of Algorithm 1
and is equivalent to TL3 = S · 279 · 2 = S · 280 9-round encryptions.

For each index ∆O[8-10] in H, we guess the value of RK9[4] and initialise
an empty table T1. After deriving the value of RK ′

9[4] = RK9[4]⊕∆O[8]⊕ 5a,
the value of ∆X8[4] for each quadruple at index ∆O[8-10] can be computed.

Algorithm 1: 9-round related-key differential attack
1 Create S · 279 pairs (P, P ′) from S structures
2 Initialise an empty hash table H
3 Obtain the value of (O,O′) for each (P, P ′) by querying the encryption oracle
4 if ∆O[0-2] = 0x5af6f6 and ∆O[5]⊕∆O[9] = ∆O[6]⊕∆O[10] = 0xf6 then
5 (P, P ′, O[3, 4, 7, 11], O′[3, 4, 7, 11]) is inserted into H at index ∆O[8-10]
6 end
7 foreach index ∆O[8-10] of H do
8 if 0xf6 → ∆O[8]⊕ ad or 0xf6 → ∆O[9] are impossible propagations then
9 Remove the index ∆O[8-10] from H

10 else
11 foreach 8-bit possible values of RK9[4] do
12 Initialise an empty table T1

13 Derive RK′
9[4] = RK9[4]⊕∆O[8]⊕ 0x5a

14 foreach (P, P ′, O[3, 4, 7, 11], O′[3, 4, 7, 11]) at index ∆O[8-10] do
15 Compute ∆X8[4]
16 if ∆X8[4] = 0xad then
17 Inserted (P, P ′, O[3, 7, 11], O′[3, 7, 11]) into table T1

18 end
19 end
20 foreach 63 possible values of α′ and 127 possible values of ζ do
21 foreach 24-bit possible values of RK9[3, 7, 11] do
22 Initialise an empty table T2

23 Derive RK′
9[3, 7, 11] = RK9[3, 7, 11]⊕ (α′∥(α′ ⊕ ζ)∥ζ)

24 foreach (P, P ′, O[3, 7, 11], O′[3, 7, 11]) in T1 do
25 Compute ∆X8[3, 7, 11]
26 if ∆X8[3] = ∆X8[7] = ∆X8[11] = α′ ⊕ 0x01 then
27 Inserted (P, P ′) into table T2

28 end
29 end
30 Count the number of pairs Ctr in T2

31 if Ctr ⩾ τ then
32 Derive candidates for RK0[4, 5, 8, 10] with (P, P ′) in T2

33 Output RK0[4, 5, 8, 10]∥RK9[3, 4, 7, 11]∥α′∥ζ∥∆[8-10]
34 end
35 end
36 end
37 end
38 end
39 end
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If ∆X8[4] = 0xad, the quadruple (P, P ′, O[3, 7, 11], O′[3, 7, 11]) is inserted into
table T1. The approximate number of quadruples in T1 is N ·2−64 ·2−8 = N ·2−72.
This phase, which corresponds to line 14 of Algorithm 1, has a time complexity
of TL14 = 221.98 · 28 ·N · 2−64 · 2/12 = S · 242.40 one-round encryptions.

Since the difference ∆RK9[3, 7, 11] is related to undetermined values α′ and ζ,
the following attack should enumerate the values of α′ and ζ. Noting that 5a → ζ
is a possible propagation for the S-box, ζ can take on one of 127 possible values.
Since ad → α′ ⊕ 0x01 and α′ → ∆O[10] must be possible propagations for the
S-box, the probability that a random 8-bit vector validates the two constraints
for the case of α′ is (127/256)2 = 2−2.02. Therefore, α′ has an average of 63
possible values. Then, for all 63 possible values of α′ and 127 possible values of
ζ, we estimate the value of RK9[3, 7, 11] and create an empty table T2. After
deriving the values of RK ′

9[3] = RK9[3] ⊕ α′, RK ′
9[7] = RK9[7] ⊕ α′ ⊕ ζ, and

RK ′
9[11] = RK9[11] ⊕ ζ, it is possible to calculate the value of ∆X8[3, 7, 11]. If

∆X8[3] = ∆X8[7] = ∆X8[11] = α′ ⊕ 0x01, the quadruple in T1 will be inserted
into T2. Consequently, T2 contains approximately N · 2−72 · 2−24 = N · 2−96

quadruples. This step, which corresponds to line 24 of Algorithm 1, has a time
complexity of TL24 = 221.98 · 28 · 63 · 127 · 224 · N · 2−72 · 3 · 2/12 = S · 272.95
one-round encryptions.

We set a counter Cnt in order to remember the number of quadruples in
T2. Based on the analysis presented above, the value of Cnt follows a bino-
mial distribution with parameters B(N, p0 = 2−90) for a correct key guess and
B(N, p = 2−96) otherwise. The threshold τ is set to two correct pairs, and the
success probability PS is set to 90.00%. Using Eqn. (2), we determine S = 212.96

and ε1 = 2−14.77. Therefore, there are ε1 · 221.98 · 232 · 63 · 127 = ε1 · 266.95 can-
didates for RK9[3, 4, 7, 11]∥α′∥ζ∥∆[8-10] that satisfy the condition at line 30 of
Algorithm 1. Utilising the property of the four active S-boxes in the first round,
as depicted in Fig. 6(b), and relying on right pairs, additional information about
the key can be recovered. Take the S-box at X0[4] as an illustration. Since the
input difference 0x9a must be propagated to the output difference 0xdb, there
are only four possible values for X0[4] and X ′

0[4], which are 0x00, 0x72, 0x9a,
and 0xe8. This restriction allows us to screen out candidates for RK0[4] with a
probability of 2−6. Likewise, the constraints on X0[5], X0[8] and X0[10] yield a
sieving probability of 2−18. There are a total of ε1·266.95·44 = ε1·274.95 candidates
for RK0[4, 5, 8, 10]∥RK9[3, 4, 7, 11]∥α′∥ζ∥∆[8-10]. This phase, corresponding to
line 31 of Algorithm 1, has a maximal time complexity of TL31 = ε1 · 266.95
one-round encryptions. We recover equivalently 1/ε1+6 ·4 = 38.77 bits of infor-
mation about the key pair. As a result, the total time complexity of the attack is
TL3 + (TL14 + TL24 + TL31)/9 = 292.96 9-round encryptions. Given that the hash
table H dominates memory consumption, the memory complexity of the attack
is 256.96 bytes.

Remark 1. We attempt to recover the remaining key bits as well. However, the
time required to seek the remaining key bits exhaustively exceeds 294. The re-
covery of complete information about the key is an intriguing future endeavour.
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6 Conclusion

This paper focuses on the differential distinguishers and related-key differential
attacks on HALFLOOP-96. SAT problems are utilised to model the search for
differential distinguishers. We use the SAT solver to determine the minimum
number of active S-boxes and the maximum differential probability for the con-
ventional, related-tweak, and related-key differential attack configurations. By
applying the newly discovered 8-round related-key differential distinguisher, we
launch a 9-round related-key differential attack against the cipher. The attack
is weak-key and effective against 294 key pairs with a specified difference. Al-
though the attack does not pose a real security threat to HALFLOOP-96, the
security margin of the cipher in the setting for related-key attacks is minimal.
Consequently, care must be taken to avoid misuse.
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