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Abstract. We analyze REDOG, a public-key encryption system sub-
mitted to the Korean competition on post-quantum cryptography. RE-
DOG is based on rank-metric codes. We prove its incorrectness and at-
tack its implementation, providing an efficient message recovery attack.
Furthermore, we show that the security of REDOG is much lower than
claimed. We then proceed to mitigate these issues and provide two ap-
proaches to fix the decryption issue, one of which also leads to better
security.
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1 Introduction

This paper analyzes the security of the REinforced modified Dual-Ouroboros
based on Gabidulin codes, REDOG [KHL+22a], a public-key encryption system
submitted to KpqC, the Korean competition on post-quantum cryptography.
REDOG is a code-based cryptosystem using rank-metric codes, aiming at pro-
viding a rank-metric alternative to Hamming-metric code-based cryptosystems.

Rank-metric codes were introduced by Delsarte [Del78] and independently
rediscovered by Gabidulin [Gab85] in 1985, who focused on those that are linear
over a field extension. Gabidulin, Paramonov, and Tretjakov [GPT91] proposed
their use for cryptography in 1991. The GPT system was attacked by Over-
beck [Ove05,Ove08] who showed structural attacks, permitting recovery of the
private key from the public key.

During the mid 2010s new cryptosystems using rank-metric codes were de-
veloped such as Ouroboros [DGZ17] and the first round of the NIST com-
petition on post-quantum cryptography saw 5 systems based on rank-metric
codes: LAKE [ABD+17a], LOCKER [ABD+17b], McNie [GKK+17], Ouroboros-
R [AAB+17a]. RQC [AAB+17b]. For further information about all these systems
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see NIST’s Round-1 Submissions page. Gaborit announced an attack weakening
McNie and the McNie authors adjusted their parameters. A further attack was
published in [LT18] and NIST did not advance McNie into the second round of
the competition.

ROLLO, a merger of LAKE, LOCKER and Ouroboros-R, and RQC made
it into the the second round but got broken near the end of it by significant
advances in the cryptanalysis of rank-metric codes and the MinRank prob-
lem in general, see [BBB+20] and [BBC+20]. In their report at the end of
round 2 [AASA+20], NIST wrote an encouraging note on rank-metric codes:
“Despite the development of algebraic attacks, NIST believes rank-based cryp-
tography should continue to be researched. The rank metric cryptosystems offer
a nice alternative to traditional hamming metric codes with comparable band-
width.” (capitalization as in the original).

Kim, Kim, Galvez, and Kim [KKGK21] proposed a new rank-metric system
in 2021 which was then analyzed by Lau, Tan, and Prabowo in [LTP21] who also
proposed some modifications to the issues they found. REDOG closely resembles
the system in [LTP21] and uses the same parameters.

Our contribution In this paper we expose weaknesses of REDOG and show
that the system, as described in the documentation, is incorrect. To start with, we
prove that REDOG does not decrypt correctly. The documentation and [LTP21]
contain an incorrect estimate of the rank of an element which causes the in-
put to the decoding step to have too large rank. The system uses Gabidulin
codes [Gab85] which are MRD (Maximum Rank Distance) codes, meaning that
vectors with errors of rank larger than half the minimum distance will decode to
a different codeword, thus causing incorrect decryption in the REDOG system.

As a second contribution we attack ciphertexts produced by REDOG’s ref-
erence implementation. We show that we can use techniques from the Hamming
metric to obtain a message-recovery attack. This stems from a choice in the im-
plementation which avoids the above-mentioned decryption problem. However,
the errors introduced in the ciphertext have a specific shape which allows us to
apply basic techniques of Information Set Decoding (ISD) over the Hamming
metric to recover the message in seconds.

As a third contribution, we show that, independently of the special choice
of error vectors in the implementation, the security of the cryptosystem is lower
than the claimed security level. The main effect comes from a group of attacks
published in [BBC+20] which the REDOG designers had not taken into account.
An smaller effect comes from a systematic scan through all attack parameters.

Finally, we provide two ways to make REDOG’s decryption correct. The
first is a minimal change to fix the system by changing the space from which
some matrix P−1 is chosen in a way that differs from the choice in REDOG and
avoids the issue mentioned above. However, this still requires choosing much
larger parameters to deal with our third contribution. The second way makes
a different change to REDOG which improves the resistance to attacks while
also fixing the decryption issue. We show that, using this strategy, not only are

https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-1-submissions
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/b_6q0ZSWJWo/m/Oa5dgecuBwAJ
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REDOG’s parameters sufficient to reach any claimed security level, but they
provide security abundantly beyond each level, allowing room for an eventual
optimization. Note, however, that these estimates are obtained from big-O com-
plexity estimates, putting all constants to 1 and lower-order terms to 0, and thus
underestimate the security.

2 Preliminaries and background notions

This section gives the necessary background on rank-metric codes for the rest of
the paper. Let {α1, . . . , αm} be a basis of Fqm over Fq. Write x ∈ Fqm uniquely
as x =

∑m
i=1 Xiαi, Xi ∈ Fq for all i. So x can be represented as (X1, . . . , Xm) ∈

Fm
q . We will call this the vector representation of x. Extend this process to

v = (v1, . . . , vn) ∈ Fn
qm defining a map Mat : Fn

qm → Fm×n
q by:

v 7→


V11 V21 . . . Vn1

V12 V22 . . . Vn2

...
...

. . .
...

V1m V2m . . . Vnm

 .

Definition 2.1. The rank weight of v ∈ Fn
qm is defined as wtR(v) := rkq(Mat(v))

and the rank distance between v,w ∈ Fn
qm is dR(v,w) := wtR(v −w).

Remark 2.2. It can be shown that the rank distance does not depend on the
choice of the basis of Fqm over Fq. In particular, the choice of the basis is irrele-
vant for the results in this document.

When talking about the space spanned by v ∈ Fn
qm , denoted as ⟨v⟩, we mean

the Fq-subspace of Fm
q spanned by the columns of Mat(v).

For completeness, we introduce the Hamming weight and the Hamming dis-
tance. These notions will be used in our message recovery attack against RE-
DOG’s implementation.

The Hamming weight of a vector v ∈ Fn
qm is defined as wtH(v) := #{i ∈

{1, . . . , n} | vi ̸= 0} and the Hamming distance between vectors v,w ∈ Fn
qm is

defined as dH(v,w) := wtH(v −w).
Let D = dR or D = dH . Then an [n, k, d]-code C with respect to D over Fqm

is a k-dimensional Fqm-linear subspace of Fn
qm with minimum distance

d := min
a,b∈C, a̸=b

D(a,b)

and correction capability ⌊(d − 1)/2⌋. If D = dR (resp. D = dH) then the
code C is also called a rank-metric (resp. Hamming-metric) code. All codes in
this document are linear over the field extension Fqm .

We say that G is a generator matrix of C if its rows span C. We say that H
is a parity check matrix of C if C is the right-kernel of H.

A very well-known family of rank metric codes are Gabidulin codes [Gab85],
which have d = n− k + 1.
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In this paper we can mostly use these codes as a black box, knowing that
there is an efficient decoding algorithm using the parity-check matrix of the code
and decoding vectors with errors of rank up to ⌊(d− 1)/2⌋.

A final definition necessary to understand REDOG is that of isometries.

Definition 2.3. Consider vectors in Fn
qm . An isometry with respect to the rank

metric is a matrix P ∈ GLn(Fqm) satisfying that wtR(vP ) = wtR(v) for any
v ∈ Fn

qm .

Obviously matrices P ∈ GLn(Fq) are isometries as Fq-linear combinations of
the coordinates of v do not increase the rank and the rank does not decrease as P
is invertible. The rank does also not change under scalar multiplication by some
α ∈ F∗

qm : wtR(αv) = wtR(v). Note that the latter corresponds to multiplication
by P = αIn.

Berger [Ber03] showed that any isometry is obtained by composing these two
options.

Theorem 2.4. [Ber03, Theorem 1] The isometry group of Fn
qm for the rank

metric is generated by scalar multiplications by elements in F∗
qm and elements of

GLn(Fq). This group is isomorphic to the product group
(
F∗
qm/F∗

q

)
× GLn(Fq).

3 System specification

This section introduces the specification of REDOG. We follow the notation
of [LTP21], with minor changes.

The system parameters are positive integers (n, k, ℓ, q,m, r, λ, t), with ℓ < n
and λt ≤ r ≤ ⌊(n− k)/2⌋, as well as a hash function hash : F2n−k

qm → Fℓ
qm .

KeyGen:
1. Select H = (H1 | H2), H2 ∈ GLn−k(Fqm), a parity check matrix of a

[2n−k, n] Gabidulin code, with syndrome decoder Φ correcting r errors.
2. Select a full rank matrix M ∈ Fℓ×n

qm and isometry P ∈ Fn×n
qm (w.r.t. the

rank metric).
3. Select a λ-dimensional subspace Λ ⊂ Fqm , seen as Fq-linear space, con-

taining 1 and select S−1 ∈ GLn−k(Λ); see Section 4 for the definition.

4. Compute F = MP−1HT
1

(
HT

2

)−1
S and publish the public key

pk = (M,F ). Store the secret key sk = (P,H, S, Φ).

Encrypt (m ∈ Fℓ
qm , pk)

1. Generate uniformly random e = (e1, e2) ∈ F2n−k
qm with wtR(e) = t,

e1 ∈ Fn
qm and e2 ∈ Fn−k

qm .
2. Compute m′ = m+ hash(e).
3. Compute c1 = m′M + e1 and c2 = m′F + e2 and send (c1, c2).

Decrypt ((c1, c2), sk)
1. Compute c′ = c1P

−1HT
1 − c2S

−1HT
2 = e′HT where the vector e′ :=

(e1P
−1,−e2S

−1).
2. Decode c′ using Φ to obtain e′, recover e = (e1, e2) using P and S.
3. Solve m′M = c1 − e1. Output m = m′ − hash(e).
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Suggested parameters We list the suggested parameters of REDOG for
128,192 and 256 bits of security, following [KHL+22a] submitted to KpqC.

Security parameter (n, k, ℓ, q,m, r, λ, t)

128 (44, 8, 37, 2, 83, 18, 3, 6)

192 (58, 10, 49, 2, 109, 24, 3, 8)

256 (72, 12, 61, 2, 135, 30, 3, 10)

Table 1. Suggested parameters; see [KHL+22a].

4 Incorrectness of decryption

This section shows that decryption typically fails for the version of REDOG
specified in [KHL+22a,LTP21]. The novelty of this specification, compared to
that introduced in [KKGK21], lies in the selection of the invertible matrix S−1

in Step 3, which is selected with the property that S−1 ∈ GLn−k(Λ), where Λ
is a λ-dimensional Fq-subspace of Fqm . This method has been first proposed
by Loidreau in [Loi17], but it appears to be incorrectly applied in REDOG.
Before providing more details about this claim and proving the incorrectness of
REDOG’s decryption process, we will shed some light on the object GLn−k(Λ).
Unlike the notation suggests, this is not a group, but a potentially unstructured
subset of GLn−k(Fqm) defined as follows:

Let {1, α2, . . . , αλ} ⊂ Fqm be a set of elements that are Fq-linearly indepen-
dent. Let Λ ⊂ Fqm be the set of Fq-linear combinations of these αi’s. This set
forms an Fq-linear vectorspace. Now, S−1 ∈ GLn−k(Λ) is defined to mean that S
is an invertible (n−k)×(n−k) matrix with the property that the entries of S−1

are elements of Λ. Note that such an S exists because λ ≥ 1 by assumption. The
REDOG documentation [KHL+22a] points out that this does not imply that
S ∈ GLn−k(Λ), hence, despite what the notation may suggest, GLn−k(Λ) is not
a group in general.

We continue by giving a proof, and an easy generalization for any q, of [Loi17,
Proposition 1].

Proposition 4.1. Let λ, t, n be positive integers such that λt ≤ n, A ∈ GLn(Λ)
where Λ ⊂ Fqm is a λ-dimensional subspace of Fqm , and x ∈ Fn

qm with wtR(x) =
t. Then

wtR(xA) ≤ λt.

Proof. Let Γ be the subspace of Fqm generated by the entries of x = (x1, . . . , xn).
Since Γ has dimension t, we can write Γ = ⟨y1, . . . , yt⟩ with yi ∈ Fqm . Similarly
for Λ, we can write Λ = ⟨α1, . . . , αλ⟩ with αi ∈ Fqm . Express xA as

xA =

(
n∑

i=1

xiAi,1, . . . ,

n∑
i=1

xiAi,n

)
.
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Fix j ∈ {1, . . . , n}. Then

(xA)j =

n∑
i=1

xiAi,j =

n∑
i=1

((
t∑

h=1

xi,hyh

)(
λ∑

k=1

Ai,j,kαk

))
,

with xi,h, Ai,j,k ∈ Fq. By rearranging the terms we obtain

(xA)j =

t∑
h=1

λ∑
k=1

(
n∑

i=1

xi,hAi,j,k

)
yhαk. (1)

Therefore each entry of xA can be expressed as an Fq-linear combination of
the λt elements of the form yhαk. ⊓⊔

We will now show that REDOG typically does not decrypt correctly. In order
to do so, we need some preliminary results and tools. The proof of the next
lemma uses some tools from combinatorics. It computes the probability that a
randomly selected t-tuple of elements of a t-dimensional vector space spans the
entire space.

Lemma 4.2. Let V be a t-dimensional subspace V ⊆ Fm
q and let S ∈ V s be a

uniformly random s-tuple of elements of V . The probability p(q, s, t) that ⟨Si |
i ∈ {1, . . . , s}⟩ = V is 0 if 0 ≤ s < t and

p(q, s, t) =

t∑
i=0

[
t

i

]
q

(−1)t−iqs(i−t)+(t−i
2 ) (2)

otherwise, where
[
t
i

]
q
is the q-binomial coefficient, counting the number of sub-

spaces of dimension i of Ft
q, and

(
a
b

)
= 0 for a < b. In particular, this probability

does not depend on m or on the choice of V , but only on its dimension.

Proof. Let (P,⊆) be the poset (partially ordered set) of subspaces of Fm
q ordered

by inclusion. Recall that the Möbius function of P, and of any finite poset, is
defined, for A,B ∈ P, as

µ(B,A) =


1 if B = A,

−
∑

C|B⊆C⊂A µ(B,C) if B ⊂ A,

0 otherwise.

For the poset of subspaces, the Möbius function is computed e.g. in [Sta11,
Example 3.10.2] as

µ(B,A) =

{
(−1)kq(

k
2) if B ⊆ A and dim(A)− dim(B) = k,

0 otherwise.
(3)

We want to compute the function f : P → N defined as

f(A) = #
{
S ∈

(
Fm
q

)s | ⟨S⟩ = A
}
.
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Clearly, if s < dimA, there does not exist any s-tuple S spanning A, hence
f(A) = 0, which gives the first case of (2). We can therefore restrict ourselves to
the case s ≥ dimA. Define the auxiliary function g : P → N as

g(A) =
∑
B⊆A

f(B)

= #
{
S ∈

(
Fm
q

)s | ⟨S⟩ ⊆ A
}

= |A|s = qs dimA.

Then by Möbius inversion we can compute:

f(A) =
∑
B⊆A

g(B)µ(B,A). (4)

Splitting the sum over the dimensions, and substituting the values in Equation 3,
we can obtain

f(V ) =

t∑
i=0

∑
U⊆V, dimU=i

g(U)µ(U, V )

=

t∑
i=0

qsi(−1)t−iq(
t−i
2 )

∑
U⊆V, dimU=i

1

=

t∑
i=0

[
t

i

]
q

(−1)t−iqsi+(
t−i
2 ).

The probability can be computed by dividing f(V ) by the number of s-tuples of
elements of V , that is, qst. ⊓⊔

Remark 4.3. The probability given in Lemma 4.2 can be interpreted as the ratio
of the number of surjective linear maps from Fs

q onto Ft
q over the total number

of linear maps.

We next compute the probability that by truncating a rank t vector, the rank
stays the same.

Theorem 4.4. Let e = (e1, e2) ∈ F2n−k
qm , with e1 ∈ Fn

qm and e2 ∈ Fn−k
qm , be a

uniformly random error with wtR(e) = t. Then wtR(e1) = t and wtR(e2) = t
with probability p(q, n, t)/p(q, 2n − k, t) and p(q, n − k, t)/p(q, 2n − k, t) respec-
tively.

Proof. By definition, the probability that wtR(e1) = t is the ratio

π =
#{e ∈ F2n−k

qm | wtR(e) = t and wtR(e1) = t}
#{e ∈ F2n−k

qm | wtR(e) = t}
. (5)
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We can split the cardinalities above over all the subspaces of Fm
q of dimension t

as follows:

π =

∑
V⊂Fm

q , dimV=t #{e ∈ F2n−k
qm | ⟨e⟩ = ⟨e1⟩ = V }∑

V⊂Fm
q , dimV=t #{e ∈ F2n−k

qm | ⟨e⟩ = V }
. (6)

It is not hard to prove that the summands in (4) are independent of the space V .
Therefore

π =
#{e ∈ F2n−k

qm | ⟨e⟩ = ⟨e1⟩ = V }
#{e ∈ F2n−k

qm | ⟨e⟩ = V }
=

#{e1 ∈ Fn
qm | ⟨e1⟩ = V } qt(n−k)

#{e ∈ F2n−k
qm | ⟨e⟩ = V }

,

where V is any subspace of Fm
q of dimension t. By applying Lemma 4.2 we then

get

π =
p(q, n, t) qntqt(n−k)

p(q, 2n− k, t) q(2n−k)t
=

p(q, n, t)

p(q, 2n− k, t)
,

as claimed. The probability for e2 can be computed with the same arguments
as for e1. ⊓⊔

Remark 4.5. In the context of a REDOG instance, the data q, n and t is fixed,
hence, for the sake of reading simplicity, we denote the probability given in
Theorem 4.4 by

p̄(r, t) =
p(q, r, t)

p(q, 2n− k, t)
.

Example 4.6. Consider the suggested parameters of REDOG for 128 bits of se-
curity from Table 1. Using SageMath [S+21] we computed the probability that
wtR(e1) = t, that is p̄(44, 6) = 0.999999999996419, and the probability that
wtR(e2) = t, that is p̄(36, 6) = 0.999999999083229.

We are ready to state the following theorem, which directly implies that
REDOG’s decryption process fails with extremely high probability.

Theorem 4.7. Let (n, k, q,m, λ, t) be integers with k < n < m and λt ≤ m. Let
Λ ⊂ Fqm be a λ-dimensional subspace of Fqm and e = (e1, e2) as in Theorem 4.4.
Let P ∈ Fn×n

qm be a random isometry matrix (w.r.t. the rank metric) and S−1 ∈
GLn−k(Λ). Then e′ :=

(
e1P

−1,−e2S
−1
)
has rank weight wtR(e

′) ≥ λt+ 1 with
probability bounded from below by

pfail(n, k, q,m, λ, t) := p̄(n, t) p̄(n− k, λt) p̄(n− k, t)

(
1−

[
λt

t

]
q

/
[m
t

]
q

)
.

Proof. By Theorem 2.4, the isometry P is of the form αP̄ for α ∈ F∗
qm and P̄ ∈

GLn(Fq), where q
m ≫ q and thus typically α ̸∈ Fq. Because of the multiplication

by α−1, we can assume that the linear transformation induced by P−1 takes a t-
dimensional subvectorspace of Fm

q to a random t-dimensional subspace. Similarly
we assume that S−1 sends a t-dimensional subspace of Fm

q to a random subspace
of dimension at most λt, by Proposition 4.1. We get the lower bound on the
failure probability by showing the following:
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1. wtR(e1P
−1) = t with probability p̄(n, t);

2. wtR(−e2S
−1) = λt with probability p̄(n− k, t)p̄(n− k, λt);

3. under the conditions in (1) and (2), ⟨e1P−1⟩ ̸⊂ ⟨−e2S
−1⟩ with probability

1−
[
λt
t

]
q
/
[
m
t

]
q
.

Note that (1) follows directly from Theorem 4.4 and the fact that P is an isom-
etry of the space w.r.t the rank metric.

Likewise, wtR(−e2) = t with probability p̄(n − k, t). The proof of Propo-
sition 4.1 shows that for e2 with wtR(−e2) = t we have that −e2S

−1 is con-
tained in a λt-dimensional subspace of Fm

q . Again by Theorem 4.4 we obtain
that ⟨−e2S

−1⟩ spans the entire space with probability p̄(n− k, λt), proving (2).
To prove (3) we will compute the opposite, i.e. the probability that ⟨e1P−1⟩

is a subspace of ⟨−e2S
−1⟩. As mentioned at the beginning of the proof, we treat

⟨e1P−1⟩ as a random t-dimensional subspace of Fqm . Thus we can compute
this probability as the ratio between the number of t-dimensional subspaces of

⟨−e2S
−1⟩ and of Fm

q , that is,
[
λt
t

]
q
/
[
m
t

]
q
.

Combining the probabilities and observing that (1 – 3) imply wtR(e
′) ≥ λt+1

gives the result. ⊓⊔

Remark 4.8. There are more ways to get wtR(e
′) ≥ λt+ 1 by relaxing the first

two requirements in the proof of Theorem 4.7 and studying the dimension of the
union in the third, but pfail is large enough for the parameters in REDOG to
prove the point.

Remark 4.9. The proof of property (3) relies on e1P
−1 being a random subspace

of dimension t. We note that for α ∈ Fq we have ⟨e1⟩ = ⟨e1P−1⟩ ⊂ ⟨e2S−1⟩
for S−1 ∈ GLn−k(Λ) and 1 ∈ Λ. The latter constraint is stated in [KHL+22a]
and [LTP21] and it is possible that the authors were not aware of the full gen-
erality of isometries. See also the full version [LPR23] for further observations
on [LTP21] which are consistent with this misconception.

Recall that the decoder Φ can only correct errors up to rank weight r = λt.
By Theorem 4.7 we have that e′ has rank weight ≥ λt+ 1, hence the following
corollary.

Corollary 4.10. Let (n, k, ℓ, q,m, r, λ, t) be the parameters of a instance of RE-
DOG with r = λt. Then REDOG will produce decryption failures with probability
at least pfail(n, k, q,m, λ, t).

Note that a [2n− k, n] Gabidulin code has minimum distance dR = 2n− k−
n+ 1 = n− k + 1 and can thus correct at most ⌊(n− k)/2⌋ errors and that all
instances of REDOG in Table 1 satisfy ⌊(n− k)/2⌋ = r = λt.

Example 4.11. As in Example 4.6, consider the suggested parameters for 128
bits of security. Then Theorem 4.7 states that wtR(e

′) ≥ 19 with probabil-
ity at least pfail(44, 8, 2, 83, 3, 6) = p̄(44, 8)p̄(36, 6)p̄(36, 18)

(
1−

[
18
6

]
2
/
[
83
6

]
2

)
=

0.999996184401789.
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Table 2 reports the value of pfail for each set of security parameters given in
Table 1. This shows that REDOG’s decryption process fails almost always.

Security parameter pfail

128 0.999996184401789

192 0.999999940394453

256 0.999999999068677
Table 2. Value of decryption failure probability pfail per suggested parameters.

5 Message recovery attack on REDOG’s implementation

Theorem 4.7 and the numerical examples show that, with probability almost 1,
REDOG will fail decrypting. However, the probability is not exactly 1 and there
exist some choices of e for which decryption still succeeds. One extreme way to
avoid decryption failures, chosen in the refenrence implementation of REDOG,
is to build errors as follows:

Algorithm 5.1 (REDOG’s error generator)

1. Pick β1, . . . , βt ∈ Fqm being Fq-linearly independent.
2. Pick random permutation π on 2n− k symbols.
3. Set einit = (β1, . . . , βt, 0, . . . , 0) ∈ F2n−k

qm . Output e = π(einit).

Error vectors in REDOG’s reference implementation1, whose performance is
analyzed in [KHL+22b], are generated in an equivalent way to Algorithm 5.1.
Indeed, e′ has rank weight wtR(e

′) = (e1P
−1,−e2S

−1) ≤ λt and can therefore
be decoded using Φ.

Remark 5.2. Algorithm 5.1 produces an error vector e such that wtH(e) =
wtR(e) = t as only t coordinates of e are nonzero.

We are ready to give the description of an efficient message recovery algo-
rithm.

Algorithm 5.3 (Message recovery attack)
Input: REDOG’s public key pk and a REDOG’s ciphertext c = (c1, c2) =
Encrypt(m, pk) generated by the reference implementation.
Output: m

1. Let C ′ be the linear [2n − k, ℓ]-code in the Hamming metric generated by
G = (pk1 | pk2). Put f = 0.

2. While f = 0:
(a) Randomly select ℓ columns of G to form the matrix A. Let cA be the

matching positions in c.

1 https://www.kpqc.or.kr/images/zip/REDOG.zip

https://www.kpqc.or.kr/images/zip/REDOG.zip
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(b) If A is invertible

i. Compute B = A−1 and m̄ = cAB.
ii. Compute c̄1 = m̄pk1.
iii. If wtH(c1 − c̄1) = t1 ≤ t

A. Compute c̄2 = m̄pk2.
B. If wtH(c2 − c̄2) = t− t1

Put m′ = m̄, e = (c1, c2)− (c̄1, c̄2) and f = 1.

3. Compute m = m′ − hash(e).

The inner loop is Prange’s information-set decoding algorithm [Pra62] in the
generator-matrix form with early aborts. If the chosen ℓ positions are not all
error free then m̄ equals m with one or more rows of B added to it. Then m̄pk1
will be random vector and thus differ from c1 in more than t positions. If the
initial check succeeds there is a high chance of the second condition succceeding
as well leading to e with wtH(e) = t.

We now analyze the success probability of each iteration of the inner loop of
Algorithm 5.3. The field Fqm is large, hence A very likely to be invertible. The
algorithm succeeds if the ℓ positions forming A are chosen outside the positions
where e has non-zero entries. This happens with probability

(
2n−k−t

ℓ

)(
2n−k

ℓ

)
.

Each trial costs the inversion of an ℓ×ℓ matrix and up to three matrix-vector
products, where the vector has length ℓ and the matrices have ℓ, n, and n − k
columns respectively, in addition to minor costs of two vector differences and
two weight computations.

We implemented the attack in Algorithm 5.3 in Sagemath 9.5; see online for
the code. We perform faster early aborts, testing m̄ on only t + 3 columns of
pk1. The probability that a coordinate matches between c1 and c̄1 for m̄ ̸= m
is q−m and thus negligible for large m. Hence, most candidate vectors m̄ are
discared after (t + 3)ℓ2 multiplications in Fqm . Running the attack on a Linux
Mint virtual machine we broke the KAT ciphertexts included in the submssion
package for all the proposed parameters. We also generated a bunch of cipher-
texts corresponding to randomly chosen public keys and messages and measured
the average running time of our algorithm.

As can be seen from Table 3, the attack on the reference implementation
succeeds in few steps and is very fast to execute for all parameter sets.

Security parameter log2(Prob) TimeKAT (sec.) Time100(sec.)

128 -5.62325179726894 ∼ 8.01 ∼ 9.17

192 -7.51182199577027 ∼ 108.13 ∼ 112

256 -9.40052710879827 ∼ 167.91 ∼ 133.43
Table 3. Prob is the probability of success of one iteration of the inner loop of Algo-
rithm 5.3. TimeKAT is the average timing of message recovery attack over entries in the
KAT file (30 for 128 bits, 15 for 192 bits, 13 for 256 bits). Time100 is the average timing
of message recovery attack over 100 ciphertext generated by REDOG’s encryption.

https://gitlab.tue.nl/tlange/kpqc-public/-/tree/master/redog
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6 Recomputing attacks costs

In this section we deal with the computation of complexities of general attacks
against cryptosystems relying on the rank decoding problem. We noticed that
the official REDOG submission [KHL+22a], as well as [LTP21] do not consider
attack algorithms proposed in [BBC+20] and [BBB+23]

Our computations are reported in Table 4 which shows that parameters sug-
gested for REDOG provide significantly less security than expected. The tables
also confirm that the parameters do provide the claimed security under attacks
prior to [BBC+20] when using a realistic exponent for matrix multiplication.
Note that the computations in these tables ignore all constants and lower-order
terms in the big-O complexities. This is in line with how the authors of the
attack algorithms use their results to determine the security of other systems,
but typically constants are positive and large. We apply the same to [BBB+23]
although their magma code makes different choices.

Overview of rank decoding attacks Recall that the public code is generated
by the ℓ × 2n − k matrix (M | F ) over Fqm . The error vector added to the
ciphertext is chosen to have rank t. In the description of the attacks we will
give formulas for the costs using the notation of this paper, i.e., the dimension
is ℓ and the error has rank t; we denote the length by N for reasons that will
become clear later. The complexity of algorithms also depends on the matrix
multiplication exponent ω.

The GRS [GRS16] algorithm is a combinatorial attack on the rank decoding
problem. The idea behind this algorithm is to guess a vectorspace containing
the space spanned by the error vector. In this way the received vector can be
expressed in terms of the basis of the guessed space. The last step is to solve the
linear system associated to the syndrome equations. This has complexity

O
(
(N − ℓ)ωmωqmin{t⌊ℓm/N⌋,(t−1)⌊(ℓ+1)m/N⌋}

)
. (7)

Note that we use ω here while the result originally was stated with exponent 3.
These matrices are not expected to be particularly sparse but should be large
enough for fast matrix multiplication algorithms to apply. The same applies to
the next formulas.

The second attack, introduced in [GRS16], which we denote GRS-alg, is an
algebraic attack. Under the condition that ℓ > ⌈((t+ 1)(ℓ+ 1)−N − 1)/t⌉ the
decoding problem can be solved in

O
(
tωℓωqt(⌈((t+1)(ℓ+1)−N−1)/t⌉)

)
. (8)

The attack AGHT [AGHT18] is an improvement over the GRS combinatorial
attack. The underlying idea is to guess the space containing the error in a specific
way that provides higher chance of guessing a suitable space. It has complexity

O
(
(N − ℓ)ωmωqt(ℓ+1)m/N−m

)
. (9)

https://github.com/mbardet/Rank-Decoding-tools
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The BBB+ attack [BBB+20] translates the rank metric decoding problem
into a system of multivariate equations and then uses Gröbner-basis methods
to find solutions. Much of the analysis is spent on determining the degree of
regularity, depending on the length, dimension, and rank of the code and error.
If m

(
N−ℓ−1

t

)
+ 1 ≥

(
N
t

)
then the problem can be solved in

O
((

((m+N)t)t

t!

)ω)
. (10)

If the condition is not satisfied then the complexity of solving the decoding
problem becomes

O
((

((m+N)t)t+1

(t+ 1)!

)ω)
(11)

or the same for t+2 in place of t+1. The authors of [BBB+20] use (11) in their
calculations and thus we include that as well.

The BBC+-Overdetermined,BBC+-Hybrid and BBC+-SupportMinors im-
provements that will follow are all introduced in [BBC+20]. They make explicit
the use of extended linearization as a technique to compute Gröbner bases.
For solving the rank-decoding problem it is not necessary to determine the full
Gröbner basis but to find a solution to this system of equations. Extended lin-
earization introduces new variables to turn a multivariate quadratic system into
a linear system. The algorithms and complexity estimates differ in how large the
resulting systems are and whether they are overdetermined or not, dependent
on the system parameters.

BBC+-Overdetermined applies to the overdetermined case, which matches
m
(
N−ℓ−1

t

)
+ 1 ≥

(
N
t

)
, and permits to solve the system in

O

(
m

(
N − ℓ− 1

t

)(
N

t

)ω−1
)
. (12)

In case of an undetermined system, BBC+-Hybrid fixes some of the unknowns
in a brute-force manner to produce to an overdetermined system in the remaining
variables. The costs are testing all possible values for j positions, where j is the
smallest non-negative integer such that m

(
N−ℓ−1

t

)
+ 1 ≥

(
N−j

t

)
, and for each

performing the same matrix computations as in BBC on j columns less. This
leads to a total complexity of

O

(
qjtm

(
N − ℓ− 1

t

)(
N − j

t

)ω−1
)
. (13)

The brute-force part in BBC+-Hybrid quickly becomes the dominating fac-
tor. The BBC+-SupportMinors algorithm introduces terms of larger degrees
first and then linearizes the system. This consists in multiplying the equations
by some homogeneous monomials of degree b so as to obtain a system of homo-
geneous equations. However, for the special case of q = 2 the equations in the
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system might not be homogeneous. In this case, homogeneous equations coming
from smaller values of b are considered. Let Ab =

∑b
j=1

(
N
t

)(
mℓ+1

j

)
. The degree of

the equations formed in BBC+-SupportMinors depends on b, where 0 < b < 2+t

is minimal such that ab−1 ≤
∑b

j=1

∑j
s=1

(
(−1)s+1

(
N
t+s

)(
m+s−1

s

)(
mℓ+1
j−s

))
if such

a b exists. In this case the problem can be solved with complexity

O
(
(mℓ+ 1)(t+ 1)A2

b

)
. (14)

We do not report the last two attacks presented in [BBC+20] as the underly-
ing approach has been pointed out to be incorrect in [BBB+23]. More precisely,
[BBB+23] show that the independence assumptions made in [BBC+20] are in-
correct. The SupportMinors and MaxMinors modelings in [BBC+20] are not as
independent as claimed, and [BBB+23] introduces a new approach that com-
bines them while keeping independence, at least conjecturally and matched by
experiments. They again multiply by monomials of degree up to b− 1 but a rel-
evant difference is that the equations from the SupportMinors system are kept
over Fqm . They introduce the following notation:

N Fqm

b =

ℓ∑
s=1

(
N − s

t

)(
ℓ+ b− 1− s

b− 1

)
−
(
N − ℓ− 1

t

)(
ℓ− b− 1

b

)
,

N Fq

b,syz = (m− 1)

b∑
s=1

(−1)(s+1)

(
ℓ+ b− s− 1

b− s

)(
N − ℓ− 1

t+ s

)
, and

MFq

b =

(
ℓ+ b− 1

b

)((
N

t

)
−m

(
N − ℓ− 1

t

))
and put N Fq

b = N Fqm

b −N Fq

b,syz.

The problem can then be solved by linearization whenever N Fq

b ≥ MFq

b − 1.

The complexity of solving the system is T (m,N, ℓ, t) = O
(
N Fq

b

(
MFq

b

)ω−1
)
.

Moreover, [BBB+23] introduce a hybrid strategy. Compared to BBC+-Hybrid
it randomly picks matrices from GLN (Fq) to randomly compute Fq-linear com-
binations of the entries of the error vector and applies the same transformation
to the generator matrix, hoping to achieve that the last a positions of the error
vector are all 0 and then shortening the code while also reducing the dimension.

This technique has complexity

min
a≥0

(
qta · T (m,N − a, ℓ− a, t)

)
. (15)

6.1 Lowering the attack costs beyond the formulas stated

The combinatorial attacks GRS and AGHT perform best for longer codes, how-
ever, algebraic attacks that turn each column into a new variable perform best
with fewer variables. For each attack strategy we search for the best number of
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columns that we should consider in order to obtain the cheapest cost of a suc-
cessful break of REDOG. This is why we presented the above formulas using N
rather than the full code length 2n − k. The conditions given above determine
the minimum length required relative to dimension and rank of the error.

We then evaluate the costs for each algorithm for each choice of length N =
ℓ+ t+ i, for every value of i = 0, 1, . . . , 2n− k− ℓ− t satisfying the conditions of
the attacks. Figure 1 shows the different behaviour of the algorithms for fixed ℓ
and t and increasing i. The jump in the BBB+ plot is at the transition between
the two formulas.
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Fig. 1. Plots showing the log2 of the costs for AGHT and BBB+ for the parameters
at the 128–bit security level for different choices of code length.

We point out that [BBC+20] also considered decreasing the length of the code
for the case of overdetermined systems, see [BBC+20, Section 4.2] on puncturing
the code in the case of “super”-overdetermined systems. We perform a systematic
scan for all algorithms as an attacker will use the best possible attack.

The recomputed values We computed complexity costs for all the attacks
introduced in the previous subsection, taking into consideration two values of
matrix multiplication exponent, namely ω = 2.807 and ω = 2.37. For each
possible length N+i for N = ℓ+t and i = 0, 1, . . . , 2n−k−ℓ−t we computed the
costs for each attack strategy, keeping the lowest value per strategy. For the two
cases of BBB+ and the three strategies described for the BBC+-* algorithms, we
selected the best complexity among them. For the sake of completeness, we report
the value of i in Table 4 as well and the value of a for [BBB+23]. All the values
are stated as the log2 of the costs resulting from the complexity formulas. The
lowest costs of the best algorithm are stated in blue. Note the above-mentioned
caveats regarding evaluating big-O estimates for concrete parameters.

As shown in the tables, suggested parameters of REDOG for 128 and 192
levels of security do not resist BBC+ attack and Mixed-attack for any choice
of ω, and BBB+ for ω = 2.37. Suggested parameters for level 256 resist all
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Algorithm Formula 128 level 192 level 256 level
ω = 2.807 ω = 2.37 i ω = 2.807 ω = 2.37 i ω = 2.807 ω = 2.37 i

GRS [GRS16] 7 228.03 - 36 392.30 - 48 604.07 - 60

GRS-alg [GRS16] 8 207.88 - 36 368.18 - 48 595.97 - 60

AGHT [AGHT18] 9 186.68 - 37 337.69 - 49 536.22 - 61

BBB+ [BBB+20] 10 & 11 140.06 118.25 33 210.26 150 0 269.03 227.15 0

BBC+ [BBC+20] 12 – 14 77.83 65.73 33 175.72 159.57 48 337.92 318.01 61

Mixed [BBB+23] 15 80.94 68.61 32 166.67 149.49 49 347.38 311.77 61
Table 4. Values of the log2 of attack costs for REDOG’s suggested parameters for all
security level (see Table 1).

attacks except BBB+ for ω = 2.37. In Section 8 we propose a solution to the
decryption failures that also boosts the security of REDOG.

7 Solving decryption failures

The core of REDOG’s decryption failures is given by point (3) of the proof of
Theorem 4.7. Indeed, the crucial step for showing decoding failure of the decoder
Φ, is that ⟨e1P−1⟩ ̸⊂ ⟨−e2S

−1⟩.
In order to solve the issue of decryption failures in REDOG, we propose an

alternative that keeps the random choice of an error vector e with wtR(e) = t and
changes the public key. The idea is to retain the method introduced in [Loi17],
but also to make sure that wtR(e

′) ≤ λt. We suggest to pick P−1 ∈ GLn(Λ)
randomly instead of it being an isometry of the space Fn

qm .
The proof of the next result is an adaptation of the proof of Proposition 4.1.

Proposition 7.1. Let Λ ⊂ Fqm be a λ-dimensional subspace of Fqm and e =
(e1, e2) a random vector with wtR(e) = t with e1 ∈ Fn

qm and e2 ∈ Fn−k
qm . Let

S−1 ∈ GLn−k(Λ) and P−1 ∈ GLn(Λ). Then ⟨e1P−1,−e2S
−1⟩ ⊆ V for some

λt-dimensional Fq-linear vectorspace V .

Proof. Let Γ = ⟨e⟩ be the Fq-linear subspace of Fqm generated by e. As be-
fore we can write Γ = ⟨y1, . . . , yt⟩. Write also Λ = ⟨α1, . . . , αλ⟩. As in the
proof of Proposition 4.1 we can express the j-th coordinate of e1P

−1 as a lin-
ear combination of the λt elements yhαk for h = 1, . . . , t and k = 1, . . . , λ as
(e1P

−1)j =
∑t

h=1

∑λ
k=1 ch,kyhαk. The same can be done for each coordinate of

−e2S
−1. Hence both subspaces are contained in the space V = ⟨yhαk⟩ generated

by these λt elements. ⊓⊔

Corollary 7.2. Let e′ =
(
e1P

−1,−e2S
−1
)
with e, P−1 and S−1 as in Proposi-

tion 7.1. Then wtR(e
′) ≤ λt.

The only change to the specification of REDOG is in the KeyGen algorithm
in Step 3; encryption and decryption remain unchanged as in Section 3. Here is
KeyGen for the updated version of REDOG with no decryption failures.
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1. Select H = (H1 | H2), H2 ∈ GLn−k(Fqm), a parity check matrix of a [2n −
k, n] Gabidulin code, with syndrome decoder Φ correcting r errors.

2. Select a full rank matrix M ∈ Fℓ×n
qm .

3. Select a λ-dimensional subspace Λ ⊂ Fqm , seen as Fq-linear space, and select
S−1 ∈ GLn−k(Λ) and P−1 ∈ GLn(Λ).

4. Compute F = MP−1HT
1

(
HT

2

)−1
S and publish the public key

pk = (M,F ). Store the secret key sk = (P,H, S, Φ).

Theorem 7.3. The updated version of REDOG is correct.

Proof. The correctness of the updated version of REDOG follows from the cor-
rectness of the original version, except for decryption correctness, which is proven
by Corollary 7.2. ⊓⊔

8 Solving decryption failures and boosting security

Our second idea of how to deal with REDOG not decrypting correctly is to
change how e is sampled. While the approach in Section 7 works and preserves
all considerations regarding parameter sizes, in Section 6 we have shown that
these are too small to offer security against the best known attacks. The approach
in this section provides a functioning system and increases the security offered
by the parameters.

Recall that the public key is (M | F ), where M has dimension ℓ × n and
F has dimension ℓ × (n − k) and both, M and F , have full rank. The relative
sizes in REDOG are such that n − k = ℓ − 1, so F is just one column short
of being square, and n = ℓ + t + 1. The parameters are chosen so that the
decryption step can decode errors of rank up to r, while encryption in REDOG
adds only an error vector of rank t with r ≥ tλ. All parameter sets have λ = 3
and r = λt = (n− k)/2.

Encryption is computed as c = m′(M | F ) + e, for m′ ∈ Fℓ
qm . Decryption

requires decoding in the Gabidulin code for error (e1P
−1,−e2S

−1), where P is
an isometry and S−1 ∈ GLn−k(Λ). We have shown in Theorem 4.7 that this e′

typically has rank larger than r, which causes incorrect decoding, for REDOG’s
choice of e with wtR(e) = t. Where we proposed changing the definition of P in
the previous section to reach a system which has minimal changes compared to
REDOG, we now suggest changing the way that e is chosen.

In particular, we redefine e to have different rank on the first n positions
and the last n− k positions. Let e = (e1, e2) with wtR(e1) = t1 and wtR(e2) =
t2. This can be achieved by sampling t1 random elements from Fqm , testing
that this achieves rank t1 and taking the n positions in e1 as random Fq-linear
combinations of these t1 elements. Because m is significantly larger than t1, this
finds an e1 of rank t1 on first try with high probability. Similarly, we pick t2
random elements from Fqm and use their Fq-linear combinations for e2.

We keep P being an isometry and S−1 ∈ GLn−k(Λ) as in REDOG. Then the
decoding step needs to find an error of rank t1 + λt2, namely e1P

−1 on the first
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n positions and e2S
−1 on the last n− k positions. This will succeed if

r ≥ t1 + λt2. (16)

Hence, we can consider different splits of r to maximize security.

Considerations for extreme choices of t1 and t2 As already explained in
Section 6.1, the attacker can consider parts of c1 and c2, for example, the extreme
choice of t1 = 0 would mean that c1 is a codeword in the code generated by M
and thus m′ would be trivially recoverable from c1 = m′M by computing the
inverse of an ℓ × ℓ submatrix of M . Because Fqm is large, almost any choice of
submatrix will be invertible.

The other extreme choice, t2 = 0, does not cause such an obvious attack as for
the REDOG parameters F has one column fewer than it has rows, meaning that
c2 = m′F cannot be solved for m′. Hence, at least one position of c1 needs to be
included, but that means that we do not have a codeword in the code generated
by that column of M and F but a codeword plus an error of rank 1. However,
a brute-force attack on this system still succeeds with cost qm as follows:

Let F̄ = (Mi|F ) be the square matrix obtained from taking Mi, the i-th
column of M , for a choice of i that makes F̄ invertible. Most choices of i will
succeed. Let c̄ = (c1i, c2), the i-th coordinate of c1 followed by c2.

For each a ∈ Fqm compute m̄ = (c̄ − (a, 0, 0, . . . , 0))F̄−1. Then compute
ē = c− m̄(M | F ) and check if wtR(ē1) = t1. If so put m′ = m̄ and e = ē.

The matrix operations in this attack are cheap and can be made even cheaper
by observing that m̄ = c̄F̄−1 − af , for f the first row of F̄−1 , and ē = c −
(c̄F̄−1)(M | F ) + af(M | F ), where everything including f(M | F ) ∈ F2n−k

qm is
fixed and can be computed once per target c. Note also that only the c1 and
e1 parts need to be computed as by construction e2 = 0. This leaves just n
multiplications and additions in Fqm and the rank computation for each choice
of a. The search over a ∈ Fqm is thus the main cost for a complexity of qm. For
all parameters of REDOG this is less than the desired security.

Generalizations of the brute-force attack For t1 = 1, a brute-force attack
needs to search over all a ∈ Fqm , up to scaling by Fq-elements, and over all choices
of error patterns, where each position of the error is a random Fq-multiple of
a. We need ℓ positions from c1 = m′M + e1 to compute a candidate m̄′ as in
the attack on t1 = 0. Hence, for each a ∈ Fqm we need to try at most the qℓ

patterns for those ℓ positions of e1 for a cost of (qm − 1)qℓ/(q − 1). For the
REDOG parameters, q = 2 and m + ℓ is significantly smaller than the security
level. Hence, t1 = 1 is also a bad choice.

Starting at t1 = 2, when there are two elements a, b ∈ Fqm and error patterns
need to consider random Fq-linear combinations of these two elements, the attack
costs of (qm−1)(qm−2)q2ℓ/(2(q−1)2) grow beyond the more advanced attacks
considered in Section 6.1.



On the security of REDOG 19

Lemma 8.1. In general, the brute-force attack on the left side takes(
qm − 1

t1

)
qt1ℓ/(q − 1)t1

steps.

Proof. The error vector on the left, e1, has rank t1, this means that there are
t1 elements a1, a2, . . . , at1 ∈ Fqm which are Fq-linearly independent. There are(
qm−1
t1

)
/(q − 1)t1 such choices up to Fq factors.

Each of the ℓ positions takes a random Fq-linear combination. For a fixed
choice of the ai there are qt1ℓ choices for these linear combinations. Combining
these quantities gives the result. ⊓⊔

Similarly, for t2 = 1 the brute-force attack is no longer competitive, yet less
clearly so than for t1 = 2 because a and b appear in separate parts. There are qm

candidate choices for e1i and (qm − 1)qℓ−1/(q − 1) candidates for e2. For q = 2
this amounts to roughly 22m+ℓ−1 and 2m+ ℓ− 1 is larger than the security level
for all parameters in REDOG.

Lemma 8.2. In general, the brute-force attack on the right side takes

qm
(
qm − 1

t2

)
qt2(ℓ−1)/(q − 1)t2

steps.

Proof. There are qm choices for e1i. The result follows by the same arguments
as for Lemma 8.1, and taking into account that e2 has length ℓ− 1. ⊓⊔

We do not consider other combinations of columns from the left and right as
those would lead to higher ranks than these two options. Depending on the sizes
of t1 and t2, Lemma 8.1 or 8.2 gives the better result, but apart from extreme
choices these costs are very high.

Finding good choices of t1 and t2 We now turn to the more sophisticated
attacks and try to find optimal splits of the decoding budget r between t1 and t2
satisfying (16), to r ≥ t1+λt2. to make the best attacks as hard as possible. For
any such choice, we consider attacks starting from the left with (parts of) c1 and
M or from the right with c2, F , and parts of c1 and M . The attacks and sub-
attacks differ in how many columns they require, depending on the dimension
and rank, and we scan the whole range of possible lengths from both sides.

Since n = ℓ+ t+1, for the t parameter in REDOG, for small choices of t1 ≤ t
the attack may take a punctured system on c1 and M to recover m′, similar to
the attacks considered in Section 6, or include part of c2 and F , while accepting
an error of larger rank including part of t2. Hence, the search from the left may
start with puncturing of c1. Once parts of c2 are included, the rank typically
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parameter set best attack log2(cost) N + i t1 t2 m n k ℓ

128-bit brute-force 320.00 - 12 2 83 44 8 37

192-bit BBB+ 458.25 61 15 3 109 58 10 49

256-bit BBB+ 628.20 75 21 3 135 72 12 61
Table 5. Best parameter choices and achieved security for ω = 2.807, using the original
values for ℓ, k,m, and n and splitting the decoding capacity r according to r ≥ t1+λt2.

increases by one for each extra position, again because m is much larger than
t1 and t2, until reaching t1 + t2, after which the rank does not increase with
increasing length.

If t1 > t + 1 parts of c2 need to be considered in any case, with the corre-
sponding increases in the rank of the error, in turn requiring more positions to
deal with the increased rank, typically reaching t1 + t2 before enough positions
are available.

Starting from the right, the attacker will always need to include parts from
c1 to even have an invertible system. Hence, the attack is hardest for t1 maximal
in (16) provided that the brute-force attack is excluded. This suggests choosing
t2 = 1, t1 = r− λ, as then the attacker is forced to decode an unstructured code
with an error of rank t1 + t2 = r − λ+ 1.

A computer search, evaluating all attacks considered in Section 6 for all
choices of t2 ∈ {1, 2, . . . , r/λ − 1} and considering both directions as starting
points for the attacker confirms that t2 = 1 is optimal. See online for the Sage
code used for the search. The original parameters choices for REDOG then
provide the attack costs in Table 5.

This means that this second idea solves decryption failures and takes the
parameters of REDOG to a safe level of strength. Actually our optimized choice
of t1 and t2 allows enough margin to shrink the other system parameters.

Note that, as pointed out before, these computations use big-O complexity
estimates and put all constants to 1 and lower-order terms to 0. This is in line
with how estimates are presented in the papers introducing BBB+ [BBB+20]
and BBC+ [BBC+20] but typically underestimates the security.

Remark 8.3. After we developed this idea but before posting it, the REDOG
authors informed us that they fixed the decryption issue in a manner similar to
the approach in this section, namely by having different ranks for e1 and e2.
Their choice of t1 = r/2 and t2 = r/(2λ) satisfies r ≥ t1 + λt2. but provides
less security against attacks. The Sage script gives the results in Table 6 as a
byproduct of computing the costs for all values of t2.

9 Conclusions and further considerations

In this paper we showed several issues with the REDOG proposal but also some
ways to repair it. One other issue is that REDOG has rather large keys for

https://gitlab.tue.nl/tlange/kpqc-public/-/tree/master/redog
https://gitlab.tue.nl/tlange/kpqc-public/-/tree/master/redog
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a rank-metric-based system. A strategy used by many systems in the NIST
post-quantum competition, is to generate parts of the secret and public keys
from seeds and storing or transmitting those seeds instead of the matrices they
generated. Implementations written in C always need to define ways to take
the output of a random-number generator and this strategy includes the use of
a fixed such generator into the KeyGen, encryption, and decryption steps. For
REDOG, this approach permits to reduce the size of the secret key sk and, at
the same time, moderately shrink the size of the public key pk.

Let f : {0, 1}256 → {0, 1}∗ be such a generator, where {0, 1}∗ indicates that
the output length is arbitrary, in a use of f the output lengthN must be specified.
Most recent proposals use SHAKE-256 or SHAKE-512. The idea is to pick a
random 256-bit seed s and initialize f with this seed, the output bits of f(s)
are then used in place of the regular outputs of the random-number generator
to construct elements of the public or secret key. This method is beneficial if s
is much smaller than the key element it replaces. The downside is that any use
of that key element then incurs the costs of recomputing that element from s.

As one of the more interesting cases, we show how to build the isometry P
form f(s) for some seed s. Let (n, k, ℓ, q,m, λ) denote the same quantities as in
REDOG.

Example 9.1. Let N = (n2 +m)⌈log2(q)⌉+ 256 and let {α1, . . . , αm} be a basis
of Fqm over Fq. Choose a random seed s and produce the N -bit string f(s). Use
the first n2⌈log2(q)⌉ bits of f(s) to determine n2 elements in Fq and build an
n×n matrix Q with these elements. The matrix Q is invertible with probability
roughly 0.29. If this is not the case, use the last 256 bits of the output as a
new seed s′, discard s, and repeat the above with f(s′) (an average of 3 trials
produces an invertible matrix).

Once an invertible Q has been constructed, use the middle m⌈log2 q⌉ bits of
f(s) to define m coefficients in Fq and to determine an element γ ∈ Fqm as the
Fq-linear combination of the αi. Then compute P = γQ which, by Theorem 2.4
is an isometry for the rank metric.

As a second example we show how to select S.

Example 9.2. We first observe that Fqm is a large finite field, so any choice
of λ elements for λ ≪ m will be Fq-linearly independent with overwhelming
probability. Using N = (m + (n − k)2)λ⌈log2(q)⌉ we can determine λ random

Intended security in bits 128 192 256

Achieved security in bits (ω = 2.807) 271.75 384.03 500.50

Number of columns (N + i) (ω = 2.807) 46 61 76

Achieved security in bits (ω = 2.37) 229.45 324.24 422.58

Number of columns (N + i) (ω = 2.37) 46 61 76

Table 6. Results for the modified parameter for REDOG using t1 = r/2 and t2 =
r/(2λ). The stated costs are achieved by BBB+ at length N + i.
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elements from Fqm which define the subspace Λ ⊂ Fqm . We then define the
(n − k)2 entries of S−1 ∈ GLn−k(Λ) as Fq-linear combinations over those λ
elements, using the next (n − k)2λ⌈log2 q⌉ bits. The resulting matrix is almost
certainly invertible and permits computing S = (S−1)−1.

Similar strategies can be applied to compute the matrices M,H1 and H2. Let
sP , sS , sM , sH1 , sH2 be the seeds corresponding to the matrices P, S,M,H1 and
H2, respectively. Then we can set sk = (sP , sS , sH1

, sH2
) and pk = (sM , F ) where

F = MP−1HT
1

(
HT

2

)−1
S. This approach cannot be used to compress F as it

depends on the other matrices. In this way we reduced the private key size of RE-
DOG to 1024 bits and public key of size of REDOG to 256+ℓ(n−k)m⌈log2(q)⌉.
For the 128-bit-security level, we obtain a secret key size of 0.13 KB compared
to the original 1.45 KB and a public key size of 13, 85 KB, compared to the orig-
inal 14, 25KB (which was obtained by choosing M to be a circulant matrix) at
the expense of having to recompute the matrices from their seeds when needed.
Given that matrix inversion over Fqm is not fast, implementations may prefer
to include S and S−1 in sk and use seeds for the other matrices. To save even
more space, it is possible to replace sP , sS , sM , sH1

, sH2
by a single seed s and

generating those five seeds as a call to f(s). The public key then includes the
derived value sM but the secret key consists only of s. Note that in that case
each non-invertible Q will be generated for each run expanding the secret seed,
before finding the Q and P that were used in computing pk. In summary, this
strategy provides a tradeoff between size and computing time.
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