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Abstract. Along with the possibility of accelerated polynomial multiplication, the Toom-
Cook 𝑘−way multiplication technique has drawn significant interest in the field of post-
quantum cryptography due to its ability to serve as a part of the lattice-based algorithm.
In contrast, the growing likelihood of attacks based on multiplication, specifically correlation
power analysis attacks, has heightened vulnerability and emphasized the need to examine
the feasibility of employing the polynomial multiplication method as a potential alterna-
tive in the era of post-quantum. This study examines thoroughly an elaborate mathematical
procedure designated as high-degree and half-multiplication, focusing on the design of an
efficient multiplication technique. The proposed polynomial multiplication is intended to be
enhanced in terms of asymptotic performance analysis and quantum resource utilization.
Through the utilization of the Toom-Cook 8.5-way method, we reach the lowest asymp-
totic performance and quantum resources usage for multiplication operation in comparison
to the existing Toom-Cook-based multiplication designs with 186𝑛
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, or approximately 𝑛
1.236. We further compare its asymptotic performance

and quantum resource efficiency to other Toom-Cook-based multiplications to determine its
efficacy.

Keywords: High-degree and half-multiplication · Toom-Cook · Post-Quantum Cryptogra-
phy · Correlation Power Analysis · Quantum

1 Introduction

The Toom-Cook, a method based on [34], [11], is widely acknowledged as an effective approach
for solving large number multiplication algorithms. The approach being referred to is a math-
ematical method employed for the efficient multiplication of polynomials. This method involves
breaking down the multiplication process into smaller multiplications (sub-multiplications) and
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additions, thereby minimizing the overall computing complexity. The use of this technique is preva-
lent throughout diverse domains, including computer algebra systems, cryptography, and signal
processing, with the aim of enhancing the efficiency of polynomial multiplication processes.

Besides the number theoretic transform (NTT)-based polynomial multiplication, the Toom-
Cook-based or Karatsuba-based polynomial multiplication algorithms have experienced a resurgence
in popularity after the commencement of the National Institute of Standards and Technology’s
(NIST) post-quantum standardization program [26], [23]. Several studies (i.e., [14], [23], and [26])
have put forth a new approach to Toom-Cook multiplication, taking into account the NIST adoption
of the module learning with errors (MLWE) algorithm, which forms the basis of many lattice-based
cryptography schemes, as the forthcoming standard.

In terms of Toom-Cook multiplication implementation, to optimize performance and reduce im-
plementation costs, Putranto et al. [32] propose employing a Toom-Cook-based multiplier based on
several Toom-Cook calculation strategies, including [7], [35], [13], [21]. The analysis of the asymp-
totic performance of multiplication algorithms and the corresponding costs associated with their
quantum implementation offers effectiveness in multiplication operations and valuable perspectives
on the importance of multiplication algorithms within the realm of post-quantum cryptography
(PQC) and mitigating the risk of side-channel attacks (SCA). Meanwhile, Mera et al. [26], provide
a proposition consisting of two innovative strategies aimed at enhancing the efficiency of polynomial
multiplications based on the Toom-Cook algorithm. These techniques are then implemented within
the Saber post-quantum key encapsulation mechanism.

Recently, the present study [23] investigates the vulnerabilities of the Toom-Cook algorithm in
the reference implementation of the Saber cryptographic scheme. It introduces a novel approach
by conducting a single-trace attack on Toom-Cook, utilizing the soft-analytical side-channel attack
technique. In accordance with this, Mujdei et al. [28] undertook a comparative examination of the
complexity associated with attacking various multiplication schemes, multiplication algorithms, and
parameter selections. This study utilized the correlation power analysis (CPA) technique, which was
first introduced by Brier et al. in their influential paper released in 2004 [10], to prove the existing
Toom-Cook vulnerability, particularly the Toom-Cook 4-way PQC algorithm, against the attacks.

The examination of the feasibility of polynomial multiplication as a prospective alternative
within the context of PQC holds significant importance. Lattice-based cryptographic systems com-
monly employ either the NTT with time complexity of ((𝑛 log 𝑛)) [30] or the Toom-Cook/Karatsuba
algorithm with time complexity of ((𝑛1+𝜖), where 0 < 𝜖 < 1), [34], [11], [17], to achieve efficient
polynomial multiplication involving 𝑛 coefficients [28]. In this paper, we will explore the utilization
of a new and advantageous multiplication operation derived from Toom’s approach, considering
that Toom-Cook-based multiplication, especially degrees up to 4, is part of the lattice-based post-
quantum algorithm approach, which is also associated with attacks. Further, the proposed multipli-
cation is intended to be integrated into a quantum cryptanalysis circuit with the aim of facilitating
an evaluation of post-quantum security.

In this study, we refer to Bodrato’s research on high-degree Toom’n’half balanced and unbalanced
multiplication [8] to elucidate the functioning of Toom’s method for polynomials. To the best of
our knowledge, this study is the first to utilize high-degree and half-multiplication compounds in
quantum circuits, specifically Toom-Cook-based multiplication exceeding 8 degrees. The primary
objective in the design of high-degree and half-multiplication quantum circuits is to reach lower
asymptotic performance analyses and minimize the utilization of quantum resources during the
execution of multiplication operations. The contributions of this paper can be succinctly summarized
as follows:
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1. We elaborate a comprehensive analysis of multiplication strategies (i.e., [35], [22], and [32]), with
a specific emphasis on the high-degree and half-multiplication technique, the Toom-Cook 8.5-
way method. Referring to [8], we conduct computation steps like splitting, evaluation, recursive
multiplication, interpolation, and recomposition in a certain order, to reach the goal of yielding
the best asymptotic performance analysis and the lowest amount of quantum resource use.

2. We design the Toom-Cook 8.5-way multiplier in a quantum environment, yielding the lowest
asymptotic performance analysis for the multiplier and the minimum quantum resource utiliza-
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3. We then investigate the asymptotic performance and quantum resource use of various multipli-
cation algorithms, namely the näıve schoolbook method, the Karatsuba algorithm, and existing
Toom-Cook-based multiplication up to 8.5 degrees. Additionally, we provide a thorough analysis
and evaluation of various factors, including qubit count, Toffoli count, and Toffoli depth, for the
purpose of assessing the space-time complexity and drawing up a comprehensive comparison
metric to the multiplication operation.

The organization of the paper is as follows: Section 1 provides an overview of the background in-
sights relevant to our work. Section 2 provides a brief overview of high-degree and half-multiplication,
particularly in the context of Toom-Cook-based multiplication. Section 3 outlines a detailed proce-
dure for designing the proposed high-degree and half-multiplication, the Toom-Cook 8.5-way. In Sec-
tion 4, we provide a concise insight into the utilization and underlying principles of multiplication-
based attacks with CPA and address multiplication usage in cryptanalysis circuits that led to a
post-quantum security evaluation. In Section 5, we analyze and compare the computational com-
plexity in terms of space and time for designs involving proposed multiplication. Future work
discussion and conclusions are formulated in Section 6 and Section 7.

2 High-degree and half-Multiplication

The Schoolbook Multiplication algorithm, which has a time complexity of (𝑛2), is considered
the most basic and straightforward approach for multiplying polynomials of degree 𝑛, which is
equivalent to a variant of the Toom-Cook 1-way algorithm. Meanwhile, the Karatsuba algorithm can
be considered a variant of the Toom-Cook 2-way algorithm, in which the original number is divided
into two smaller sub-numbers. The reduction of four multiplications to three results in the Karatsuba
method yield efficiency compared to naive with a complexity value of (𝑛𝑙𝑜𝑔(3)/𝑙𝑜𝑔(2)) ≡ (𝑛1.58).

The Toom-Cook algorithm, specifically the Toom-Cook 𝑘-way algorithm for multiplication, is a
divide-and-conquer approach that bears resemblance to Karatsuba multiplication. However, unlike
Karatsuba multiplication which divides each polynomial into two equal parts during each recursive
step, the Toom-Cook 𝑘-way multiplication divides two large integers 𝑓 and 𝑔 into 𝑘 smaller parts,
each with a length of 𝑙. In general, the time complexity of the Toom-Cook 𝑘−way algorithm can be
expressed as (𝑐(𝑘)𝑛𝑒), where 𝑒 is calculated as the logarithm of (2𝑘 − 1) divided by the logarithm
of 𝑘. The term 𝑛

𝑒 represents the time spent on sub-multiplications, while 𝑐 denotes the time spent
on additions and multiplication by small constants.

The computational procedures encompass many steps such as splitting, evaluation, recursive
multiplication, interpolation, and recomposition, which have already received extensive study in
other works ( [8, 13, 21, 32, 35]). This study concentrates its attention on effective multiplication,
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specifically exploring its complexity before delving into the realm of quantum circuits for high-degree
and half-multiplication in quantum architecture.

In the first step in Toom’s splitting step, in order to divide a given quantity into 𝑘 segments
using Toom’s 𝑘−way algorithm, it is necessary to choose a base 𝐵 = 𝑏

𝑖 that satisfies the condition
where the number of integer digits both 𝑚 and 𝑛 when expressed in base 𝐵 does not exceed 𝑘. A
commonly selected option for the variable 𝑖 is provided by Equation 1, then, the variables 𝑚 and 𝑛

are partitioned into their respective base 𝐵 digits, denoted as 𝑚𝑖 and 𝑛𝑖.

𝑖 = 𝑚𝑎𝑥

{

⌊

⌈log
𝑏
𝑚⌉

𝑘𝑚 ⌋

,

⌊

⌈log
𝑏
𝑛⌉

𝑘𝑛 ⌋

}

+1 (1)

Subsequently, the aforementioned digits are employed as coefficients in polynomials 𝑝 and 𝑞

of degree (𝑘 − 1), satisfying the condition that 𝑝(𝐵) equals 𝑚 and 𝑞(𝐵) equals 𝑛. The rationale for
the defining of these polynomials lies in the fact that by calculating their product, denoted as
𝑟(𝑥) = 𝑝(𝑥)𝑞(𝑥), the resulting value 𝑟(𝐵) will correspond to the multiplication of 𝑚 x 𝑛.

In the case where the multiplicands have different magnitudes, it is advantageous to employ
different values of 𝑘 for 𝑚 and 𝑛, denoted as 𝑘𝑚 and 𝑘𝑛. An instance in this condition is the high-
degree and half-multiplication Toom-Cook 𝑘−way ; for example (using terminology, high-degree
and half-multiplication), Toom-Cook 8.5-way corresponds to the Toom-Cook algorithm with the
specific values of 𝑘𝑚 = 9 and 𝑘𝑛 = 8. In this particular scenario, the selection of the variable 𝑖 in the
equation 𝐵 = 𝑏

𝑖 is commonly determined by Equation 1.

3 Quantum Toom-Cook 8.5-way Multiplier Design

Zanoni et al. [35] introduce a conventional computational implementation of a balanced Toom-Cook
8-way algorithm for the purpose of integer multiplication and squaring. The authors successfully
achieved a degree of 7 in their Toom-Cook-based multiplication version. In their comprehensive
study, Dutta et al. [13] provide an in-depth elucidation of the Toom-Cook 2.5-way technique em-
ployed in the realm of quantum computing. The authors primarily concentrate on the identification
of the maximum count of Toffoli gates and qubits attainable by means of a rigorous examination
of the recursive tree inherent to the algorithm.

The research undertaken by Larasati et al. [21] shows findings that demonstrate the possibility
of the 𝑘−way Toom-Cook method, which employs higher-order polynomial interpolation, to exhibit
lower asymptotic complexity in comparison to alternative approaches such as Toom-Cook 2.5-way.
In their study, Larasati et al. [21] expound upon the Toom-Cook 3-way algorithm by incorporating
the division gate. They augment their analysis by drawing upon the research conducted by Bodrato
et al. [7], resulting in a singular instance of accurate division by three circuits in every iteration.
Moreover, the cost related to the remaining division was reduced by the usage of the circuit’s
unique properties. The aforementioned accomplishment was attained through the use of a circuit
that employs a constant multiplication by reciprocal technique, complemented with the requisite
swap operations [21].

Referring to [32], the following part provides a detailed description of the sequential procedure for
implementing our quantum Toom-Cook 8.5-way Multiplication algorithm, while also highlighting
the distinctions between this approach and the Toom-Cook 8-way multiplication method for the
purpose of clarification. The comparison between the recursion tree structures of Toom-Cook 8-
way and Toom-Cook 8.5-way is depicted in Figure 1. In the present context, Figure 2 draws a
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Fig. 1: The Toom-Cook 8-way and 8.5-way Multiplication Recursion Tree Structure, where 𝑇 rep-
resents the Toom-Cook 𝑘−way Multiplication and 𝑛 and 𝑁 represent the bit length for each level
and the overall depth of the tree, respectively.

comparative analysis of quantum circuits pertaining to the multiplications of Toom-Cook 8-way
and Toom-Cook 8.5-way.

3.1 Computation Steps

Focusing on the Toom-Cook 8.5-way strategy design, this work explains and undertakes a thorough
investigation of high-degree and half-multiplication methods based on the Toom-Cook algorithm
within the context of polynomial multiplication. We incorporate several prior research findings,
including [32], and [8]. The processes of computation include splitting, evaluation, recursive multi-
plication, interpolation, and recomposition, as discussed in previous studies [35], [8], [22], [32]. To
offer a succinct explanation of the approach, the quantities to be multiplied, referred to as the input
operands, are represented by the variables 𝑥 and 𝑦. The variable 𝑥 is used to represent the complete
numerical input. The subscripts 𝑥0, 𝑥1, 𝑥−1, 𝑥−2, … are used to signify the individual components of
the input. On the other hand, the notations 𝑥(0), 𝑥(1), 𝑥(−1), 𝑥(−2), … are employed to indicate the
results obtained by evaluating the variable 𝑥 at certain places.

Splitting. As shown by Equations 2 and 3, the specified inputs, denoted as 𝑥 and 𝑦, are divided
into eight smaller pieces of length 𝑛

8
. The radix 𝑗 in the equations can be determined in advance

through the calculation of Equation 4.

𝑥 = 𝑥7𝑠
7𝑗
+ 𝑥6𝑠

6𝑗
+ 𝑥5𝑠

5𝑗
+ 𝑥4𝑠

4𝑗
+ 𝑥3𝑠

3𝑗
+ 𝑥2𝑠

2𝑗
+ 𝑥1𝑠

𝑗
+ 𝑥0 (2)

𝑦 = 𝑦8𝑠
8𝑗
+ 𝑦7𝑠

7𝑗
+ 𝑦6𝑠

6𝑗
+ 𝑦5𝑠

5𝑗
+ 𝑦4𝑠

4𝑗
+ 𝑦3𝑠

3𝑗
+ 𝑦2𝑠

2𝑗
+ 𝑦1𝑠

𝑗
+ 𝑦0 (3)

𝑗 = 𝑚𝑎𝑥

{

⌊

⌈log
2
𝑥⌉

9 ⌋

,

⌊

⌈log
2
𝑦⌉

8 ⌋

}

+1 (4)
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Fig. 2: Quantum Circuits Comparison for the Toom-Cook 8-way and Toom-Cook 8.5-way Multipli-
cation Algorithms. The function block boxes serve as representations of the individual steps involved
in constructing the Toom-Cook quantum circuit. The quantum circuit utilized in the multiplication
algorithm uses red triangles to denote the input and output of each respective operation within the
function blocks. A notation symbol is employed to denote the quantum state of the input, with each
line representing a required register in the quantum circuit. The presence of triangles positioned on
the left side of a block serves to highlight the location of its input entry point. The output location
on the right side is symbolized by triangles. To maintain simplicity, the ancilla registers are omitted
from the display.
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𝐹 = 𝑥0𝑦0

𝐺 = (𝑥7 + 𝑥6 + 𝑥5 + 𝑥4 + 𝑥3 + 𝑥2 + 𝑥1 + 𝑥0)(𝑦8 + 𝑦7 + 𝑦6 + 𝑦5 + 𝑦4 + 𝑦3 + 𝑦2 + 𝑦1 + 𝑦0)

𝐻 = (−𝑥7 + 𝑥6 − 𝑥5 + 𝑥4 − 𝑥3 + 𝑥2 − 𝑥1 + 𝑥0)(𝑦8 + −𝑦7 + 𝑦6 − 𝑦5 + 𝑦4 − 𝑦3 + 𝑦2 − 𝑦1 + 𝑦0)

𝐼 = (128𝑥7 + 64𝑥6 + 32𝑥5 + 16𝑥4 + 8𝑥3 + 4𝑥2 + 2𝑥1 + 𝑥0)(256𝑦8 + 128𝑦7 + 64𝑦6 + 32𝑦5 + 16𝑦4 + 8𝑦3 + 4𝑦2 + 2𝑦1 + 𝑦0)

𝐽 = (−128𝑥7 + 64𝑥6 − 32𝑥5 + 16𝑥4 − 8𝑥3 + 4𝑥2 − 2𝑥1 + 𝑥0)(256𝑦8 + −128𝑦7 + 64𝑦6 − 32𝑦5 + 16𝑦4 − 8𝑦3 + 4𝑦2 − 2𝑦1 + 𝑦0)

𝐾 = (16384𝑥7 + 4096𝑥6 + 1024𝑥5 + 256𝑥4 + 64𝑥3 + 16𝑥2 + 4𝑥1 + 𝑥0)

(65536𝑦8 + 16384𝑦7 + 4096𝑦6 + 1024𝑦5 + 256𝑦4 + 64𝑦3 + 16𝑦2 + 4𝑦1 + 𝑥0)

𝐿 = (−16384𝑥7 + 4096𝑥6 − 1024𝑥5 + 256𝑥4 − 64𝑥3 + 16𝑥2 − 4𝑥1 + 𝑥0)

(65536𝑦8 − 16384𝑦7 + 4096𝑦6 − 1024𝑦5 + 256𝑦4 − 64𝑦3 + 16𝑦2 − 4𝑦1 + 𝑥0)

𝑀 = (2097152𝑥7 + 262144𝑥6 + 32768𝑥5 + 4096𝑥4 + 512𝑥3 + 64𝑥2 + 8𝑥1 + 𝑥0)

(16777216𝑦8 + 2097152𝑦7 + 262144𝑦6 + 32768𝑦5 + 4096𝑦4 + 512𝑦3 + 64𝑦2 + 8𝑦1 + 𝑦0)

𝑁 = (−2097152𝑥7 + 262144𝑥6 − 32768𝑥5 + 4096𝑥4 − 512𝑥3 + 64𝑥2 − 8𝑥1 + 𝑥0)

(16777216𝑦8 + −2097152𝑦7 + 262144𝑦6 − 32768𝑦5 + 4096𝑦4 − 512𝑦3 + 64𝑦2 − 8𝑦1 + 𝑦0)

𝑂 = (268435456𝑥7 + 16777216𝑥6 + 1048576𝑥5 + 65536𝑥4 + 4096𝑥3 + 256𝑥2 + 16𝑥1 + 𝑥0)

(4294967296𝑦8 + 268435456𝑦7 + 16777216𝑦6 + 1048576𝑦5 + 65536𝑦4 + 4096𝑦3 + 256𝑦2 + 16𝑦1 + 𝑦0)

𝑃 = (−268435456𝑥7 + 16777216𝑥6 − 1048576𝑥5 + 65536𝑥4 − 4096𝑥3 + 256𝑥2 − 16𝑥1 + 𝑥0)

(4294967296𝑦8 − 268435456𝑦7 + 16777216𝑦6 − 1048576𝑦5 + 65536𝑦4 − 4096𝑦3 + 256𝑦2 − 16𝑦1 + 𝑦0)

𝑄 = (0.0078125𝑥7 + 0.015625𝑥6 + 0.03125𝑥5 + 0.0625𝑥4 + 0.125𝑥3 + 0.25𝑥2 + 0.5𝑥1 + 𝑥0)

(0.00390625𝑦8 + 0.0078125𝑦7 + 0.015625𝑦6 + 0.03125𝑦5 + 0.0625𝑦4 + 0.125𝑦3 + 0.25𝑦2 + 0.5𝑦1 + 𝑦0)

𝑅 = (−0.0078125𝑥7 + 0.015625𝑥6 − 0.03125𝑥5 + 0.0625𝑥4 − 0.125𝑥3 + 0.25𝑥2 − 0.5𝑥1 + 𝑥0)

(0.00390625𝑦8 − 0.0078125𝑦7 + 0.015625𝑦6 − 0.03125𝑦5 + 0.0625𝑦4 − 0.125𝑦3 + 0.25𝑦2 − 0.5𝑦1 + 𝑦0)

𝑆 = (0.00006103515625𝑥7 + 0.000244140625𝑥6 + 0.0009765625𝑥5 + 0.00390625𝑥4 + 0.015625𝑥3 + 0.0625𝑥2 + 0.25𝑥1 + 𝑥0)

(0.0000152587890625𝑦8 + 0.00006103515625𝑦7 + 0.000244140625𝑦6 + 0.0009765625𝑦5 + 0.00390625𝑦4 + 0.015625𝑦3 + 0.0625𝑦2

+ 0.25𝑦1 + 𝑦0)

𝑇 = (−0.00006103515625𝑥7 + 0.000244140625𝑥6 − 0.0009765625𝑥5 + 0.00390625𝑥4 − 0.015625𝑥3 + 0.0625𝑥2 − 0.25𝑥1 + 𝑥0)

(0.0000152587890625𝑦8 − 0.00006103515625𝑦7 + 0.000244140625𝑦6 − 0.0009765625𝑦5 + 0.00390625𝑦4 − 0.015625𝑦3 + 0.0625𝑦2

− 0.25𝑦1 + 𝑦0)

𝑈 = (0.000000476837158203125𝑥7 + 0.000003814697265625𝑥6 + 0.000030517578125𝑥5 + 0.000244140625𝑥4 + 0.001953125𝑥3

+ 0.015625𝑥2 + 0.125𝑥1 + 𝑥0)(0.0000000596046447753906𝑦8 + 0.000000476837158203125𝑦7 + 0.000003814697265625𝑦6

+ 0.000030517578125𝑦5 + 0.000244140625𝑦4 + 0.001953125𝑦3 + 0.015625𝑦2 + 0.125𝑦1 + 𝑦0)

𝑉 = (−0.000000476837158203125𝑥7 + 0.000003814697265625𝑥6 − 0.000030517578125𝑥5 + 0.000244140625𝑥4 − 0.001953125𝑥3

+ 0.015625𝑥2 − 0.125𝑥1 + 𝑥0)(0.0000000596046447753906𝑦8 − 0.000000476837158203125𝑦7 + 0.000003814697265625𝑦6

− 0.000030517578125𝑦5 + 0.000244140625𝑦4 − 0.001953125𝑦3 + 0.015625𝑦2 − 0.125𝑦1 + 𝑦0)

(5)

Evaluation. We employ 𝑥1 = 0, 𝑥2 = 1, 𝑥3 = −1, 𝑥4 = 2, 𝑥5 = −2, 𝑥6 = 4, 𝑥7 = −4, 𝑥8 = 8,
𝑥9 = −8, 𝑥10 = 16, 𝑥11 = −16, 𝑥12 = 0.5, 𝑥13 = −0.5, 𝑥14 = 0.25, 𝑥15 = −0.25, 𝑥16 = −0.125, and
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𝑥17 = −0.125 to obtain 𝑥(0), 𝑥(1), 𝑥(−1), 𝑥(2), 𝑥(−2), 𝑥(4), 𝑥(−4), 𝑥(8), 𝑥(−8), 𝑥(16), 𝑥(−16), 𝑥(0.5),
𝑥(−0.5), 𝑥(0.25), 𝑥(−0.25), 𝑥(0.125) and 𝑥(−0.125) for the evaluating points 𝑥 and 𝑦, each of the 17
predefined evaluation points. Figure 3 and Figure 4 illustrate the evaluation points x and y for
the evaluation stage in the Toom-Cook 8.5-way multiplications design. The exact equation for the
evaluation points 𝑥(0), 𝑥(1), 𝑥(−1), 𝑥(2), 𝑥(−2), 𝑥(4), 𝑥(−4), 𝑥(8), 𝑥(−8), 𝑥(16), 𝑥(−16), 𝑥(0.5), 𝑥(−0.5),
𝑥(0.25), 𝑥(−0.25), 𝑥(0.125) and 𝑥(−0.125) is not included in this work. However, it can be inferred
from the evaluation multiplication equation, Equation 5.

Recursive Multiplication. A single iteration of non-recursive point-wise multiplication for Toom-
Cook 8.5-way multiplication utilizes a total of 17 multiplications, each with smaller bit lengths. To
multiply each component of 𝑥(0), 𝑥(1), 𝑥(−1), 𝑥(2), 𝑥(−2), 𝑥(4), 𝑥(−4), 𝑥(8), 𝑥(−8), 𝑥(16), 𝑥(−16),
𝑥(0.5), 𝑥(−0.5), 𝑥(0.25), 𝑥(−0.25), 𝑥(0.125) and 𝑥(−0.125), the result is expressed in Equation 5, denoted
as 𝐹 , 𝐺, 𝐻 , 𝐼 , 𝐽 , 𝐾 , 𝐿, 𝑀, 𝑁 , 𝑂, 𝑃 , 𝑄, 𝑅, 𝑆, 𝑇 , 𝑈 , and 𝑉 , respectively.

Interpolation. The process of interpolation can be represented mathematically using a matrix,
which is the opposite process of multiplying a point, as demonstrated in Equation 6. It needs to be
noticed that, in the aforementioned procedure, an inverse matrix derived from the sub-multiplication
of coefficients (𝑘0 …𝑘16) in Equation 5 is employed. To facilitate comprehension, the inverse matrix
is represented as described in Equation 6.

Recomposition The recomposition from the interpolation result is indicated as 𝑉𝑉 , 𝑈𝑈 , 𝑇 𝑇 , 𝑆𝑆,
𝑅𝑅, 𝑄𝑄, 𝑃𝑃 , 𝑂𝑂, 𝑁𝑁 , 𝑀𝑀, 𝐿𝐿, 𝐾𝐾 , 𝐽 𝐽 , 𝐼 𝐼 , 𝐻𝐻 , 𝐺𝐺, and 𝐹𝐹 in Equation 7 below. The final product
of Toom-Cook 8.5-way multiplication is the 𝑥𝑦 Equation.
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Fig. 3: Evaluation point x
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Fig. 4: Evaluation point y
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4 Toom-Cook-Based Polynomial Multiplication in the Post-Quantum

Numerous investigations have been conducted pertaining to the enhancement of public-key cryp-
tosystems, aiming to protect against potential attacks deriving from both classical and quantum
computing paradigms. The period characterized by the need for quantum-resistant encryption is
commonly denoted as the PQC era, as elucidated in [1]. According to the NIST PQC standard-
ization process, the two main algorithms that are suggested for a range of applications, including
digital signatures, are Crystals-Kyber [9] for public-key setup and Crystals-Dilithium [25] Lattice-
based encryption is expected to exhibit optimal efficiency and resilience against quantum attacks,
rendering it a feasible solution within the domain of PQC and appears to be the most rapid im-
plementation as in [27] [24] [6] [5]. Dilithium, Falcon, FrodoKEM, Kyber, NTRU, NTRU Prime,
and Saber are seven of the fifteen candidates in the NIST third round that use lattice-based cryp-
tography [1]. In this subsection, we present a brief example of the usage and implementation of
Toom-Cook-based multiplication in the Saber and Kyber PQC algorithm, as well as the potential
vulnerability that arises from the utilization of lower-degree multiplication.

The primary focus of public key cryptography (PKC) implementation is on compactness, power
efficiency, and energy consumption, with a secondary consideration given to throughput or de-
lay [14]. This is due to its main purpose of generating shared secret keys. While the majority
of other research concentrates on optimizing NTT-based multiplications, [14] research optimizes
a Toom-Cook-based multiplier to an exceptional degree. A memory-efficient striding Toom-Cook
with delayed interpolation yields a highly compact, low-power implementation that allows for a
very regular memory access scheme. They demonstrate the multiplier’s effectiveness and integrate
it into one of the four NIST finalists, the Saber post-quantum accelerator. The results of the runtime
analysis for a post-quantum lattice-based cryptographic algorithm, specifically a key encapsulation
mechanism, are displayed in Figure 5. In this figure, our focus is solely on the Kyber algorithm.
The analysis is conducted by comparing the algorithm’s runtime behavior and memory consumption
statistics, as documented in the work by Mujdei et al. [28].

Polynomial multiplications, such as Toom-Cook and NTT, play a crucial role in lattice-based
post-quantum encryption by serving as the essential constituents. Lattice-based cryptographic sys-
tems commonly employ either the NTT with time complexity of ((𝑛 log 𝑛)) [30] or the Toom-
Cook/Karatsuba algorithm with time complexity of ((𝑛1+𝜖), where 0 < 𝜖 < 1), [34] [11] [17], to
achieve efficient polynomial multiplication involving 𝑛 coefficients [28]. These multiplications fa-
cilitate the division of the resultant sub-polynomial, as highlighted in [28]. The Saber algorithm
employs an additional division of the resultant sub-polynomials into two Karatsuba layers, followed
by the execution of a 16-coefficient schoolbook operation [28]. Figure 6 displays an image that por-
trays an occurrence of Toom-Cook-based multiplication executed within the Saber structures. We
redraw from the work of Mera et al. [26] to demonstrate the application of the Toom-Cook 4-way
method in the implementation of the Saber post-quantum cryptography algorithm.

The exploitation of side-channel information, such as power consumption, electromagnetic ra-
diation, and execution time, has been shown to be a method for gaining unauthorized access to
sensitive data [19]. CPA is widely recognized as a very effective technique that leverages the corre-
lation between a device’s power consumption and the data it is processing. This approach exploits
power fluctuations that are caused by mathematical processes such as multiplication. Hence, the
evaluation of potential risks associated with multiplication exploitation in side-channel analysis
attacks, particularly when utilizing the CPA approach, is crucial during the construction of cryp-
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Fig. 5: Runtime analysis of Open Quantum Safe Lattice-based Cryptographic algorithms (Key
Encapsulation Mechanisms)

Fig. 6: The Toom-Cook 4-way and Karatsuba Multiplication used in Saber Post-Quantum Cryp-
tography Algorithm
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tographic algorithms. This concern arises due to the frequent use of arithmetic multiplication as a
sub-operation multiplier in real implementations.

The architectural design of all NTRU versions exhibits a common structure, characterized by the
presence of four Karatsuba layers, with the exception of 𝑛𝑡𝑟𝑢ℎ𝑝𝑠2048509, which features three lay-
ers [28]. Further, variations in the schoolbook thresholds are observed [28]. Mujdei et al. conducted
an experimental analysis to investigate the potential occurrence of CPA peaks when employing the
schoolbook sub-operation in the processing of 3-way and 4-way Toom-Cook within the lattice-based
PQC algorithm. The post-quantum algorithm 𝑛𝑡𝑟𝑢ℎ𝑝𝑠4096821 elaborated in [28], can be subjected
to a multiplication-based attack utilizing side-channel measurements. Mujdei et al. study encom-
passes an examination of the variance plot of 500 instances of schoolbook multiplication, wherein
a comprehensive analysis reveals the identification of a total of 72 apparent peaks. These peaks are
specifically associated with the targeted algorithm as described in the work by [28].

PQC refers to a collection of cryptographic methods, specifically algorithms developed for the
purpose of public key encapsulation, that are widely acknowledged for their ability to withstand
possible attacks from quantum computers. The main goal of PQC is to strengthen and optimize
mathematical methods and standards in anticipation of the emergence of quantum computing.
Proficiency in mathematical approaches is essential for the development of PQC algorithms that
can effectively withstand SCA. Furthermore, the utilization of effective mathematical techniques
is imperative in the construction of quantum circuits, which can be employed for the creation
of cryptanalysis circuits. The primary function of these cryptanalysis circuits is to evaluate the
resilience of a method.

Efficient arithmetic operations, particularly multiplication, play a vital role in conducting com-
prehensive investigations within the domain of quantum-based cryptanalysis. According to Roche
[33], Parent et al. [29], Gidney [15], Banegas et al. [3], and Putranto et al. [32], [31], the develop-
ment of a fundamental arithmetic constructor that demonstrates efficiency in terms of space use
and time consumption is crucial for expediting the cryptanalysis process. The primary objective of
these investigations is to reduce the complexity that is typically encountered during the execution
of quantum cryptanalysis. The efficacy of basic mathematical operations, particularly multiplica-
tion, can significantly impact the predictive analysis of the utilization of multiplication inside the
lattice-based PQC algorithm, as well as the quantum computer’s ability to solve conventional public
key cryptography through cryptanalysis, which further leads to post-quantum security evaluation.

5 Complexity Analysis of High-degree and half-Multiplication

5.1 Toffoli Gate Count

The variable 𝑇𝑛 is used to represent the cost incurred when performing multiplication on two larger
𝑛-bit quantities utilizing the Toom-Cook multiplier. Thus, 𝐴𝑛 denotes the cost associated with the
addition or substracting of 𝑛 bits. To implement a 𝑛-bit Toom-Cook 8.5-way multiplication, it is
necessary to perform a total of 17 operations involving 𝑛

9
submultiplications and three types of

adders with different lengths. These adders consist of 46 operations for 𝑛

9
-bit adders, 272 operations

for 2𝑛

9
-bit adders. The Toffoli cost of an n-bit Toom-Cook 8.5-way multiplication can be determined

by employing the equation referenced as Equation 8. Furthermore, the cost increases to 9 for
recursive implementations, and Equation 10 becomes equivalent when the Toffoli cost of 𝐴𝑛 = 2𝑛 is
substituted.

𝑇𝑛 = 17𝑇 𝑛

9

+ 46𝐴 𝑛

9

+ 272𝐴 𝑛

9

(8)
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𝑇𝑛 = 17
log

9
𝑛
𝑇1 + 46(𝐴

𝑛

9

+ 23𝐴

𝑛

81

+ ⋯ + 23
log

9
(𝑛)−1

𝐴1)

+ 272(𝐴

2𝑛

9

+ 136𝐴

2𝑛

81

+ ⋯ + 95
log

9
(𝑛)−1

𝐴2)

(9)

𝑇𝑛 = 17
log

9
𝑛
+

log
9
(𝑛)−1

∑

𝑖=0
[

92𝑛(

17

9

)
𝑖

]

(10)

By utilizing the geometric series calculation ∑
𝑚−1

𝑖=0
𝑟
𝑖
=

1−𝑟
𝑚

1−𝑟
, it is possible to determine the Toffoli

cost of a recursive implementation, as denoted by Equation 11. The result obtained from Equation 11
does not consider the typical uncomputation procedure carried out in a quantum environment. The
strategy mentioned in this study is also discussed in previous research conducted by [29], [13], [21],
and Putranto et al [32]. Equation 12 in this study incorporates the concept of uncomputed process to
prevent a significant increase in the previously determined cost. It is important to acknowledge that
the definition of ”clean cost” used in the subsequent equation aligns with Larasati et al.’s [21]and
Putranto et al.’s [32] definitions.

𝑇𝑛 = 17
log

9
𝑛
+ 92𝑛

(

1 − (
17

9
)
log

9
𝑛

1 − (
17

9
) )

= 𝑛
log

9
17
+ 92𝑛

(

1 − 𝑛
log

9
(
17

9
)

1 − (
17

9
) )

= 93𝑛
log

9
17
− 101𝑛

(11)

𝑇𝑛(𝑐𝑙𝑒𝑎𝑛) = 186𝑛
log

9
17
− 202𝑛 (12)

5.2 Space-Time Complexity Analysis

Bennett in [4] introduced the technique for measuring asymptotic performance improvements in
the context of space consumption in the context of space-time complexity analysis. This technique
is utilized extensively in reversible computing, which makes time and space complexity analysis
possible and enables time-efficient finite-space computing [20]. This method will allow us to evaluate
the difference in the cost of the successfully optimized multiplication and compare it to the results
of previous studies. We determined the optimal cost of multiplication by following the procedures
outlined in [29], [13], [21], and [32].

In the Toom-Cook 8.5-way algorithm, 17 simultaneous multiplications were done in a recursive
way to make a quinary eight structure. There are 17𝑙 nodes of size 9−𝑙𝑛 for an input of size 𝑛 at level
𝑙, and this input has a total circuit cost of 𝑛( 15

9
)
𝑙. Equations 13 - 15 depict the total price of the

quinary tree. For determining the optimal tree height 𝑘 for optimal performance, use Equation 15.

𝑛

𝑁

∑

𝑖=0
(

17

9 )

𝑖

, 𝑁 = log
9
𝑛 (13)
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𝑛

𝑁−𝑘−1

∑

𝑖=0
(

17

9 )

𝑖

=

1

9
𝑁−𝑘

𝑘−1

∑

𝑖=0
(

17

9 )

𝑖

(14)

In a pattern similar to Equation 12, the identity of the geometric series enables us to locate
the boundaries indicated by Equation 15. Thus, the space can be reduced, as shown in qubit
count Equation 16. The obtained result from Equation 16, approximately equal to (𝑛1.245), is
lower than the initially required space assessed with Equation 17, which is confined to the value
(𝑛log9 15) ≈ (𝑛𝑛1.30229).

𝑘 ≤

𝑁

2 −
log 9

log 17

≈ 0.8167𝑁 (15)

𝑄𝐶 = 
(

𝑛

(

17

9

(
log 17

2 log 17−2 log 9) log
9
𝑛

))

≈ (𝑛1.236) (16)

𝑛

log
9
𝑛−1

∑

𝑘=0
(

17

9 )

𝑘

= 𝑛

(

1 −
(

17

9 )

log
9
𝑛

1 −
17

9
)

(17)

The Toffoli depth of a circuit is a prevalent way to describe its time complexity [13], [2]. It can
be calculated by multiplying the number of subtrees 𝑆𝑘 at the 𝑘 − 𝑡ℎ level by the corresponding
depth 𝐷𝑘. Consequently, we can express the Toffoli depth 𝑇𝑑 as in Equation 18.

𝑆𝑘 = 17
(
1−

log 17

2 log 17−log 9)
log

9
𝑛

𝐷𝑘 =

𝑛

9
(
1−

log 17

2 log 17−𝑙𝑜𝑔9)
log

9
𝑛

𝑇𝑑 = 𝑆𝑘𝐷𝑘 = 𝑛

(

17

9 )

(
1−

log 17

2 log 15−𝑙𝑜𝑔9)
log

9
𝑛

≈ 𝑛
1.0530

(18)

5.3 Complexity Analysis Comparison

The näıve multiplication, which is equivalent to the Toom-Cook 1-way, exhibits a time complexity
of (𝑛2), where 𝑛 represents the size of the input. The Toffoli depth of Naive is also of the order
(𝑛 log 𝑛), according to a more in-depth study done in [12]. In the context of asymptotic performance
analysis in quantum implementation, it is observed that the schoolbook technique necessitates a
qubit count of (𝑛), as well as a Toffoli count and depth values of (𝑛2). The costs associated with
quantum multiplication are characterized by a qubit count of (4𝑛+1), a Toffoli depth of (4𝑛2−4𝑛+1),
and a Toffoli count of (4𝑛2 − 3𝑛) [13] [21].

Karatsuba multiplication, a multiplication equivalency with the Toom-Cook 2-way approach,
resulted in a qubit count of (𝑛log2(3)) for both the qubit count and Toffoli count. The improvement
study reveals asymptotic values for qubit count ((𝑛1.427)), Toffoli count ((𝑛log2(3))), and Toffoli
depth ((𝑛1.158)) [29] [13] [21]. Parent et al. [29] determined the values of the qubit count, denoted
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Table 1: Asymptotic Performance and Quantum Implementation Cost Multipliers
Comparison. In order to provide a comprehensive analysis of the advancements in complexity
multiplication research, specifically focusing on the Karatsuba and Toom-Cook-based approaches,
we provide our results pertaining to cost evaluation. This evaluation is conducted utilizing the
Toffoli count, qubit count, and Toffoli depth as metrics to assess the space-time complexity.

No Reference Multiplication Algorithm
Asymptotic Performance Analysis Cost of Quantum Implementation of Multiplication

Qubit Count Toffoli Count Toffoli Depth Qubit Count Toffoli Count Toffoli Depth CNOT

1 Kepley and Steinwandt (2015, [18]) Karatsuba (𝑛log2 3) (𝑛log32 ) - - - - (𝑛log2 3)

2 Parent et al. (2017, [29]) Karatsuba (𝑛1.427) (𝑛log2 3) (𝑛1.158) 𝑛(
3

2
)

log 2

(2 log 3−log 2)
log

2
𝑛

≈ 𝑛
1.427

42𝑛
log

2
3

𝑛(
3

2
)
1−

log 3

(2 log 3−log 2)
log

2
𝑛

≈ 𝑛
1.158 -

3 Dutta et al. (2018, [13]) Toom-Cook 2.5-way (𝑛1.404) (𝑛log166 ) (𝑛1.143) 𝑛(
8

3
)

log 16

(6 log 16−log 6)
log

6
𝑛

≈ 𝑛
1.404

49𝑛
𝑙𝑜𝑔616

𝑛(
8

3
)
1−

log 16

(2 log 16−log 6)
log

6
𝑛

≈ 𝑛
1.143 -

4 Larasati et al.(2021, [21]) Toom-Cook 3-way (𝑛1.35) 𝑂(𝑛
2
) (𝑛1.112) 𝑛(

5

3
)

log 5

(2 log 5−log 3)
log

3
𝑛

≈ 𝑛
1.353

8𝑛
2
+ 66𝑛

log
3
5
− 72 𝑛(

5

3
)
1−

log 5

(2 log 5−log 3)
log

3
𝑛

≈ 𝑛
1.112 -

5 Van Hoof (2020, [16]) Karatsuba 3𝑛 (𝑛𝑙𝑜𝑔23) - - - - (𝑛2)

6 Putranto et al. (2023), [31]) Karatsuba 3𝑛 (𝑛𝑙𝑜𝑔23) - - - - (𝑛𝑙𝑜𝑔23)

7 Putranto et al. (2023, [32]) Toom Cook 2-way (𝑛1.589) (𝑛log2 3) (𝑛1.217) 𝑛(
3

2
)

log 3

(2 log 3−log 2)
log

2
𝑛

≈ 𝑛
1.589

34𝑛
log

2
3
− 32𝑛 𝑛(

3

2
)
1−

log 3

(2 log 3−log 2)
log

2
𝑛

≈ 𝑛
1.217 -

8 Putranto et al. (2023, [32]) Toom Cook 4-way (𝑛1.313) (𝑛log4 7) (𝑛1.09) 𝑛(
7

4
)

log 7

(2 log 7−log 4)
log

4
𝑛

≈ 𝑛
1.313

122𝑛
log

4
7
− 160𝑛 𝑛(

7

4
)
1−

log 7

(2 log 7−log 4)
log

4
𝑛

≈ 𝑛
1.09 -

9 Putranto et al. (2023, [32]) Toom Cook 8-way (𝑛1.245) (𝑛log8 15) (𝑛1.0569) 𝑛(
15

8
)

log 15

(2 log 15−log 8)
log

8
𝑛

≈ 𝑛
1.245

112𝑛
log

8
15
− 128𝑛 𝑛(

15

8
)
1−

log 15

(2 log 15−log 8)
log

8
𝑛

≈ 𝑛
1.0569 -

10 our Toom-Cook 8.5-way (𝑛1.236) (𝑛log9 17) (𝑛1.053) 𝑛(
17

9
)

log 17

(2 log 17−log 9)
log

9
𝑛

≈ 𝑛
1.236

186𝑛
log

9
17
− 202𝑛 𝑛(

17

9
)
1−

log 17

(2 log 17−log 9)
log

9
𝑛

≈ 𝑛
1.053 -

as 𝑛1.427, the Toffoli count, denoted as (𝑛log2 3), and the Toffoli depth, denoted as 𝑛1.158 for Karatsuba.
Recently, the Karatsuba variant proposed by Putranto et al. [31] demonstrates a reduction in CNOT
usage, changing the (𝑛2) CNOT in the prior work to (𝑛log2(3)).

According to Dutta et al. [13], the Toom-Cook 2.5-way algorithm offers a potential approach for
reducing the cost of developing quantum systems by achieving the qubit count (𝑛1.404), Toffoli count
(49𝑛log6 16), and Toffoli depth (𝑛1.143). Later, Larasati et al. [21] present a comprehensive examination
of the asymptotic performance metrics for qubit count, Toffoli count, and Toffoli depth. They report
an estimated value of 𝑛1.353 for the qubit count, (𝑛2) for the Toffoli count, and 𝑛

1.112 for the Toffoli
depth.

Recently, from Putranto et al. [32] elaboration, they exhibit a better asymptotic performance
analysis in terms of qubit count for the Toom-Cook 8-way approach. Specifically, it is approximated

by qubit count with 𝑛(
15

8
)

log 15

(2 log 15−log 8)
log

8
𝑛, which is of the order (𝑛1.245). In the context of Toffoli depth,

which is relevant to efficient computation, the Toom-Cook 8-way design results in a lower bound
on logical depth of (𝑛1.0569) and a Toffoli count of (𝑛log8 15).

In the present study, as presented in Table 1, a comparative analysis of various multiplication
methods reveals that the Toom-Cook high-degree and half-multiplier, established in this research,
demonstrates the lowest desired asymptotic performance in terms of qubit count, Toffoli count, and
Toffoli depth when compared to other approaches. In terms of cost, the proposed multiplication in
quantum implementation demonstrates lower quantum resources when compared to the alternative
Toom-Cook strategy. The high-degree and half-multiplication, specifically the Toom-Cook 8.5-way

approach, involves a qubit count of (𝑛1.236), a logical Toffoli depth of 𝑛( 17
9
)
1−

log 17

(2 log 17−log 9)
log

9
𝑛

≈ 𝑛
1.053,

and a Toffoli count of 186𝑛log9 17 − 202𝑛.

6 Discussion

Empirical research has provided evidence indicating that while higher-order procedures may ex-
hibit superior efficiency, the incorporation of the division operation, a crucial component of the
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𝑘−way Toom-Cook method, can provide difficulties in terms of identifying an effective strategy. In
the current research, as shown in Table 1, using the Toom-Cook-8.5 approach and yielding com-
plexity analysis ((𝑛1.236) qubit Count, (𝑛log9 17) Toffoli Count, and Toffoli Depth of (𝑛1.053)), we
established the optimal utilization of resources for multiplication operations. Nevertheless, the de-
sign multiplication was not incorporated into the PQC algorithm, and the notable cryptanalysis
using the Shor algorithm technique was also not performed. In later stages, it is imperative to also
enhance the implementation of a higher degree in the PQC algorithm and provide a more compre-
hensive examination of multiplication-based attacks employing SCA, or correlation power analysis,
methodologies.

Further, it should be noted that the efficiency of the recently developed Toom-Cook method
exceeds that of the currently employed Toom-Cook-based multiplication techniques, Karatsuba,
and naive schoolbooks. This demonstrates a higher level of efficiency in comparison to existing
multipliers based on the Toom-Cook method currently utilized as part of the lattice-based algorithm,
the Toom-Cook 4-way approach. In this work, the multiplication is also designed in a quantum
environment, facilitating its integration into quantum circuits for cryptanalysis (e.g., [3], [31]). This
integration will thereafter enable the evaluation of security in the post-quantum era.

7 Conclusions

The present study undertook a thorough examination of high-degree and half-multiplication, focus-
ing particularly on the Toom-Cook 8.5-way algorithm. The study demonstrated the achievement
of the lowest or most optimal multiplication, which is distinguished by its lower asymptotic perfor-
mance and fewer demands on quantum resources compared to other multiplications. The proposed
multiplication was subjected to asymptotic performance analysis, resulting in a qubit count of

𝑛(
17

9
)

log 17

(2 log 17−log 9)
log

9
𝑛

≈ 𝑛
1.236, approximately (𝑛1.236). Additionaly, the Toom-Cook 8.5-way has a Tof-

foli count of 186𝑛log9 17 − 202𝑛 and a Toffoli depth of 𝑛( 17
9
)
1−

log 17

(2 log 17−log 9)
log

9
𝑛

≈ 𝑛
1.053 for multiplication.

The alternative methods that have been proposed have the potential to reduce the computa-
tional resources needed and can result in efficient multiplication with high degrees of multiplication.
As part of planned future research, the suggested multiplication operation could be used as an al-
ternative to constructing lattice-based post-quantum algorithms while lowering the risks of attacks
that use multiplication. Furthermore, the multiplication technique is intended to be incorporated
into a quantum cryptanalysis circuit in order to enhance the efficiency of evaluating post-quantum
security.
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