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Abstract. Post-quantum cryptography is expected to become one of the
fundamental technologies in the field of security that requires public-key
cryptosystems, potentially replacing standards such as RSA and ECC,
as it is designed to withstand attacks using quantum computers. In
South Korea, there is an ongoing standardization effort called the KpqC
(Korean Post-Quantum Cryptography) competition for developing post-
quantum cryptography as a national standard. The competition is in its
first round, and it has introduced a total of 16 candidate algorithms for
evaluation.
In this paper, we analyze the security of five algorithms among the eight
lattice-based schemes in the first round of the KpqC competition. We
assess their security using M. Albrecht’s Lattice Estimator, focusing on
problems related to LWE (Learning with Errors) and LWR (Learning
with Rounding). Additionally, we compare the security analysis results
with the claims in the proposal documents for each algorithm. When an
algorithm fails to achieve the level of security in its proposal, we suggest
potential types of attacks that need to be considered for further analysis
and improvement.

Keywords: Post-Quantum Cryptography, KpqC Competition, LWE, LWR

1 Introduction

In 1994, Peter Shor proposed polynomial-time quantum algorithms for solving
discrete logarithm and factoring problems, posing a significant threat to the se-
curity of standard public-key cryptosystems such as RSA and ECC [32]. Against
this backdrop, there have been active international standardization efforts for
Post-Quantum Cryptography (PQC), which aims to provide new standards that
are resistant to attacks using quantum computers. Since the end of 2016, the Na-
tional Institute of Standards and Technology (NIST) in the United States has
been conducting a standardization project for PQC in the areas of Key Encapsu-
lation Mechanism (KEM) and digital signature. Over three rounds of evaluations,
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NIST selected one KEM and three signature schemes as standards in 2022 [28].
Currently, there is an ongoing process for additional selections and evaluations
in the fourth round and an on-ramp for the digital signature category [29]. Sim-
ilarly, in South Korea, a national standardization competition for post-quantum
cryptography, known as the KpqC competition, began in 2022 [10].

Lattice-based cryptography is a field of post-quantum cryptography that re-
lies on the hard problems related to lattices, including NTRU [19], Learning
with Errors (LWE) [31, 9], Learning with Rounding (LWR) [30], and Short In-
teger Solution (SIS) [1]. It has gained significant attention and recognition due
to its fast computational speed and balanced performance in terms of commu-
nication overhead compared to other post-quantum cryptosystems: in the U.S.
NIST standardization competition, the one selected KEM standard and two dig-
ital signature schemes out of a total of selected three post-quantum signatures
are lattice-based schemes.

In the context of the KpqC competition, the lattice-based submissions in the
first round include three and five schemes in the Key Encapsulation Mechanism
(KEM) and digital signature categories, respectively. Each of these schemes is
built upon specific underlying problems, which are summarized in Table 1.

Table 1: KpqC Competition - Round 1 Lattice-based Submissions

Category Algorithm Base Problem

KEM

NTRU+ NTRU, RLWE

SMAUG MLWE, MLWR

TiGER RLWR, RLWE

Signature

GCKSign GCK

HAETAE MLWE, MSIS

NCC-Sign RLWE, RSIS

Peregrine NTRU, RSIS

SOLMAE NTRU, RSIS

In this paper, we analyze the security of Learning with Errors (LWE) and
Learning with Rounding (LWR) based algorithms, a total of 5 schemes (NTRU+,
SMAUG, TiGER, HAETAE, NCC-Sign), among the lattice-based algorithms
in the 1st round of the KpqC competition. We analyze the security of the
LWE/LWR problem instances used in each algorithm. For security analysis of
the LWE/LWR problems, we utilize M. Albrecht’s Lattice Estimator [3]. The
Lattice Estimator is an open-source tool written in Sage that quantifies specific
attack complexities for various types of LWE attacks, including those described
in [3]. It takes LWE (LWR) parameters as inputs and computes the attack com-
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plexities along with additional parameters required for the respective attack
methods.

Using the Lattice Estimator for security analysis, we derive classical security
estimation results for the 5 algorithms, as shown in Table 2. For the time com-
plexity calculation of the BKZ algorithm, we employ the Core-SVP model [4],
which is consistent with the methods used in the proposal documents for 4
of the 5 algorithms, excluding NCC-Sign. In Table 2, the column ‘Claimed’ is
the claimed security shown in the proposal documents for each algorithm, and
‘Estimated’ is the security that we estimated by using the Lattice Estimator.
For NTRU+, we observed that the description in the specification document
is different from the reference implementation which is reflected in our security
estimations with respective cases. More precisely, the LWE secret, which is sam-
pled in the encapsulation phase and denoted as r in their scheme description, is
sampled from {0, 1}n according to the specification document (See Algorithm 6
and 9 of the NTRU+ document in [10]), while it is sampled from the centered bi-
nomial distribution in their implementation. We estimate both cases and denote
the security estimation for the NTRU+ version of the specification document in
parentheses. Also, for NCC-Sign, we additionally estimated the security without
the Core-SVP model shown in the parentheses, since the proposal document of
NCC-Sign presented the security result without using the Core-SVP model. The
results are summarized as follows.

– We have observed a discrepancy between the claimed attack complexities
for NTRU+ and the estimated attack complexities derived using the Lattice
Estimator. For the NTRU+576, NTRU+768, and NTRU+864 parameters,
we achieve 115.9 bits, 164.7 bits, and 189.2 bits, respectively, for the version
of the reference implementation. These values exhibit a difference of 0.1 to
3.7 bits compared to the classical security levels claimed in the specification
document. Also, larger gaps were observed between the claimed security and
the estimation for the version of the specification document that utilizes the
LWE with uniform binary secrets.

– For the SMAUG1280 parameters (Security level V) and TiGER256 (Security
level V), classical security levels of 260.3 bits and 263 bits were claimed, but
when measured using the Lattice Estimator, the attack complexities were
found to be 259.2 bits and 262.0 bits, respectively.

– For HAETAE, the claimed parameters from the proposal document and the
security analysis results of the Lattice Estimator are found to be similar,
with an error range of less than 1 bit.

– For NCC-Sign, the proposal document presents security analysis results
without using the Core-SVP model, and it is confirmed that the measured
results using the Lattice Estimator were consistent. However, when mea-
sured using the Core-SVP model, it is determined that for parameters I,
III, and V, the classical security levels were 123.2 bits, 190.1 bits, and 273.3
bits, respectively. This shows a difference of 18 to 24.5 bits compared to the
results without the Core-SVP model in the NCC-Sign proposal document.
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Table 2: Claimed vs. Estimated Security for the Round 1 Lattice-based Submis-
sions. For NTRU+, the estimated results for the specification document version
are reported in parentheses. For NCC-Sign, the estimated results without the
Core-SVP model are reported in parentheses.

Security Level Claimed Estimated

NTRU+

I (n = 576) 116 115.9 (108.9)

I (n = 768) 161 164.7 (156.5)

III 188 189.2 (175.4)

V 264 263.4 (243.5)

SMAUG

I 120.0 120.0

III 180.2 180.2

V 260.3 259.2

TiGER

I 130 130.5

III 200 206.1

V 263 262.0

HAETAE

I 125 125.5

III 236 236.1

V 288 287.1

NCC-Sign

I 147.7 123.2 (147.7)

III 211.5 190.1 (211.5)

V 291.3 273.3 (291.3)

Based on the results, the additional attacks that each scheme needs to further
consider through the Lattice Estimator are as follows:

– For SMAUG, it is confirmed that the SMAUG512 and SMAUG768 parame-
ters achieve the claimed security levels. However, in the case of SMAUG1280,
the claimed values and the estimated values differ for all attacks (usvp, bdd,
bdd hybrid, dual, dual hybrid), which are displayed in Table 3. We remark
that the displayed measurements are for the LWR instances.

– For TiGER, it is confirmed that the TiGER128 and TiGER192 parameters
achieved the claimed security levels. However, for the TiGER256 parameters,
the security level against dual hybrid attacks differs between the claimed
and the estimated values, which are displayed in Table 4. The displayed
measurements are for the LWR instances when the dual hybrid attack is
applied.

Paper Organization This paper is structured as follows: In Chapter II, we intro-
duce lattice-based hard problems, LWE and LWR, and provide definitions for
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Table 3: Claimed vs. Estimated Classical Security for the SMAUG1280 param-
eter set

claimed estimated

usvp 317.1 316.2

bdd 319.5 318.4

bdd hybrid 290.0 288.5

dual 329.1 328.2

dual hybrid 260.3 259.2

Table 4: Claimed vs. Estimated Classical Security for the TiGER256 parameter
set

claimed estimated

dual hybrid ≥ 263 262.0

KEM and digital signatures. In Chapter III, we briefly describe the key features
of the KpqC 1st round candidates, including three KEM schemes and two digital
signature schemes. In Chapter IV, we present the time complexity computation
methods for the BKZ algorithm used in the security analysis of LWE/LWR-
based algorithms and discuss the attacks covered in the Lattice Estimator. In
Chapter V, we present the security analysis results obtained from the Lattice
Estimator for each scheme’s proposed parameters and compare them with the
claimed security. Finally, in Chapter VI, we summarize the main results and
conclude the paper.

2 Preliminaries

2.1 The LWE and LWR Problem

In this section, we introduce lattice-based hard problems, Learning with Errors
(LWE)[31] and Learning with Rounding (LWR)[30].

2.1.1 LWE

Let m,n, q be positive integers, s ∈ Zn
q be a secret vector and χ be an error

distribution on Z. The LWE distribution ALWE
m,n,q,χ(s) consisting of m samples is

obtained as follows: For each i ∈ {1, 2, . . . ,m}, compute

bi = ⟨⃗ai,s⃗⟩+ ei mod q

5



by choosing a vector a⃗i ∈ Zn
q uniformly and a small error ei ∈ Z from the

distribution χ, and then output {(⃗ai,bi)}mi=1 as the result.
The decision LWE problem is to distinguish either given samples {(⃗ai,bi)}mi=1

is from the distribution ALWE
m,n,q,χ or from the uniform distribution. The search

LWE problem is to find s ∈ Zn
q , given independent samples {(⃗ai,bi)}mi=1 from

ALWE
m,n,q,χ(s).

Variants of LWE. Let n and q be positive integers and f(x) ∈ Z[x] an ir-
reducible polynomial of degree n. We define a polynomial ring R = Z[x]/f(x)
and its quotient ring Rq = Zq[x]/(f(x)) modulo q. The Module LWE (MLWE)
problem [8] is a variant of the LWE problem defined over a module Rk

q for pos-

itive integers k. The distribution AMLWE
m,n,q,k,χ(s⃗) for the secret value s⃗ ∈ Rk

q is

defined as follows: For i ∈ {1, 2, . . . ,m}, sample uniform random a⃗i ∈ Rk
q and

ei ∈ R ← χn, calculate bi = ⟨⃗ai, s⃗⟩+ei mod q ∈ Rq and return the set of pairs
{(⃗ai,bi)}mi=1 as results. It is also classified into the decision MLWE and search
MLWE problems as in the LWE problem. For the specific case of MLWE when
the dimension of module k is 1, we call it as Ring-LWE (RLWE) problem [25].

2.1.2 LWR

The LWR problem introduced by Banerjee et al. [6] obfuscates the secret by
applying a deterministic rounding procedure (⌊·⌉) to linear equations instead
of adding errors sampled from discrete Gaussian distributions. Given positive
integers m,n, q, p, let s⃗ ∈ Zn

q be an n-dimensional secret vector. The LWR dis-

tribution ALWR
m,n,q,p(s⃗) over Zm×n

q × Zm
p consisting of m samples is obtained as

follows : For i ∈ {1, 2, . . . ,m}, compute bi = ⌊(p/q) · (⟨⃗ai, s⃗⟩ mod q)⌉ where
a⃗i ∈ Zn

q is uniformly sampled, and return the set of pairs {(⃗ai,bi)}mi=1. The deci-
sion LWR problem is to distinguish either given samples {(⃗ai,bi)}mi=1 is from the
distribution ALWR

m,n,q,χ or from the uniform distribution. The search LWR problem

is to find s⃗ ∈ Zn
q , given independent samples {(⃗ai,bi)}mi=1 from ALWR

m,n,q,p(s⃗). This
definition can be extended to Ring-LWR (RLWR) and Module-LWR (MLWR)
by using vectors of polynomials as in the LWE problem.

2.2 The Round 1 LWE/LWR-based Candidates

2.2.1 KEM

A Key Encapsulation Mechanism (KEM) is a triple of algorithms, Π=(KeyGen,
Encaps, Decaps), where

– (pk, sk)← KeyGen(1λ): The key generation algorithm takes security param-
eter λ > 0 as an input and then outputs the pair of public key and private
key (pk, sk).

– (c,K) ← Encaps(pk): The encapsulation algorithm takes the public key pk
as an input and then outputs a pair of secret key K and ciphertext c.
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– (K or ⊥) ← Decaps(sk, c): The decapsulation algorithm takes the private
key sk and the ciphertext c as input, and then outputs the shared key K or
⊥.

For correctness, it is required that, for all (pk, sk) ← KeyGen(1λ) and for
all (c,K) ← Encaps(pk), Decaps(sk, c) = K holds. In this section, we review
the distinguished features of the KpqC Round 1 lattice-based KEMs NTRU+,
SMAUG, and TiGER.

NTRU+. NTRU+ is an algorithm that improves the efficiency of the existing
NTRU scheme [19]. It follows the strategy to construct NTT (Number The-
ory Transform)-friendly settings for NTRU which has been introduced in NT-
TRU [26] and NTRU-B [17]. The security of NTRU+ is based on the NTRU
and RLWE problems. The main features are as follows:

– NTRU+ utilizes the NTT-friendly polynomial rings Rq = Zq[x]/(f(x)),
where f(x) = xn − xn/2 + 1 is a cyclotomic trinomial of degree n = 2i3j ,
and adapt NTT in all computations.

– In the encapsulation and decapsulation, new methods for secret key encoding
(SOTP) and decoding (Inv) were proposed. The SOTP and Inv operations for

m ∈ {0, 1}n, u = (u1, u2) ∈ {0, 1}2n, and y ∈ {−1, 0, 1}n are designed as
follows.

SOTP(m,u) = (m⊕ u1)− u2 ∈ {−1, 0, 1}n (1)

Inv(y, u) = (y + u2)⊕ u1 (2)

One can easily check Inv(SOTP(m,u), u) = m.
– To satisfy IND-CCA (Indistinguishability against adaptive Chosen-Ciphertext

Attacks) security, NTRU+ applies a modified transform of the conventional
Fujisaki-Okamoto (FO) transform [18]. The difference is that the decapsula-
tion procedures require re-encryption when applying the FO transform, while
NTRU+ removes the re-encryption in the decapsulation by recovering the
random polynomial (denoted by r in their scheme) used in the encapsulation
twice and then comparing between them.

SMAUG. SMAUG is designed based on the hardness of MLWE and MLWR
problems, both of which utilize the sparse ternary secrets following the ap-
proaches in Lizard [14] and RLizard [21]. The main features are as follows.

– SMAUGKEM is obtained by first constructing an IND-CPA (Indistinguisha-
bility against Chosen-Plaintext Attacks) secure public-key encryption (PKE)
scheme and then applying the FO transform [18] on it to achieve the IND-
CCA security.

– The secret keys for MLWE and MLWR are sampled as sparse ternary vectors
with fixed Hamming weights, respectively.

– The moduli q and p are set to powers of 2 in order to replace the rounding
operations in the encapsulation with bit-wise shift operations.
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TiGER. TiGER is designed based on the RLWE and RLWR problems with
sparse secrets. The main features are as follows.

– TiGER consists of an IND-CPA PKE scheme, and an IND-CCA KEM ob-
tained by applying the FO transform to it.

– All integer modulus in the scheme are set to be power of 2 for the same
reason as in SMAUG, in order to replace the rounding operations with bit-
wise shifts.

– TiGER pre-defines the Hamming weight of the secrets of RLWE and RLWR
and generates sparse vectors. Additionally, the errors for RLWE are also
sampled as sparse vectors.

– The sizes of ciphertexts and public keys are relatively small because of using
a small modulus of 1 byte (q = 256) for all suggested parameters.

– When encoding the secret key in TiGER KEM, they employ an Error Cor-
recting Code (ECC) to reduce decryption failure rates. Therefore, it is pos-
sible to adjust the decryption failure rate to be negligible in the security
parameter, despite using the small modulus q. They utilize XEf [5], D2 [4]
for the ECC methods.

2.2.2 Digital Signatures

Digital signatures is a triple of algorithms Π=(KeyGen, Sign, Verify). The key
generation (KeyGen) algorithm generates a pair of a public key and a private
key. The signing (Sign) algorithm takes the private key and a message as inputs
to generate a signature. The verification (Verify) algorithm takes the public key,
message, and signature value as inputs to verify the validity of the signatures.
These can be summarized as follows:

– (pk, sk)← KeyGen(1λ): The key generation algorithm takes security param-
eter λ as an input and then outputs a pair of public key and private key
(pk, sk).

– σ ← Sign(sk,m): The signature algorithm takes the private key sk and a
message m as inputs and then outputs a signature σ.

– 1 or 0 ← Verify(pk,m, σ): The verification algorithm takes the public key
pk, a message m, and a signature σ as inputs. It outputs 1 if the signature
is valid, and 0 otherwise.

In this section, we summarize the distinguished features of the KpqC Round 1
lattice-based signature schemes HAETAE and NCC-Sign.

HAETAE. HAETAE utilizes the Fiat-Shamir with Aborts paradigm [23, 24]
as in the CRYSTALS-Dilithium [16], one of the standards selected in the NIST
PQC standardization project. HAETAE uses a bimodal distribution proposed
in the rejection sampling of BLISS signatures [15]. The main features are as
follows:

– In lattice-based digital signature algorithms, the distribution used for rejec-
tion sampling has a significant impact on the signature size. HAETAE uses
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a hyperball uniform distribution to reduce the signature size, albeit at the
cost of speed compared to Dilithium.

– HAETAE leverages a module structure and uses a predefined polynomial
ring Rq = Zq[x]/(x

256 + 1) for all parameter sets, making it easy to adjust
parameters according to the required security level.

NCC-Sign. NCC-Sign is a digital signature algorithm that combines the de-
sign rationale of CRYSTALS-Dilithium and NTRU prime [7], which were also
round 3, 4 candidates for NIST PQC standardization project KEM algorithms.
NCC-Sign also adopts Fiat-Shamir with Aborts paradigm as in HAETAE and
Dilithium, but instead of using a cyclotomic polynomial ring ofRq = Zq[x]/(x

n+
1), it uses the non-cyclotomic polynomial ring of the formRq = Zq[x]/(x

p+x+1),
where p is a prime. The main features are as follows:

– Due to the use of a non-cyclotomic ring, NTT cannot be applied to polyno-
mial multiplications. In NCC-Sign, polynomial multiplication is computed
using the Toom-Cook method, one of the divide-and-conquer techniques.
For a prime p such that p ≤ 4n, n ∈ Z, the algorithm computes polynomial
multiplication of degree 4n and exploits Toom-Cook-4-way and Karatsuba
multiplication.

3 Security Analysis Methods

3.1 Time complexity Estimation of the BKZ algorithm

The BKZ algorithm [12] is a state-of-the-art lattice basis reduction algorithm
used to find short bases within a given lattice, and it exhibits exponential time
complexity. To analyze the security of the LWE/LWR-based algorithms, the
instances of LWE/LWR used in the algorithms are induced to the problems to
find short vectors in lattices which are given by the choices of attack strategies
such as Dual and Primal attacks. Hence, it can be solved by using the BKZ
algorithm.

The core idea behind the BKZ algorithm is to iteratively apply a Shortest
Vector Problem (SVP) solver to sub-lattices of dimension smaller than the orig-
inal lattice. When the dimension of the sub-lattice to which the SVP solver is
applied is β > 0, it is referred to as β-BKZ, and this sub-lattice is called a
‘block’.

The Core-SVP model [4] is a measurement model used to estimate the time
complexity of the BKZ algorithm from a conservative perspective. When calcu-
lating the time complexity of the BKZ algorithm using the Core-SVP model,
the time complexity of β-BKZ is estimated to be 2c·β , which is a lower bound of
the time complexity of a single application of the SVP solver

(
2c·β+o(β)

)
, where

c ∈ [0, 1] is constant. This conservative model is designed to ensure that the
security predictions of the BKZ algorithm remain unaffected by improvements
in the efficiency of either the number of iterations of applying the SVP solver or
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the efficiency of the SVP solver itself, thus preserving the algorithm’s security
guarantees.

In the Core-SVP model, the constant c ∈ [0, 1] used for calculating the BKZ
time complexity is determined based on the efficiency of the SVP solver. In [4],
it was employed as shown in Table 5. For quantum SVP solvers, continuous
improvements in efficiency have led to the existence of algorithms with cQ =
0.257 [11]. In this paper, we calculate the BKZ time complexity using c = 0.292
for classical security. When using the Core-SVP model, quantum security (in
bits) can be simply estimated by multiplying classical security (in bits) with
cQ/0.292.

Table 5: The BKZ time complexity (T ) for classical security and quantum secu-
rity in the Core-SVP model

classical quantum

c 0.292 0.265

T 20.292β 20.265β

3.2 Dual Attack

The dual attack identifies a short vector v that is orthogonal to matrix A. Given
(A, b⃗) ∈ Zk×l

q ×Zk
q either from the LWE distribution or the uniform distribution,

a lattice Λdual
m can be defined as follow. Let A[m] be the upmost m× l sub-matrix

of A for m ≤ k.

Λdual
m :=

{
(u⃗, v⃗) ∈ Zm × Zl : A⊤

[m]u⃗+ v⃗ = 0 mod q
}

If it is the case b⃗ = As⃗ + e⃗, with a short non-zero element (u⃗, v⃗), an attacker

can compute ⟨u⃗, b⃗[m]⟩ = −⟨v⃗, s⃗⟩ + ⟨u⃗, e⃗[m]⟩, where b⃗[m] and e⃗[m] are the upmost

m-dimensional sub-vector of b⃗. Hence, the attacker can determine it is an LWE
instance if ⟨u⃗, b⃗[m]⟩ is short enough. Therefore, finding a sufficiently short non-

zero vector in the lattice Λdual
m implies solving the decision-LWE problem. To

find a short lattice element of Λdual
m , the attack employs the β-BKZ lattice basis

reduction algorithm.

3.3 Primal Attack

The primal attack on LWE addresses the bounded distance decoding (BDD)
problem directly. In other words, when provided with LWE samples (A, b), it
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seeks a vector w = As such that ∥b− w∥ is unusually small. There are two main
strategies to solve BDD: the first strategy is to utilize Babai’s nearest algorithm
with lattice basis reduction [22], and the second is to reduce BDD problem
into unique-SVP (uSVP) problem and solve it using the lattice basis reduction
algorithms [2, 4]. Here, we will elaborate on the second method, which is more
widely considered.

Given an LWE instance (A, b = As+ e) ∈ Zm×n
q × Zm

q , a lattice Λm can be

defined as follow. B =
(
A[m] |Im| b[m]

)
∈ Zm×(n+m+1)

q .

Λm =
{
v ∈ Zn+m+1

q : Bv mod q
}

Therefore, a short non-zero vector in the lattice Λm can be transformed into
the non-trivial solutions for the LWE equation. This attack utilizes the β-BKZ
algorithm to find the sufficiently short vector in the lattice Λm.

3.4 Hybrid Attack

An attack that combines techniques, such as meet-in-the-middle, with either Pri-
mal or Dual attacks is known as a hybrid attack. Hybrid attacks are generally
not as efficient as Primal or Dual attacks, but they can be effective in cases
where the secret key in LWE follows a specialized distribution. In [20], by in-
corporating lattice reduction techniques and implementing a meet-in-the-middle
(MITM) strategy, it is possible to diminish the complexity of the attack on the
NTRUEncrypt private key from 284.2 to 260.3 for the parameter set for 80-bit
security. Also, Jung Hee Cheon et al. [13] introduced a hybrid attack strategy
that integrates dual lattice attacks with the MITM approach. This approach
involves increasing the error size while simultaneously reducing the dimension
and Hamming weights of the secret vector. As the MITM attack cost is strongly
correlated with the dimension of the secret vector but less affected by error size,
this trade-off significantly reduces the overall cost of the MITM attack when
applying it to the LWE with sparse secrets.

4 KpqC Round 1 LWE/LWR-based algorithms Security
analysis

4.1 Parameters

In this section, we summarize the proposed parameters used in the underlying
LWE/LWR instances in the respective schemes. For simplicity, we use the same
notations as in the original specification documents.

NTRU+ Parameters. NTRU+ is based on NTRU and RLWE, and the pro-
posed parameters used to analyze attack complexities of RLWE are as shown in
Table 6. They use the quotient ring Rq = Z[X]/(Xn − Xn/2 + 1) for dimen-
sion n = 2i3j and fixed modulus q = 3457 for all parameters. For the RLWE
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secret distribution and error distribution, they utilize the uniform distribution
on (0, 1) and the centered binomial distribution in their specification document
and reference implementation, respectively.

Table 6: NTRU+ Proposed parameter sets

576 768 864 1152

n 576 768 864 1152

q 3457 3457 3457 3457

security level I I III V

SMAUG Parameters. SMAUG is based on MLWE/MLWR, and the param-
eters used for the attack on MLWE/MLWR are as shown in Table 7. They use
the quotient ring Rq = Zq[X]/(Xn + 1) for power of 2 integer n and positive
integer q. The secret keys for each LWE and LWR instance, denoted as s and r
are sampled as sparse vectors with fixed Hamming weights, where the Hamming
weights are denoted as hs, hr, respectively. σ is the standard deviation of the
discrete Gaussian distribution to sample the errors in LWE.

Table 7: SMAUG Proposed parameter sets

SMAUG128 SMAUG192 SMAUG256

n 512 768 1280

m 512 768 1280

q 1024 1024 1024

p 256 256 256

hr 132 147 140

hs 140 150 145

σ 1.0625 1.0625 1.0625

security level I III V

TiGER Parameters. TiGER is based on RLWR/RLWE and the parameters
used for the attack are as shown in Table 8. They use the quotient ring Rq =
Zq[X]/(Xn + 1) for a power of 2 integer n and a positive integer q. k1 and k2
are power of 2’s and represents the modulus used for ciphertext compression.
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hs and hr are the Hamming weights of the secret key and the ephemeral secret
used for encapsulation. he is the Hamming weight of the LWE error.

Table 8: TiGER Proposed parameter sets

TiGER128 TiGER192 TiGER256

n 512 1024 1024

m 512 1024 1024

q 256 256 256

p 128 64 128

hr 128 84 198

hs 160 84 198

he 32 84 32

k1 64 64 128

k2 64 4 4

security level I III V

HAETAE Parameters. HAETAE is based on MLWE/MSIS and the param-
eters used for the attack are as shown in Table 9. They use the quotient ring
Rq = Zq[X]/(Xn + 1) for positive integers n and q which are set to 256 and
64513, respectively, for all parameter sets. (k, ℓ) denotes the matrix size of the
module structure. They select the private key from the uniform distribution over
[−η, η], and τ refers to the Hamming weight of the binary challenge.

Table 9: HAETAE Proposed parameter sets

HAETAE120 HAETAE180 HAETAE260

n 256 256 256

q 64513 64513 64513

(k, ℓ) (2, 4) (3, 6) (4, 7)

η 1 1 1

τ 39 49 60

security level I III V
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NCC-Sign Parameters. NCC-Sign is based on RLWE/RSIS and the pa-
rameters used for the attack are shown in Table 10. They use the ring Rq =
Zq[X]/(Xp − X − 1) for prime numbers p and q. Also, they select the private
key from the distribution over [−η, η], and τ refers to the number of nonzero
coefficients in {−1, 0, 1}.

Table 10: NCC-Sign Proposed parameter sets

I III V

p 1021 1429 1913

q 8339581 8376649 8343469

η 2 2 2

τ 25 29 32

security level I III V

4.2 Analysis using the Lattice Estimator

In this section, we report our estimated results for the lattice attacks in [3]
outlined in Section 3. The results of security analysis using the Lattice Estimator
for NTRU+, SMAUG, TiGER, HAETAE, and NCC-Sign schemes are shown in
Table 11, Table 12, Table 13, Table 14, Table 15, Table 16, and Table 17.

The column names in each table, “sec” and “β” represent classical security in
bits and BKZ block size respectively. For the BKZ time complexity estimation,
we use the Core-SVP model except Table 17. Among the row names in each
table, “usvp” refers to the attack complexity for the Primal attack described in
Section 3.3, and bdd, bdd hybrid, bdd mitm hybrid attacks are variations of
the Primal attack. Also, “dual” means the attack complexity for the Dual attack
explained in Section 3.2, and dual hybrid, dual mitm hybrid are variations of
the Dual attack. For more details about the attacks, we recommend to see [3].
We remark that when analyzing the security of SMAUG and TiGER, we mea-
sured attack complexities for both LWE and LWR instances, and reported the
minimum value. In the case of NTRU+, since it does not use a sparse secret key
in the LWE instance, during the security analysis, we did not measure the attack
complexities for bdd mitm hybrid and dual mitm hybrid, which are expected
to be less efficient compared to other attacks.

In the case of NTRU+, Table 11 shows dual hybrid has the smallest attack
complexity. In Table 12, overall attack complexities have increased, and usvp

has the smallest complexity. In the case of SMAUG, according to Table 13, the
most effective attack differs for each parameter set: the most effective attack
for SMAUG128 is usvp, dual hybrid for SMAUG192, and dual hybrid for
SMAUG256. In the case of TiGER, as listed in Table 14, TiGER128 exhibits

14



the smallest complexity for Primal attack usvp. For TiGER192 and TiGER256,
dual hybrid is the most effective method.

In the case of HAETAE, in Table 15, for the claimed security of 120 bits and
260 bits, the most effective attack method is dual hybrid followed by usvp. For
the security of 180 bits, usvp has the smallest attack complexity. In the case
of NCC-Sign, Table 16 and Table 17 show similar results. In Table 16, usvp is
confirmed to have the smallest attack complexity, while in Table 17, bdd exhibits
the smallest attack complexity.

Table 11: NTRU+ Security Estimation

576 768 864 1152

sec β sec β sec β sec β

usvp 109.8 376 156.5 536 180.2 617 252.9 866

bdd 110.8 375 157.4 535 181.0 617 253.7 865

bdd hybrid 111.0 375 157.4 535 181.2 617 316.1 864

dual 114.8 393 162.4 556 186.9 640 261.3 895

dual hybrid 108.9 372 153.0 523 175.4 599 243.5 833

Table 12: NTRU+ Security Estimation rev

576 768 864 1152

sec β sec β sec β sec β

usvp 115.9 397 164.7 564 189.8 650 266.0 911

bdd 116.9 397 165.7 563 190.7 649 266.9 911

bdd hybrid 193.2 397 264.1 563 300.0 649 408.9 911

dual 120.9 414 171.1 586 196.5 673 274.8 941

dual hybrid 117.2 400 164.9 564 189.2 647 263.4 901
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Table 13: SMAUG Security Estimation

128 192 256

sec β sec β sec β

usvp 120.0 411 187.2 641 316.2 1083

bdd 120.9 411 188.5 642 318.4 1090

bdd hybrid 121.3 411 189.0 642 288.5 674

bdd mitm hybrid 166.5 410 221.0 496 277.8 680

dual 125.9 431 195.3 669 328.2 1124

dual hybrid 122.7 399 180.2 575 259.2 749

Table 14: TiGER Security Estimation

128 192 256

sec β sec β sec β

usvp 130.5 447 277.4 950 279.7 958

bdd 131.4 445 281.5 964 280.7 958

bdd hybrid 131.4 445 220.2 472 280.7 958

bdd mitm hybrid 173.8 419 212.7 503 316.5 730

dual 137.5 471 290.5 995 291.7 999

dual hybrid 131.9 428 206.1 535 262.0 835

Table 15: HAETAE Security Estimation

120 180 260

sec β sec β sec β

usvp 125.6 430 238.0 815 290.2 994

bdd 126.6 429 238.8 815 291.1 993

bdd hybrid 126.6 429 238.8 815 291.1 993

bdd mitm hybrid 219.3 429 390.9 815 472.7 993

dual 130.5 447 245.6 841 298.4 1022

dual hybrid 126.4 432 236.1 808 287.1 982
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Table 16: NCC-Sign Security Estimation with the Core-SVP model

1 3 5

sec β sec β sec β

usvp 123.2 422 190.1 651 273.3 936

bdd 124.6 421 191.0 651 274.3 935

bdd hybrid 124.6 421 191.0 651 274.3 935

bdd mitm hybrid 270.0 421 406.1 651 588.6 935

dual 126.4 433 194.2 665 278.6 954

dual hybrid 124.8 427 191.1 654 273.6 937

Table 17: NCC-Sign Security Estimation without the Core-SVP model as they
evaluated in the Round 1 Proposal (less conservative)

1 3 5

sec β sec β sec β

usvp 149.7 422 213.9 651 294,0 936

bdd 147.7 413 211.5 641 291.3 924

bdd hybrid 147.7 413 211.5 641 291.3 924

bdd mitm hybrid 261.8 421 394.9 651 574.2 935

dual 153.8 433 219.6 668 302.4 962

dual hybrid 150.5 421 214.9 651 295.5 937

4.3 Comparisons with the Claimed Security

We present the comparison of the claimed vs. estimated (classical) security in
bits for each scheme in Fig. 1a, Fig. 1b, Fig. 1c, Fig. 1d, and Fig. 1e.

For NTRU+, we measured the security based on both the specification doc-
ument and the implementation. The result from the implementation was similar
to the claimed security in the proposal document. However, the result based
on the specification document indicated lower security than the implementa-
tion result. The reason for these different results occurred from the process of
sampling the secret ’r’ value in the LWE instances using the H function in the
Encaps algorithm in NTRU+ (See Algorithm 6 and 9 in the NTRU+ specifi-
cation document). The specification samples the secret ’r’ with uniform binary
values, however, the implementation samples it with ternary values following the
centered binomial distribution.
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(a) Comparison of the claimed secu-
rity and estimated results in which esti-
mated results are measured for the ver-
sions of specification and implementa-
tion for NTRU+, respectively

(b) Comparson of the claimed security
and estimated results for SMAUG pa-
rameters

(c) Comparison of the claimed security
and estimated results for TiGER param-
eters

(d) Comparison of the claimed security
and estimated results for HAETAE param-
eters

(e) Comparison of the claimed security and
estimated results with Core-SVP and with-
out Core-SVP for NCC-Sign parameters
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The differences between the analysis by using the Lattice Estimator and the
analysis presented in the proposal document can be summarized as follows.

– For the SMAUG1280 parameters, the claimed security in the proposal doc-
ument is of 260.3 bits, but the estimated result using Lattice Estimator
resulted in an attack amount of 259.2 bits.

– In the case of TiGER256(Security level V), the classical security of 263 bits
was claimed, but the estimated result was 262.0 bits.

– The estimated results of NTRU+ were found different from the claimed
attack complexities for all parameters. For the NTRU+576, NTRU+768,
NTRU+864, and NTRU+1152 parameters, they each satisfy classical secu-
rity levels of 115.9 bits, 164.7 bits, 189.2 bits, and 263.4 bits, respectively, for
the implementation version. These values differ by 0.1 to 3.7 bits from the
classical security levels claimed in the proposal document, which were 116
bits, 161 bits, 188 bits, and 264 bits. For the document version of NTRU+
using LWE with uniform binary secrets, the gaps between the claimed and
estimated security get larger.

– For HAETAE, the result claimed in the proposal document and security
analysis results were similar about all parameters, with an error range of
less than 1 bit.

– In the case of NCC-Sign, the proposal document provided results of security
analysis without using the Core-SVP model and the estimations using the
Lattice Estimator were found to match these results. When we measured
using the Core-SVP model, it was observed that parameters I, III, and V
achieve classical security levels of 123.2 bits, 190.1 bits, and 273.3 bits, re-
spectively. This represents differences of 18 to 24.5 bits compared to the
results presented in the NCC-Sign proposal document.

5 Conclusion

In this paper, we discussed the results of a security analysis using the Lattice
Estimator for five Round 1 lattice-based candidates proposed in the KpqC Com-
petition. It was found that NTRU+ had differences of approximately 0.1 to 3.7
bit compared to the claimed results of security analysis for all parameters when
using the centered binomial distribution as a secret distribution in LWE. For
SMAUG and TiGER, the classical security of parameters in the security level V
was observed to differ by approximately 1 bit from the estimated results. In the
case of HAETAE and NCC-Sign, we confirmed that the claimed parameters are
closely similar to the security analysis results. We also remark that the Lattice
Estimator does not exhaustively cover all recent attacks for LWE including [27].
We will analyze the KpqC Round 1 lattice-based schemes further by applying
various recent LWE attacks for future works.
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