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Abstract. Shor’s algorithm on actual quantum computers has succeeded
only in factoring small composite numbers such as 15 and 21, and sim-
plified quantum circuits to factor the specific integers are used in these
experiments. In this paper, we factor 96 RSA-type composite numbers
up to 9-bit using a quantum computer simulator. The largest composite
number N = 511 was factored in approximately 2 hours on the simula-
tor. In our experiments, we implement Shor’s algorithm with basic circuit
construction, which does not require complex tricks to reduce the number
of qubits, and we give some improvements to reduce the number of gates,
including MIX-ADD method. This is a flexible method for selecting the
optimal ADD circuit which minimizes the number of gates from the ex-
isting ADD circuits for each of the many ADD circuits required in Shor’s
algorithm. Based on our experiments, we estimate the resources required
to factor 2048-bit integers. We estimate that the Shor’s basic circuit re-
quires 2.19 × 1012 gates and 1.76 × 1012 depth when 10241 qubits are
available, and 2.37× 1014 gates and 2.00× 1014 depth when 8194 qubits
are available.

Keywords: Shor’s algorithm · integer factorization · quantum computer
· quantum computer simulator.

1 Introduction

The security of RSA, one of the standardized public key cryptosystems, is based
on the difficulty of the integer factorization problem of large composite numbers.
The current factorization record by a classical computer is the factorization of
an 829-bit integer [6], so that RSA with larger than 2048-bit integer is consid-
ered to be secure for the time being. On the other hand, it is known that the
integer factorization problem can be solved in polynomial time by Shor’s algo-
rithm by using an ideal quantum computer [18]. Some factorization experiments
on quantum computers by using Shor’s algorithm have been reported only for
N = 15 and 21 [1,13,14,15,16,17] because of the difficulty of realizing ideal quan-
tum computers – quantum computers free from the limitation of the number of
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quantum bits (qubits) and the noise on the qubits 3. To make matters worse,
these experiments used the simplified Shor’s circuits in which qubits and gates
are reduced as much as possible by using the properties of the integers to be
factored and their factors to be found. Since such experiments do not lead to
accurate quantum resource estimation, the implementation of Shor’s algorithm
which can factor general composite numbers and its resource evaluation based
on factoring experiments are required.

Various quantum circuits of Shor’s algorithm for general composite numbers
have been proposed. Kunihiro summarized basic circuits [12], which use 2n con-
trolling qubits as a 1st qubit sequence for an n-bit composite number. On the
other hand, advanced circuits have also been proposed [4,8]. These circuits use a
technique to reduce the qubits of the 1st sequence from 2n to 1, which requires a
complex quantum operation, repeatedly performing observations and quantum
gate operations depending on the observation results.

Despite some efforts to estimate circuit resources for factoring 2048-bit inte-
gers with noisy qubits [8,9], it is too difficult to give exact estimates for factoring
such large integers.

There are two major problems to break the situation. The first problem is the
lack of computational resources, specifically, the number of qubits available on
quantum computers. Although IBM has recently developed a 433-qubit processor
[10], because of the effects of the noise, it is still difficult to process Shor’s
algorithm even on such computers. The second problem to be solved is the lack
of experimental results for Shor’s algorithm. To estimate the circuit resources
for factoring 2048-bit integers, more experimental results on the same computing
environments are needed.

Contribution of This Paper

This paper has three contributions. First, we implemented the basic circuits
of Shor’s algorithm applicable to general composite numbers, and succeeded in
factoring 96 RSA-type composite numbers up to 9-bit on a quantum computer
simulator running on a supercomputer. The largest composite number N = 511
was factorized in 2 hours on the simulator. We used the simulator mpiQulacs
developed by Fujitsu [11], a State Vector (SV) type simulator that records all
qubit states in memory with no noise and allows to simulate an ideal quantum
computation [11]. This paper focuses on the basic circuits because the current
large scale quantum simulator cannot handle the advanced circuit due to its
complexity. Our implementations are based on the well-known techniques [4,12],
but we provide some bug-fixes, improvements (including the second contribution)
and comparisons of required resource.

Second, we propose a flexible ADD method, MIX-ADD, to reduce the ele-
mentary gates and the depth of the basic circuit. The dominant circuit in Shor
3 Very recently, Yan et al. proposed a new quantum factoring algorithm which requires

a fewer number of qubits [21] and gave a new estimation for factoring 2048-bit
integers. However, the validity of the algorithm and the correctness of the estimation
are under the analysis.
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is Mod-EXP which computes a modular exponentiation fa,N (x) = ax mod N .
Mod-EXP can be constructed from ADD circuits, and there are three well-known
ADD circuits: R-ADD, GT-ADD, and Q-ADD [12]. The basic circuit requires
5n + 1 qubits for R-ADD, and 4n + 2 qubits for GT/Q/MIX-ADD for n-bit
composite numbers to be factored. MIX-ADD reduces the gates and the depth
by selecting the optimal ADD circuit which minimizes the number of gates from
R/GT/Q-ADD for each ADD circuit called multiple times in Mod-EXP. Our
analysis shows that R/MIX/Q/GT-ADD require more gates in this order for
larger n. MIX-ADD can factor larger composite numbers more efficiently in an
environment where the number of available qubits is limited like the present.

Finally, we gave estimations of the number of gates and the depth for the
Shor’s basic circuits. We generated some quantum circuits for n = 8, . . . , 24,
and evaluated the resources of the circuit. Based on these data, we estimated
the circuit resources required to factor 2048-bit integers. In our estimation, the
basic circuit requires 10241 qubits, 2.19 × 1012 gates and 1.76 × 1012 depth for
R-ADD, and 8194 qubits, 2.37×1014 gates and 2.00×1014 depth for MIX-ADD.

The rest of the paper is organized as follows: Section 2 describes the construc-
tion of Shor’s quantum circuit, in particular the modular exponentiation circuit
Mod-EXP using ADD circuits. Then, in Section 3, concrete constructions of
Mod-EXP from R-ADD, GT-ADD, Q-ADD and MIX-ADD are explained. Sec-
tion 4 summarizes factoring experiments by Shor’s quantum circuit using the
quantum computer simulator including the estimation for 2048-bit integers.

2 Quantum Circuit of Shor’s algorithm

This section describes quantum circuits of Shor’s algorithm for general compos-
ite numbers based on known techniques [4,12]. In this paper, we consider the
following quantum gates as the elementary gates for evaluating the number of
gates and the depth: 1-qubit gates including the Hadamard gate, NOT gate,
the rotation gate and the phase-shift gate, Controlled NOT (C-NOT) gate, and
Toffoli (C2-NOT) gate.

2.1 Shor’s algorithm and Factorization

Suppose we want to factor an n-bit composite number N . For an integer a
coprime to N , the order of a with regard to N is defined as the smallest positive
integer r such that ar ≡ 1 mod N . In 1994, Shor proposed a quantum algorithm
to compute the order r of a with regard to N in polynomial time [18]. The
integer N can be factored by using Shor’s algorithm in the following way:

i) Choose an integer a from {2, . . . , N − 1}. If gcd(a,N) ̸= 1 then output
gcd(a,N) and terminate (since a factor of N larger than 1 is found).

ii) Compute the order r from a and N by quantum order finding algorithm.
iii) If r is even, ar/2+1 ̸≡ 0 mod N and gcd(ar/2±1, N) ̸= 1, output gcd(ar/2±

1, N) and terminates. Otherwise, return step i).
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Note that step i) and iii) can be proceeded by classical computers. On the other
hand, step ii) can be computed by the quantum order finding algorithm on a
quantum computer in the following way:

1. Generate an initial state |ϕ0⟩ = |0 . . . 0⟩ |0 . . . 01⟩, where the 1st qubit se-
quence has m qubits, while the 2nd qubit sequence has n qubits.

2. Apply the Hadamard operation Hm to the 1st sequence:

|ϕ1⟩ = Hm(|ϕ0⟩) =
1√
2m

2m−1∑
x=0

|x⟩ |0 . . . 01⟩ .

3. Apply the operation Ufa,N
which corresponds to a modular exponentiation

fa,N (x) = ax mod N , to the 2nd sequence:

|ϕ2⟩ = Ufa,N
(|ϕ1⟩) =

1√
2m

2m−1∑
x=0

|x⟩ |fa,N (x)⟩ .

4. Apply the Inverse Quantum Fourier Transform to the 1st sequence.
5. Observe the 1st sequence, an approximation of a multiple of 2m/r is obtained.
6. Repeat Step 1–5 until r can be estimated.

The parameter m is determined from the approximation precision in Step 5,
m = 2n is used usually and in this paper.

2.2 Construction of Mod-EXP from ADD

Above steps except Step 3 can be easily realized by elementary gates. On the
other hand, Step 3 requires complex circuits called Mod-EXP [12]. This subsec-
tion describes how to realize Mod-EXP from elementary gates. In fact, Mod-
EXP can be constructed from ADD circuits, by transforming Mod-EXP to the
following circuits step-by-step:

– Mod-EXP(a) : |x⟩ |1⟩ → |x⟩ |ax mod N⟩
– Mod-MUL(d) : |y⟩ → |dy mod N⟩
– Mod-PS(d) : |y⟩ |t⟩ → |y⟩ |t+ dy mod N⟩
– Mod-ADD(d) : |y⟩ → |y + d mod N⟩
– ADD(d) : |y⟩ → |y + d⟩

Construction of Mod-EXP from Mod-MUL For an exponent x represented
in binary, namely, x =

∑m−1
i=0 2ixi, a modular exponentiation Mod-EXP(a) is

computed by a repetition of multiplying di = a2
i

mod N and taking modulus by
N , since ax mod N = a

∑m−1
i=0 2ixi mod N =

∏m−1
i=0 a2

ixi mod N . In other words,
Mod-EXP(a) can be computed by a repetition of the modular multiplication
Mod-MUL(di) controlled by |xi⟩, so that Mod-EXP(a) requires m controlled-
Mod-MULs, which is denoted by C(xi)-Mod-MUL.
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Construction of Mod-MUL from Mod-PS The modular multiplication
Mod-MUL(d) for an integer 0 ≤ d < N and an n-bit integer y can be computed
by using modular product-sums Mod-PSs in the following way:

|y⟩ |0 . . . 0︸ ︷︷ ︸
n

⟩ Mod-PS(d)→ |y⟩ |0 + dy mod N⟩ SWAP→ |dy mod N⟩ |y⟩

Mod-PS(−d−1)→ |dy mod N⟩ |y + (−d−1)(dy mod N) mod N⟩
= |dy mod N⟩ |0⟩ .

Since di = a2
i

mod N and gcd(a,N) = 1, there always exists the inverse d−1 mod
N . Thus, Mod-MUL can be computed by two Mod-PSs and one n-qubit SWAP
with n auxiliary qubits |R2⟩ = |0 . . . 0⟩. Especially, C(xi)-Mod-MUL requires
two C(xi)-Mod-PSs and one n-qubit C-SWAP. Moreover, an n-qubit C-SWAP
can be realized by n 1-qubit C-SWAPs, and one 1-qubit C-SWAP can be realized
by two C-NOTs and one Toffoli gate.

Construction of Mod-PS from Mod-ADD When the 2nd sequence is repre-
sented as |y⟩ = |yn−1 . . . y0⟩, for an integer 0 ≤ d < N , we have dy =

∑n−1
j=0 d2jyj .

Thus, a modular product-sum Mod-PS(d) on a bit sequence |R2⟩ can be com-
puted by a repetition R2 ← R2 + d2j mod N if yj = 1 for j = 0, 1, . . . , n − 1,
which is equivalent to C(yj)-Mod-ADD(d2j mod N). That is, Mod-PS can be
realized by n 1-controlled Mod-ADDs, and C(xi)-Mod-PS can be realized by n
2-controlled Mod-ADDs, namely, C(xi, yj)-Mod-ADDs.

Construction of Mod-ADD from ADD There are two constructions, Type
1 and Type 2 for realizing C(xi, yj)-Mod-ADD [12]. From the efficiency point
of view, Type 2 is optimal for R-ADD and Q-ADD, while Type 1 for GT-ADD.
Due to space limitation, we omit describing the details.

2.3 Construction of ADD

This subsection describes how to construct ADD circuits from the elementary
gates in three ways: R-ADD, GT-ADD, and Q-ADD. Here, we consider the
circuit to add an n-bit integer p = pn−1 . . . p0 to an n-qubit register |R2⟩ =
|R2,n−1 . . . R2,0⟩. Considering the carry-over, the result is represented by |R1R2⟩
with 1-qubit register |R1⟩. All ADD circuits use another 1-qubit register |R3⟩,
and R-ADD uses further (n − 1)-qubit sequence |c⟩. In total, GT-ADD and Q-
ADD require m + n + 1 + n + 1 = m + 2n + 2 = 4n + 2 qubits, while R-ADD
requires m+2n+2+ (n− 1) = m+3n+1 = 5n+1 qubits. On the other hand,
the number of elementary gates is estimated by 270n3 for R-ADD, 16/3n5 for
GT-ADD, and 97n4 for Q-ADD [12].
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|ck⟩ •
|R2,k⟩ •
|ck+1⟩

(a) pk = 0

|ck⟩ •
|R2,k⟩ • •
|ck+1⟩

(b) pk = 1

Fig. 1: CARRY Circuit

|ck⟩ •
|R2,k⟩

(a) pk = 0

|ck⟩ •
|R2,k⟩

(b) pk = 1

Fig. 2: SUM Circuit

Construction of R-ADD R-ADD is a ripple carry adder [5,20], which com-
putes R2 + p by using the following addition table:

cn−1 cn−2 . . . c1
R2,n−1 R2,n−2 . . . R2,1 R2,0

+) pn−1 pn−2 . . . p1 p0
R1 R2,n−1 R2,n−2 . . . R2,1 R2,0

Here, c = cn−1 . . . c1 is an auxiliary (n − 1)-bit register with initial value 0,
which is used for storing carry-overs. R-ADD consists of three circuits, CARRY
(for computing carry bits), SUM (for computing additions), and CARRY−1 (for
resetting carry bits). As in Figure 2 of Vedral, Barenco and Ekert’s paper [20],
R-ADD firstly computes all carry-overs by using CARRY circuit described in
Figure 1 for k = 0, 1, . . . , n− 1 (set cn = R1 when k = n− 1). When pn−1 = 1,
apply the NOT gate to R2,n−1. Finally, for k = n−1, . . . , 0, update R2,k by using
SUM circuit described in Figure 2 and reset ck by using CARRY−1 circuit, which
is reverse circuit of CARRY. When k = 0, CARRY−1 is omitted. Thus, R-ADD
can be constructed from Toffoli gates, C-NOT gates, and NOT gates.

Type 2 Mod-ADD requires 1-controlled R-ADD and 2-controlled R-ADD,
which require not only C-NOT gate and Toffoli gate, but 3-controlled NOT and
4-controlled NOT gates. Barenco et al. showed two conversions from a Ck-NOT
gate to Toffoli gates [3]. The first conversion converts a Ck-NOT gate to 2k − 3
Toffoli gates by using k−2 clean auxiliary qubits (qubits with their state known
to be |0⟩). The second converts a Ck-NOT gate to 4k − 8 Toffoli gates by using
k−2 dirty (unclean) auxiliary qubits. Both auxiliary qubits return to their initial
state after the usage. According to Kunihiro’s paper [12], the first conversion is
used for all Ck-NOT gates.

Construction of GT-ADD For k = 0, 1, . . . , n − 1, GT-ADD adds p by re-
peatedly computing R2 ← R2 + 2k when pk = 1. An addition by 2k can be
realized by Cℓ-NOT gates (1 ≤ ℓ ≤ n − k) and one NOT gate as in Figure
3. Type 1 Mod-ADD requires, in addition to GT-ADD, 1/2/3-controlled GT-
ADD, which consists of NOT gates, C-NOT gates, Toffoli gates, and Cℓ-NOT
gates (3 ≤ ℓ ≤ n+ 3). Both conversions described in Section 2.3 can be used in
GT-ADD, however, since it is difficult to allocate clean qubits, Kunihiro used
the second conversion for all Cℓ-NOT gates [12].

Construction of Q-ADD Q-ADD is an adder using the Quantum Fourier
Transform (QFT) [4,7]. For simplicity, we set |R2,n⟩ := |R1⟩ and assume that
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|R2,k⟩ • • · · · •
|R2,k+1⟩ • • · · ·

... • • · · ·
|R2,n−2⟩ • • · · ·
|R2,n−1⟩ • · · ·

|R1⟩ · · ·

Fig. 3: Adder 2k to |R2⟩

•
= E • •

W A B C

Fig. 4: Conversion of 1-controlled Rk

|R2⟩ has n + 1 qubits in this subsection. Also set pn = 0. Unlike R/GT-ADD,
Q-ADD computes |R2⟩ ← |R2 + p mod 2n+1⟩. Denote the state after applying
QFT to the register |R2⟩ (Figure 9 in [4]) as ϕ(|R2⟩). Then, Q-ADD computes
in the following way: for j = n, n − 1, . . . , 0, and for k = 1, 2, . . . , j + 1, apply
the Z-rotation gate Rk = (1, 0; 0, e2πi/2

k

) to ϕ(|R2,j⟩) when pj−k+1 = 1. Inverse
QFT (QFT−1) is required to obtain the result of the addition. Thus, Q-ADD
can be realized by rotation gates except QFT/QFT−1.

Type 2 Mod-Add requires 1/2-controlled Q-ADDs, that is, 1/2-controlled Rk

gates are required. Here, 1-controlled Rk gate can be realized by 2 C-NOTs and
4 1-qubit gates, and 2-controlled Rk gate can be realized by 6 C-NOTs and 8
1-qubit gates [3].

Construction of 1/2-controlled Rk is as follows. Arbitrary unitary matrix W
can be represented by

W = Φ(δ)Rz(α)Ry(θ)Rz(β) (1)

for parameters α, β, θ, δ ∈ [0, 2π], where

Φ(x) =

(
eix 0
0 eix

)
, Ry(x) =

(
cosx/2 sinx/2
− sinx/2 cosx/2

)
, Rz(x) =

(
eix/2 0
0 e−ix/2

)
.

Then 1-controlled W gate can be represented as in Figure 4, where

A = Rz(α)Ry(θ/2), B = Ry(−θ/2)Rz(−(α+ β)/2),

C = Rz((β − α)/2), E = Rz(−δ)Φ(δ/2).

Thus, 1-controlled Rk can be realized by 2 C-NOTs and 4 1-qubit gates as in
Figure 4 by determining parameters α, β, θ, δ. Similarly, 2-controlled Rk gate can
be realized by 6 C-NOTs and 8 1-qubit gates from Lemma 6.1 in [3].

2.4 Required Resources

This section summarizes the resources required in Shor’s circuit to factor an
n-bit integer.

Shor’s circuit has three main circuits, Hadamard, Mod-EXP, and QFT−1.
Required number of gates for each of Hadamard and QFT−1 is O(n2), while Mod-
EXP requires GModEXP(R-ADD) = 270n3 with R-ADD, GModEXP(GT-ADD) =
16/3n5 with GT-ADD, and GModEXP(Q-ADD) = 97n4 with Q-ADD. Therefore,
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required number of gates for Shor’s circuit can be identified by these numbers:
GShor(R-ADD) = 270n3, GShor(GT-ADD) = 16/3n5, and GShor(Q-ADD) =
97n4. Unfortunately, no estimation for the depth is known. Required numbers
of qubits are QShor(R-ADD) = 5n + 1 with R-ADD, and QShor(GT-ADD) =
QShor(Q-ADD) = 4n+ 2 with GT-ADD and Q-ADD.

3 Implementation of Shor’s Quantum Circuit

This section describes how to implement Mod-EXP with each of R-ADD, GT-
ADD, and Q-ADD, respectively, based on Kunihiro’s paper [12]. We also show
bug-fixes and improvements from them. Moreover, we propose Mod-EXP with
MIX-ADD method. This requires 4n+2 qubits same as the case of GT/Q-ADD,
but consists of fewer gates compared with GT/Q-ADD.

3.1 Mod-EXP with R-ADD

We use Type 2 Mod-ADD in order to minimize the number of gates. We also
apply the following bug-fixes and improvements.

Bug-fix on Converting C3-NOT, C4-NOT to Toffoli Gate The first con-
version described in Section 2.3 is used in [12] for all Ck-NOT (k = 3, 4) gates
in 1/2-controlled R-ADD, however, k − 2 clean qubits are not available in some
cases. In such cases we propose to take the following procedures. When k = 3
and no clean qubit is available, then use the second conversion described in Sec-
tion 2.3. When k = 4, use the second conversion if no qubit is available, and
use the conversion described in Figure 6 if 1-qubit is available, which is given by
greedy method described later. Compared to the first conversion, 1 Toffoli gate
is increased when k = 3, and 3/1 Toffoli gates are increased when k = 4 with
0/1 clean qubit. Though this increases the number of gates in Mod-EXP, it does
not affect the order since it is at most O(n) (explained later).

Greedy Method Suppose 1 ≤ c ≤ k−3 clean qubits and sufficient dirty qubits
are available. Our greedy method converts a Ck-NOT to Toffoli gates as follows.

1. Generate a null circuit circ.
2. Let X be a set of indices of k control qubits.
3. Select two indices from X, and delete these indices from X.
4. Select one clean qubit with changing its status as ‘dirty’ in clean qubit man-

agement, and add its index to X.
5. Generate a Toffoli gate, controlled by selected indexed-qubits and targeted

to the selected clean qubit.
6. Add the generated Toffoli gate to circ.
7. Repeat Step 2–6 c times.
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8. Generate a Ck−c-NOT gate controlled by (k− c) indices in X, and targeted
to the same qubit as the original Ck-NOT gate, and convert to 4(k − c)− 8
Toffoli gates by using the 2nd conversion, and add to circ.

9. Add all Toffoli gates generated in Step 2–7 in the reversed order to circ.
10. Output circ.

The number of Toffoli gates generated by the greedy method is c+4(k−c)−8+c =
4k − 8− 2c. See Appendix 1 and 2 for examples of our greedy method.

Clean Qubits Management It is difficult to figure out which qubit is clean
or not manually when Ck-NOT conversion is required. So we implemented the
management function to automatically list the status of auxiliary qubits.

– When a quantum gate is added to the circuit, set the status of the target
qubit of the gate as ‘dirty’ (not clean). If the gate makes the status clean
(such as CARRY−1), set ‘clean’.

– Use ‘clean’ qubits in Ck-NOT conversion.

This management minimizes the number of gates of Mod-EXP.

The Number of Gates after Bug-fix In Step 2 of Shor’s algorithm, we
apply the Hadamard gate to the m-qubit sequence. By changing this opera-
tion to applying the Hadamard gate to xi just before each C(xi)-Mod-MUL,
xi+1, . . . , xm−1 can be used as clean qubits in C(xi)-Mod-MUL. Thus, for i =
0, . . . ,m− 3, xi+1, xi+2 can be used as clean qubits and there is no increase on
the number of gates because the first conversion can be applied same as in the
Kunihiro’s paper [12]. On the other hand, when i = m−2,m−1, available clean
qubits are less than 2, and additional circuits are required.

The number of gates for Bug-fix Mod-EXP with R-ADD is given as follows.
C(xi, yj)-Mod-ADD in Mod-EXP consists of 3 C2-R-ADDs, 1 C-R-ADD, 1 C2-
NOT, 2 C-NOTs and 3 NOTs. In the case for i = 0, . . . ,m − 3, C4/C3-NOT
is converted to 5/3 Toffoli gates because two clean qubits are available. Hence,
C(xi, yj)-Mod-ADD consists of 135/2n − 155/2 elementary gates. For i = m −
2,m − 1, we count the number of gates to be added from this number. For
i = m−2, there is no additional gates in the first and last C2-R-ADD(d) in Type
1 C(xi, yj)-Mod-ADD, because two clean qubits (xm−1 and R3) are available.
On the other hand, additional gates are required in C2-R-ADD(2n − d) due to
lack of clean qubits. Specifically, two clean qubits xm−1 and cn−1 are available
in C2-CARRY for cj and C2-CARRY−1 for cj for j = 1, . . . , n− 2, but just one
in C2-CARRY for cn−1, cn and C2-CARRY−1 for cn−1. Each C4-NOT gate in
these three CARRYs is converted to 6 Toffoli gates by the greedy method for
k = 4, c = 1. This leads to the addition of 3 elementary gates compared to the
case for i = 0, . . . ,m−3. Hence, C(xi, yj)-Mod-ADD consists of 135/2n−149/2
elementary gates. For i = m−1, additional gates are required as shown in Table
1, then C(xi, yj)-Mod-ADD consists of 135/2n−55 elementary gates. Therefore,
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C2-ADD(d) at Step 1-1 and 7 C-ADD at Step 3 C2-ADD(2n − d) at Step 5
required available #gates required available #gates required available #gates

CARRY cn−2 2 R3, cn−1 +0 1 cn−1 +0 2 cn−1 +1
CARRY cn−1 2 R3 +1 1 – +1 2 – +7/2

CARRY R1 2 R3 +1 1 – +1 2 – +7/2
SUM R2,n−1 2 R3 +0 0 – +0 1 – +1

CARRY−1 cn−1 2 R3 +1 1 – +1 2 – +7/2
CARRY−1 cn−2 2 R3, cn−1 +0 1 cn−1 +0 2 cn−1 +1

Table 1: The number of required clean qubits, available clean qubits and the
number of additional gates in each controlled ADD in Mod-ADD Type-2 [12]
with R-ADD for i = m− 1

Bug-fix Mod-EXP with R-ADD consists of

GModEXP(R-ADD) = 2n(m− 2)(135/2n− 155/2) + 2n(135/2n− 149/2)

+ 2n(135/2n− 55) + 3mn

= 270n3 − 304n2 + 51n

elementary gates, where 3mn is the number of elementary gates for C-SWAPs
in Mod-MUL. The gates increased by the lack of clean qubits is at most O(n).

3.2 Mod-EXP with GT-ADD

For implementing Mod-EXP with GT-ADD, Type 1 Mod-ADD is used to min-
imize the number of gates. Kunihiro used the second conversion described in
Section 2.3 for converting Ck-NOT gates (for 3 ≤ k ≤ n + 3) to Toffoli gates.
This paper proposes to use clean qubits as much as possible by the greedy method
to decrease the number of gates.

Greedy Method in Mod-EXP For all conversions from Ck-NOT gates (3 ≤
k ≤ n+3) to Toffoli gates appeared in Mod-EXP with GT-ADD, we use the 1st
conversion described in Section 2.3 when more than or equal to k−2 clean qubits
are available, the greedy method when 1 to k− 3 clean qubits are available, and
the 2nd conversion when no clean qubit is available. We also use the clean qubit
management in the greedy method.

The Number of Gates with Greedy Method The number of gates for
Mod-EXP with GT-ADD with the greedy method is given as follows. Type
1 C(xi, yj)-Mod-ADD consists of the following four gates. Each gate can be
converted to elementary gates as shown in Case 1–4.

1. C3-GT-ADD with m− i− 1 cleans,
2. 2 C3-GT-ADDs with m− i cleans,
3. C2-GT-ADD with m− i− 1 cleans,
4. 2 C3-NOTs and 4 C2-NOTs.
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Case 1. C3-GT-ADD consists of (n−k+4)/2 Ck-NOTs (4 ≤ k ≤ n+3) and n/2
C3-NOTs on average. In the case for 0 ≤ i ≤ n−2, all Ck-NOTs can be converted
to Toffoli gates by the 1st conversion because n + 1 clean qubits are available.
Hence, the number of gates is given as n1(i) = 1/2

∑n+3
k=4(n−k+4)(2k−3)+3/2n.

For n−1 ≤ i ≤ m−2, we convert Ck-NOT to Toffoli gates by the 1st conversion
for 3 ≤ k ≤ m− i+ 1 and the greedy method for m− i+ 2 ≤ k ≤ n+ 3. Hence,
the number of gates is n1(i) = 1/2

∑n+3
k=m−i+2(n−k+4)(4k−8−2(m− i−1))+

1/2
∑m−i+1

k=4 (n−k+4)(2k−3)+3/2n. For i = m−1, we use the 2nd conversion,
then the number of gates is n1(i) = 1/2

∑n+3
k=4(n− k + 4)(4k − 8) + 3/2n.

Case 2. In the same way as Case 1, the number of gates is n2(i) = 1/2
∑n+2

k=3(n−
k + 3)(2k − 3) + n/2 for 0 ≤ i ≤ n, n2(i) = 1/2

∑n+2
k=m−i+3(n− k + 3)(4k − 8−

2(m− i)) + 1/2
∑m−i+2

k=3 (n− k + 3)(2k − 3) + n/2 for n+ 1 ≤ i ≤ m− 1.

Case 3. In the same way as Case 1, the number of gates is n3(i) = 1/2
∑n+2

k=3(n−
k + 3)(2k − 3) + n/2 for 0 ≤ i ≤ n− 1, n3(i) = 1/2

∑n+2
k=m−i+2(n− k + 3)(4k −

8− 2(m− i− 1))+ 1/2
∑m−i+1

k=3 (n− k+3)(2k− 3)+n/2 for n ≤ i ≤ m− 2, and
n3(i) = 1/2

∑n+2
k=3(n− k + 3)(4k − 8) + n/2 for i = m− 1.

Case 4. Each C3-NOT can be converted to 3 Toffoli gates for 0 ≤ i ≤ m − 2,
and 4 for i = m− 1.

Mod-EXP with GT-ADD with the greedy method consists of

GModEXP(GT-ADD) = 2n

{
m−1∑
i=0

(n1(i)+n2(i)+n3(i)+4)+6(2n− 1)+8

}
+ 3mn

= 3n5 + 15n4 +
51

2
n3 +

103

2
n2 + 8n

elementary gates. The greedy method reduces the fifth-order coefficient from
16/3 to 3.

3.3 Mod-EXP with Q-ADD

This subsection describes how to implement Mod-EXP with Q-ADD.

Bug-fix in Q-ADD Since Q-ADD requires to apply QFT to the registers
|R1R2⟩, QFT just before C(x0)-Mod-MUL in Q-ADD (Figure 2 in [4]), and
QFT−1 just before C-SWAP and QFT just before C-SWAP in C(xi)-Mod-MUL
should be added. Thus the number of gates are increased to 4n + 2 QFTs for
Mod-EXP from the original [12]. Furthermore, the original number of gates did
not consider C-SWAP, so that mn Toffoli gates and 2mn C-NOTs should be
added. However, since these increase is at most O(n3), it does not effect on the
total number of Mod-EXP at all.
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• • • • •
• = E • E† • E

Rk A B B† B

Fig. 5: Conversion of 2-controlled Rotation Gate

Change of Mod-ADD When Type 2 Mod-ADD is used for Q-ADD, 4 QFTs
and 4 QFT−1s are required, and the number of gates of Mod-EXP will be in-
creased (the order is same, but the coefficient becomes larger). So, we propose
to use Beauregard’s Mod-ADD which requires 2 QFTs and 2 QFT−1s [4].

Gate Reduction of Controlled Rotation Gate Conversion When 1/2-
controlled Rk gates are converted to elementary gates, one 1-qubit gate can be
reduced by setting parameters properly. In fact, set α = β = −π/2k, θ = 0, δ =
π/2k in (1) for W = Rk, then C becomes an identity matrix and can be omitted.
Similarly, setting α = β = −π/2k−1, θ = 0, δ = π/2k−1 for 2-controlled Rk gates
reduces one 1-qubit gate as in Figure 5, where † denotes an inversion.

The Number of Gates after Bug-fix Mod-EXP consists of 2mn Beaure-
gard’s Mod-ADDs, 2m + 2 QFTs (or QFT−1) and mn C-SWAPs. Mod-ADD
also consists of as follows.

– 3 C2-Q-ADDs, each of which consists of (n+2−k)/2 C2-Rk for 1 ≤ k ≤ n+1,
– C-Q-ADD, which consists of (n+ 2− k)/2 of C-Rk for 1 ≤ k ≤ n+ 1,
– Q-ADD, which consists of (n+ 2− k)/2 of Rk for 1 ≤ k ≤ k,
– 4 QFTs, each QFT consists of n+1 H gates and n+2−k C-Rk for 2≤k≤n+1,
– 2 C-NOTs and 2 NOTs.

Hence, Mod-ADD consists of GModADD(Q-ADD) = 21n2/4 + 47n/4 + 21/2 ele-
mentary gates because C2/C-Rk can be converted to 13/5 elementary gates. And
QFT consists of GQFT(n+ 1) = 5/2n2 + 7n/2 + 1 elementary gates. Therefore,
Mod-EXP with Q-ADD consists of

GModEXP(Q-ADD) = 2mn×GModADD(Q-ADD)+(2m+2)×GQFT(n+1)+3mn

= 85n4 + 201n3 + 147n2 + 11n+ 2

elementary gates. The fourth-order coefficient is reduced from 97 to 85 by the
gate reduction.

3.4 Mod-EXP with MIX-ADD

This subsection proposes a MIX-ADD method, which uses different ADD meth-
ods in Mod-EXP depending on the number of available clean qubits to minimize
the number of elementary gates.
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Definition of MIX-ADD The original Mod-EXP uses just one ADD circuit
such as R/GT/Q-ADD, but in the case of 4n + 2 qubits circuit, the number of
gates for Mod-EXP can be reduced by selecting the optimal ADD for each ADD
in Mod-EXP. We call this construction Mod-EXP with MIX-ADD. Considering
the order of the number of gates for each ADD, R-ADD is top priority, next Q-
ADD, then GT-ADD. However, R-ADD is available only if n− 1 clean auxiliary
qubits are available as carry qubits. In C(xi)-Mod-MUL in Mod-EXP, we can
use R-ADD for 0 ≤ i ≤ n because m − i + 1 clean qubits (xi+1, . . . , xm−1) are
available. On the other hand, we use Q-ADD for n+1 ≤ i ≤ m− 1 to minimize
the number of gates. In applying Q-ADD from the middle of Mod-EXP, QFT
is added in the following three points. The first is after C(xn−2)-Mod-MUL, the
second is QFT−1 before C-SWAP and QFT after C-SWAP in Mod-MUL for
n+ 1 ≤ i ≤ m− 1, and the third is after C(xm−1)-Mod-MUL.

The Number of Gates The number of gates for Mod-EXP with MIX-ADD is
computed in the same way as in Section 3.1 and Section 3.3. Therefore, we have

GModEXP(MIX-ADD) = 2n(n− 1)(135/2n− 155/2) + 2n(135/2n− 149/2)

+ 2n(135/2n− 55) + 2n(n− 1)×GModADD(Q-ADD)

+ 2n×GQFT(n+ 1) + 3mn

=
85

2
n4 + 193n3 − 83

2
n2 − 163n,

which is about half the number of gates for Mod-EXP with Q-ADD.

4 Experimental Results

This section reports our factorization results based on our implementation de-
scribed in Section 3 by using the quantum computer simulator mpiQulacs [11],
a distributed version of the quantum simulator Qulacs [19]. We used an A64FX-
based cluster system similar to Todoroki [11] with 512 nodes, which enables
39-qubit operations. A64FX is an ARM-based CPU that is also equipped in the
world’s top Fugaku supercomputer.

The experiments were conducted by the following steps:

1. For an n-bit RSA-type composite number (a product of two different odd
primes) N , choose a which induces the factorization (for efficiency reason).

2. Generate the quantum circuit for factoring N by Shor’s algorithm. Here we
have four choices for ADD circuit.

3. Input the quantum circuit to the simulator.
4. Observe the 1st bit sequence 10,000 times to estimate the order r.
5. Output gcd(ar/2 ± 1, N).

Note that, since the observation in Step 4 does not destroy the quantum state,
it is sufficient to run each quantum circuit once in the experiments.
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R-ADD GT-ADD Q-ADD MIX-ADD
N n a Q G D T Q G D T Q G D T Q G D T
15 4 2 21 12937 10507 2.4 18 12595 9838 0.91 18 38967 20208 3.5 18 22815 14273 1.6
21 5 2 26 26155 20779 89.9 22 25325 18824 5.2 22 78334 40409 18 22 47273 28866 10.4
33 6 5 31 46935 36870 – 26 44461 31436 92 26 145620 76578 404 26 87251 53343 228
35 6 2 31 47662 37775 – 26 55387 38869 115 26 155329 79693 426 26 93174 55541 241
39 6 2 31 47843 38214 – 26 61941 43483 129 26 160315 81152 441 26 95233 56408 246
51 6 2 31 46991 37413 – 26 55755 39348 116 26 152468 78285 421 26 90995 54677 237
55 6 2 31 47845 38513 – 26 61899 43507 129 26 160613 80877 441 26 95368 56384 246
57 6 5 31 47555 38028 – 26 51360 36346 107 26 154085 78686 431 26 91616 55062 238
65 7 3 36 76341 59902 – 30 82676 56199 2430 30 251424 132329 10545 30 150521 90940 5915
69 7 2 36 78035 61939 – 30 98774 66690 2866 30 271832 138888 11329 30 162705 95730 6362
77 7 2 36 77066 61391 – 30 104285 70616 3033 30 267042 135177 11125 30 159450 93522 6275
85 7 2 36 75704 60041 – 30 99407 67570 2906 30 256625 132179 10719 30 153316 91241 6011
87 7 2 36 78196 62751 – 30 120027 80999 3485 30 284083 142164 11792 30 167554 97300 6524
91 7 2 36 77819 62369 – 30 116234 78729 3369 30 279204 141000 11594 30 165151 96642 6435
93 7 2 36 77659 62319 – 30 108070 73227 3150 30 276912 140313 11516 30 163710 96243 6380
95 7 2 36 78550 63480 – 30 125960 85061 3664 30 289797 144364 12098 30 169991 98446 6610

111 7 2 36 78692 63633 – 30 124959 84533 3646 30 289793 144261 12020 30 170163 98552 6648
115 7 2 36 78591 63151 – 30 109922 74503 3188 30 282238 141557 11809 30 168210 97753 6568
119 7 2 36 78563 63477 – 30 122960 83264 3577 30 287020 142555 11978 30 170386 98332 6620
123 7 2 36 78691 63672 – 30 118337 80519 3452 30 286730 143475 11899 30 170798 99083 6643

Table 2: Factorization of N up to 7-bit (with 1-node).

4.1 Naive Circuit

Firstly, we factored small RSA-type composite numbers up to 7-bit with 1-node
by using Shor’s quantum circuits generated by our implementation. Table 2
shows the required resources and timings for factorization, where Q, G, D, T
denote the number of required qubits, the number of elementary gates, the depth
of Shor’s circuit, and the timing data in seconds. Since we used 1-node only, 30
qubits are available for factorization. Thus, circuits with R-ADD for 6-bit and
7-bit integers cannot be proceeded (denoted by ‘–’ in the table).

As in the table, required resources depend on the parameters N and n, but
on n mainly. The ratio D/G seems to be a constant depending on the features
of R-ADD, GT-ADD, Q-ADD, and MIX-ADD. Since Q-ADD has many 1-qubit
operations and is easy to parallelize, so that the ratio D/G is smaller (0.50-
0.53 for Q-ADD and 0.57-0.63 for MIX-ADD) compared to other ADDs (0.79
to 0.81 for R-ADD, 0.68-0.79 for GT-ADD). Though G and D are expected in
the following order, O(n3) for R-ADD, O(n4) for Q-ADD and MIX-ADD, and
O(n5) for GT-ADD, the results differ from expected ones. The reason is that
the composite numbers are so small that other terms rather than the dominant
term affect. The difference may be smaller for larger parameters.

4.2 Optimized Circuit

Then, we factor 8-bit and 9-bit integers with 512-nodes. GT-ADD is used for
the experiment because it requires less number of qubits and gates compared to
other ADDs in the case of these small integers. In order to decrease the number
of gates and the depth as much as possible, we used optimize_light option of
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N n a Q G D T N n a Q G D T N n a Q G D T
129 8 7 34 152780 100141 256 259 9 2 38 288684 183065 6143 395 9 2 38 319088 203494 7307
133 8 2 34 169108 111205 247 265 9 6 38 272685 173346 5620 403 9 2 38 307506 195485 6271
141 8 2 34 183453 120170 287 267 9 2 38 309270 196137 6572 407 9 2 38 338095 214301 7907
143 8 2 34 207514 135907 311 287 9 2 38 359003 228259 7511 411 9 2 38 335319 214006 7404
145 8 6 34 158918 105271 262 291 9 2 38 308155 195603 6542 413 9 2 38 327370 208569 6648
155 8 2 34 198473 130150 311 295 9 2 38 334848 212590 6370 415 9 2 38 359587 228199 7723
159 8 2 34 217743 142924 335 299 9 2 38 321523 204402 7094 417 9 5 38 267426 171328 5940
161 8 3 34 155238 103030 238 301 9 2 38 317493 202575 6461 427 9 2 38 324243 207582 6862
177 8 5 34 168876 111997 259 303 9 2 38 353151 224856 7559 437 9 2 38 314856 200771 5925
183 8 2 34 207468 136410 297 305 9 3 38 285798 182560 6350 445 9 2 38 339458 216426 6572
185 8 3 34 180752 119593 282 309 9 2 38 309354 196737 6358 447 9 2 38 373035 237421 7448
187 8 2 34 208281 137192 328 319 9 2 38 367923 233944 7419 451 9 2 38 306484 195876 5999
201 8 7 34 170050 112064 244 321 9 7 38 260877 166496 5899 453 9 2 38 286538 183164 6146
203 8 2 34 193163 126762 285 323 9 2 38 304490 193554 5956 469 9 2 38 303229 193946 6246
205 8 3 34 178117 117326 276 327 9 2 38 322336 204745 6115 471 9 2 38 343707 219148 7473
209 8 3 34 165014 109327 243 329 9 3 38 285506 182113 6099 473 9 3 38 303975 194528 6933
213 8 2 34 184210 121450 272 335 9 2 38 349246 222013 8104 481 9 3 38 281077 180267 6815
215 8 2 34 204621 134697 327 339 9 2 38 317273 201779 7109 485 9 2 38 305606 195586 6502
217 8 5 34 178741 118044 255 341 9 2 38 291468 186213 6363 489 9 7 38 302012 193333 7218
219 8 2 34 204160 134522 299 355 9 2 38 310783 197410 7491 493 9 2 38 329162 210756 6188
221 8 2 34 200121 131790 283 365 9 2 38 322926 206125 6346 497 9 3 38 296472 189877 5750
235 8 2 34 198443 130597 285 371 9 2 38 324641 206674 6287 501 9 2 38 322414 207063 6335
237 8 2 34 193348 127347 286 377 9 3 38 316691 202612 6676 505 9 6 38 313370 200596 6811
247 8 2 34 208086 136900 289 381 9 2 38 321134 204686 5860 511 9 3 38 395310 252188 8226
249 8 11 34 186487 123502 292 391 9 2 38 326281 207709 6697
253 8 2 34 202159 133987 306 393 9 5 38 281956 179878 6014

Table 3: Factorization of N up to 9-bit with GT-ADD (with 512-nodes).

Qulacs which unifies successive 1-qubit gates to one gate. However, the effect
was very limited: it reduce the number of gates by only 1 percent.

Since factorization of 9-bit integers require 38-qubits, and 256-nodes are suf-
ficient for the computation, other 256-nodes can be used for the speed-up. To
do so, we used the fused_swap_option option of mpiQulacs which enables to
distribute tasks to identified nodes for efficient computation.

Table 3 summarizes the factorization results. As in the table, we have suc-
ceeded factoring all RSA-type integers up to 9-bit. The largest integer we fac-
tored here was N = 511, which requires 8226 seconds (2.3 hours). On the other
hand, optimize_light option works very well for Q-ADD, since Q-ADD uses
a lot of successive 1-qubit gates. In fact, the optimized quantum circuit for fac-
toring N = 511 with Q-ADD requires 225523 gates and 187618 depth, and it
factors N = 511 in 7050 seconds (1.96 hours) in the experiment.

4.3 Resource Estimation of Basic Circuit

Finally, we estimated the quantum circuit resources for factoring 1024-bit and
2048-bit integers. For each 8 ≤ n ≤ 24, we generated 10 composite numbers N
randomly (170 composite numbers in total). Then, we generated the quantum
circuit for each N with the optimize_light option, and evaluated the number
of elementary gates and the depth. Here, we used R-ADD since resources become
smaller than others for larger N ’s. Next, we computed the average of resources
for each n. See Appendix 3 for the detailed values from this experiment.
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n = 1024 n = 2048
qubits gates depth qubits gates depth

Kunihiro [12] 3074 2.90× 1011 – 6146 2.32× 1012 –
R-ADD 5121 2.74× 1011 2.20× 1011 10241 2.19× 1012 1.76× 1012

GT-ADD 4098 3.33× 1015 1.02× 1015 8194 1.07× 1017 3.23× 1016

Q-ADD 4098 2.87× 1013 2.43× 1013 8194 4.58× 1014 3.88× 1014

MIX-ADD 4098 1.49× 1013 1.26× 1013 8194 2.37× 1014 2.00× 1014

Table 4: Circuit estimation for factoring 1024/2048-bit integers

From average values for 8 ≤ n ≤ 24, we obtain approximation polynomials

GR-ADD(n) = 254.84981n3 − 338.63513n2 − 177.31878n+ 3112.36316,

DR-ADD(n) = 204.72160n3 − 265.74807n2 − 515.61678n+ 5232.47162,

using least squares method with assuming that G(n) = O(n3) and D(n) =
O(n3). Then, by substituting n = 1024 and n = 2048 to these polynomials,
we obtain approximations as in Table 4. Compared to the estimation by Kuni-
hiro, our estimation decreases by about 5.6% for the number of gates. We do
not discuss the feasibility of such a huge quantum computer, however, if the
quantum circuit for factoring a 2048-bit integer is proceeded by an ideal quan-
tum computer which can proceed the operation in the same speed as Google’s
Sycamore [2], that took 200 seconds to sample 106 times with a circuit with
depth 40, factoring requires about 101.70 days, which seems infeasible by the
current quantum technology.

As in the R-ADD case, we obtain the approximation polynomials for GT-
ADD, Q-ADD and MIX-ADD

GGT-ADD(n) = 2.931n5 + 20.169n4, DGT-ADD(n) = 0.883n5 + 21.875n4,

GQ-ADD(n) = 25.983n4 + 59.060n3, DQ-ADD(n) = 21.993n4 + 44.503n3,

GMIX-ADD(n) = 13.378n4 + 136.287n3, DMIX-ADD(n) = 11.309n4 + 107.630n3,

with assuming that G(n) = O(nk) and D(n) = O(nk) for k = 5, 4, 4, respectively.
Since k is large, we compute the approximation polynomials only in the upper
two degrees. We obtain approximations for n = 1024 and 2048 as in Table 4.
Factoring a 2048-bit composite number requires about 5107, 61.4 and 31.7 years
(GT, Q and MIX-ADD, respectively). MIX-ADD requires less time than GT/Q-
ADD, but more time than R-ADD. However, MIX-ADD is useful in environments
where the number of available qubits is limited since MIX-ADD requires fewer
qubits than R-ADD.

5 Concluding Remarks

In this paper, we have proposed the MIX-ADD method that can flexibly select
the optimal ADD circuit for each of the ADD circuits in the Mod-EXP.
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This method reduces the number of elementary gates and the depth in Shor’s
quantum circuit while maintaining a lower qubit requirement compared to R-
ADD. Next, we have implemented Shor’s algorithm for factoring general compos-
ite numbers using 4 different ADD (R-ADD, GT-ADD, Q-ADD and MIX-ADD),
and successfully factored 96 RSA-type composite numbers up to 9-bit using the
quantum computer simulator developed by Fujitsu. Finally, we have estimated
the number of gates and depth required of Shor’s quantum circuit for larger com-
posite numbers by actually generating quantum circuits, and gave the estimation
for 1024 and 2048-bit integers.

A new finding obtained from our experiments is that the required resources
related to Shor’s algorithm can be evaluated based on actual implementation
rather than theoretical analysis, at least for small parameters, by using the
quantum simulator. The effectiveness of improvements can be assessed through
actual implementation and experiments on quantum simulators.

Our implementations are based on the basic construction of Shor’s quantum
circuit. Future work will involve experiments and resource estimation using ad-
vanced circuits that apply complex techniques to reduce the number of qubits,
as well as under noisy conditions.

Appendix 1. Examples of Greedy Method

Figure 6 shows an example of our greedy method for k = 4, c = 1, and Figure
7 for k = 5, c = 1, 2. The number of Toffoli gates is 6 for k = 4, c = 1, 8 for
k = 5, c = 2, and 10 for k = 5, c = 1, which matches 4k − 8− 2c.

Appendix 2. Effectiveness of Greedy Method

In order to show the superiority of our greedy method, we factored RSA-type
composite numbers up to 7-bit with 1-node, without and with the greedy method
for GT-ADD. Results are summarized in Table 5, where results in the ‘Greedy’
column coincide with the results shown at ‘GT-ADD’ column in Table 2. As
shown in the table, the greedy method reduces the number of gates to about
66–71%, and the depth to about 45–56%. Since the generated Toffoli gates by
the greedy method can be parallelized easily, the effect on the depth is much
larger than that on the number of gates. Our analysis in Section 3.2 shows that
the greedy method reduces the number of gates to about 56.25% (calculated as
3/(16/3)× 100) when n is sufficiently large.

Appendix 3. Data for circuit estimation in Section 4.3

Figure 8 shows the average values and the approximation polynomials described
in Section 4.3. Table 6 summarizes the average values, lowest values, and highest
values for the R-ADD case. There is virtually no difference between them.
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|c1⟩ • • •
|c2⟩ • • • • •
|c3⟩ • • •
|c4⟩ • = • •
|0⟩ • •
|t⟩

Fig. 6: Conversion from a C4-NOT to C2-NOTs with 1 clean qubit

|c1⟩ • • • • •
|c2⟩ • • • • • • •
|c3⟩ • • •
|c4⟩ • = • • • •
|c5⟩ • • •
|0⟩ • •
|t⟩

(a) With 1 clean qubit

|c1⟩ • • •
|c2⟩ • • •
|c3⟩ • • •
|c4⟩ • • • • •
|c5⟩ • = • •
|0⟩ • •
|0⟩ • •
|t⟩

(b) With 2 clean qubits

Fig. 7: Conversion from a C5-NOT to C2-NOTs
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GT-ADD No Greedy Greedy Ratio
N n a Q G0 D0 T0 G1 D1 T1 G1/G0 D1/D0 T1/T0

15 4 2 18 17881 17763 1.5 12595 9838 0.91 0.71 0.56 0.61
21 5 2 22 37044 36867 10.1 25325 18824 5.2 0.69 0.52 0.52
33 6 5 26 66679 66433 227 44461 31436 92 0.67 0.48 0.41
35 6 2 26 83216 82966 282 55387 38869 115 0.67 0.47 0.41
39 6 2 26 93136 92886 315 61941 43483 129 0.67 0.47 0.41
51 6 2 26 83790 83541 285 55755 39348 116 0.67 0.48 0.41
55 6 2 26 93156 92906 315 61899 43507 129 0.67 0.47 0.41
57 6 5 26 77400 77151 262 51360 36346 107 0.67 0.48 0.41
65 7 3 30 126462 126133 6814 82676 56199 2430 0.66 0.45 0.36
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Fig. 8: Average values of the number of gates and the depth of Shor’s circuit for
n-bit integers. The dashed lines represent approximation polynomials.
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