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Abstract. Inspired by previous work with the first example proposed
at SecITC 2020, we give a general description of Finsler encryption that
is based on a Finsler space, which uses a kind of a differentiable geome-
try on a smooth manifold, with appropriate quantization as the security
parameter. Key generation, encryption and decryption algorithms are
introduced in detail, and a further example is presented. Then we anal-
yse security properties of Finsler encryption. First, as the dimension (as
another security parameter) increases, the length of the secret key also
increases, and hence the computational hardness becomes stronger. Sec-
ond, we prove indistinguishability against chosen-plaintext attacks.

Keywords: Finsler geometry · Differential geometry · Linear parallel
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1 Introduction

Finsler encryption is a new cryptographic system that has recently been studied.
In previous work[10] proposed at SecITC 2020, an example was given in the case
of dimension 2. To capture the intuition, we first state the outline of this system
briefly. First of all, we choose a Finsler space with the asymmetric property (See
Appendix (2)). Next, the geodesics and the linear parallel displacement must be
decided. Both of these are defined by certain differential equations system. And
the equation of the energy of a vector is calculated. The key generation is per-
formed using linear parallel displacement of vectors and preserved norms. The
obtained key is an n + 1-dimensional vector consisting of rational expressions
with several parameters as components. The n is the dimension of Finsler space.
The encryption algorithm generates the ciphertext by calculating several sums
of vectors obtained by substituting several given parameter values. On the other
hand, the decryption algorithm is performed based on the value of parameter τ
obtained from a system of simultaneous linear equations with unknown plain-
text components and homogeneous quadratic equations involving the squared
⋆ This work was supported by Institute of Mathematics for Industry, Joint

Usage/Research Center in Kyushu University. (FY2022 Workshop(II)
“CRISMATH2022” (2022c006).).



2 T. Nagano et al.

norms of vectors. In the next section, we will present a detailed explanation of
the Finsler space used to generate Finsler encryption and its key generation,
encryption and decryption. In the following section, we will explain in detail the
strength of Finsler encryption, but the intuitive outline is as follows.

If an attacker attempts to decrypt a ciphertext that is encrypted with a pub-
lic key, he must solve a system of underdetermined equations. This is because, by
setting k to be greater than or equal to n+1, the number of unknown variables
becomes greater than the number of equations that can be obtained from the
ciphertext and the public key. Generally, solutions to underdetermined systems
of equations can only be obtained in the form that includes unknown constants,
which we call “the property of SUS”. Therefore, determining one plaintext from
countless solutions is impossible. Next, finding a “linear parallel displacement” is
an assumably computationally hard problem, which we call the Linear Parallel
Displacement problem (LPD problem). We emphasize that the problem arises
from the structure of asymmetric Finsler spaces, and currently no algorithm to
solve it known. The last one is the difficulty of solving the composite mapping
problem, which we call Mapping-decomposition problem. That is, the en-
ergy expression is a product of five regular matrices. It is difficult to decompose
the energy function, which is a product of five regular matrices, to obtain the
five regular matrices.

In this paper, we formalize Finsler encryption in the case of general dimension
n. Then we study the strength of our Finsler encryption. Note that we implicitly
use the general theory on Finsler geometry and linear parallel displacement, that
can be seen in previous publications.

2 Preliminaries

2.1 Public-Key Encryption

A public-key encryption scheme PKE consists three probabilistic polynomial-
time (ppt) algorithms; PKE = (KeyGen,Enc,Dec).
• KeyGen(1λ) → (PK,SK). On input the security parameter 1λ, this ppt al-
gorithm generates a secret key SK and the corresponding public key PK. It
returns (PK,SK).
• Enc(PK,m) → ct. On input the public key PK and a message m, this ppt
algorithm generates a ciphertext ct. It returns ct.
• Dec(SK, ct) → m̂. On input the secret key SK and a ciphertext ct, this
deterministic polynomial-time algorithm generates a decrypted message m̂. It
returns m̂.

Correctness should hold for PKE. That is; for any 1λ and any m,

Pr[m = m̂ | KeyGen(1λ)→ (SK,PK);Enc(PK,m)→ ct;Dec(SK, ct)→ m̂] = 1.

(cf. [19–21])
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2.2 IND-CPA Security of PKE

We prove here the security of indistinguishability against chosen-plaintext at-
tacks is defined by the following experimental algorithm Expind-cpa

PKE,A , where A is
any given ppt algorithm.

Expind-cpa
PKE,A (1λ)

(SK,PK)← KeyGen(1λ)); (m0,m1)← A(PK)

b ∈R {0, 1}; ct← Enc(PK,mb); b′ ← A(ct)

If b = b′ then return 1 else return 0

The advantage of A over PKE is defined as

Advind-cpa
PKE,A (λ)

def
= |Pr[Expind-cpa

PKE,A (1λ) = 1]− (1/2)|.

PKE is said to be IND-CPA secure if, for any ppt algorithm A, Advind-cpa
PKE,A (λ)

is negligible in λ(cf. [18, 19]).

3 Finsler encryption

3.1 Finsler space

Generally, Finsler space (M,F ) over the set of real numbers R is defined as a
pair consisting of a smooth n-dimensional manifold M and a scalar function F
on its tangent bundle TM([1–6]). Let x = (x1, · · · , xn) be the coordinate of the
base manifold M and y = (y1, · · · , yn) the coordinate of a tangent vector y on
TxM . F = F (x, y) is called the Finsler metric or the fundamental function and
plays role giving the norm ||y|| of a tangent vector y. The Finsler metric F (x, y)
determines everything in the space. The metric tensor gij(x, y) which is very
important quantity is calculated from F (x, y) as follows:

gij(x, y) :=
1

2

∂2F 2

∂yi∂yj
,

||y||x = F (x, y) =

√∑
i,j

gij(x, y)yiyj , (i, j = 1, · · · , n).

We use the asymmetric property of linear parallel displacement of tangent
vectors to construct a new public key encryption.

Necessary objects(See Appendix (2),(3),(4))
(1) Metric tensor field gij(x, y),
(2) Nonlinear connection N i

j(x, y),
(3) Horizontal connection F i

rj(x, y),
(where the indices i, j, r = 1, 2, · · · , n = dimM)
(4) Geodesic c = c(t)
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(5) Linear parallel displacement (LPD) Πc on c is constructed by the solution
of the following differential equations:

(⋆)
dvi

dt
+
∑
j,r

F i
jr(c, ċ)v

j ċr = 0 (ċr =
dcr

dt
),

and we call the linear map Πc : v(t0) ∈ TpM −→ v(t1) ∈ TqM a linear
parallel displacement along c([7, 14–17]).
(6) The energy E(v) of a vector v = (v1, · · · , vn) on c:

E(v) :=
∑
i,j

gij(c, ċ)v
ivj

Example.
We introduce 2-dimensional Finsler space as follows (i.e. the case n = 2)(cf.
[8–10]):

M := R2

(⋆⋆) F (x, y, ẋ, ẏ) =
√

a2ẋ2 + b2ẏ2−h1xẋ−h2yẏ (a, b, h1, h2 : positive constant),

where (x, y) is the coordinate of the base manifold M , and (ẋ, ẏ) is the coordi-
nate of T(x,y)M , namely, x = x1, y = x2, ẋ = y1, ẏ = y2.

Geodesics in this Finsler space are any straight lines. So we choose a geodesic
as follows

cm(t) = (c1(t), c2(t)) = (
1

a
√
1 +m2

t,
m

b
√
1 +m2

t) (y =
am

b
x).

And the linear transformation C(τ) on TpM(p : start point) is

C(τ) :=

(
τ −1
1 τ

)
.

Then we have 7 parameters (a, b, h1, h2,m, t0, t1), where t0, t1 mean the start
point and the end point of the linear parallel displacement on the geodesic c,
respectively. In this case the linear parallel displacement Πcm(t) is the solution
of (⋆) as follows

Πcm(t) =

(
B1

1 B1
2

B2
1 B2

2

)
(See Appendix (5)),

and the energy equation E(v1) is

E(v1) :=< v1, v1 >ċ=
∑
i,j

gij(c, ċ)v
i
1v

j
1 = tv1Gv1,
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where G =

(
g11 g12

g21 g22

)
,

g11 =
1

a2b2 (m2 + 1)
2 (b

2m4a4 + b2a4 + 2b2m2a4

− (h2m
4a4 + 3b2h1m

2a2 + 2b2h1a
2)t+ (b2h2

1 + b2h2
1m

2)t2),

g12 = −
(
h2a

2m+ b2h1m
3
)
t−

(
h1h2m

3 + h1h2m
)
t2

ab (m2 + 1)
2 ,

g21 = g12,

g22 =
1

a2b2 (m2 + 1)
2 (a

2m4b4 + a2b4 + 2a2m2b4

− (h1b
4 + 2a2h2m

4b2 + 3a2h2m
2b2)t+ (a2h2

2m
4 + a2h2

2m
2)t2).

However, the components B1
1 , B

1
2 , B

2
1 , B

2
2 are expressed by rationalization as fol-

lows:
Rationalization of Forms: For new parameters l and τ or t2, they are changing
as follows:.

l2 := a2b2(1 +m2)− (b2h1 + a2h2m
2)t0,

τ2(or t22) := l2 − (b2h1 + a2h2m
2)t,

where l must be elected as t0 is a rational number. The methods of Rationaliza-
tion, however, are many(See §3.5, 2).

3.2 KeyGen, Enc and Dec of Finsler Encryption

The description hereafter is under the assumption that a real number is ap-
proximately represented with a rational number that is a ratio of the form
(a λ-bit integer)/(a λ-bit integer). Our Finsler encryption scheme FE consists
of three polynomial-time (in λ) algorithms KeyGen, Enc and Dec(cf. [11–13]).
KeyGen(1λ)
Step1. c(t): a geodesic, p(t0): start point, q(t1): end point
Step2. v: a vector in Zn

+(a plaintext), dv: a positive difference vector , v0 =
(vi0) = v + dv
Step3. v1 = C(τ)v0 (C(τ) is a regular matrix)
Step4. v2 = Πc(t2)v1 (Πc(t2) is the matrix of LPD)
Step5.E(v1) = E(v2) =

∑n
i=0 Ei where E1, . . . , En ∈R Q[v0, τ, t2], E0 := E(v1)−∑n

i=1 Ei (because E(v1) is preserved by LPD)
Step6.E(v1) = E(v2) =

∑n
i=0

Ei

fivi
0
fiv

i
0 where f0, . . . , fn ∈R Q+; v00 = 1

Step 7. V3 = Πc(τ)
t( E1

f1v1
0
, · · · , En

fnvn
0
) = t(V 1

3 , · · · , V n
3 )

Step 8. (E0

f0
, V 1

3 , · · · , V n
3 ): an encryption key

PK := (E0

f0
, V 1

3 , · · · , V n
3 ), SK := {(f0, · · · , fn), Πc(t2), E(v1)}

Return (PK,SK).
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Note that, for the above PK and SK, the set of plaintexts should be Zn
+ and

the set of ciphertexts should be a certain subset Cy of Q(n+1)2 .

Next, we obtain the ciphertext ct of a plaintext v = (vi) by using 1+(n+1)k
parameters, where k > n as follows:

Enc(PK, v) //PK = (E0

f0
, V 1

3 , · · · , V n
3 )

Step1. k: Choose a natural number k which is above n.
Step2. α, β1, · · · , β(n+1)k: Each other different rational numbers
Step3. {v, τ ← α, t2 ← β1} → e1 = 1

k (
E0

f0
, v13 , · · · , vn3 )

...
...

{v, τ ← α, t2 ← β(n+1)k} → e(n+1)k = 1
k (

E0

f0
, v13 , · · · , vn3 )

Step4. ct1 :=
∑k

i=1 ei, ct2 :=
∑2k

i=k+1 ei, · · · , ctn+1 :=
∑(n+1)k

i=nk+1 ei
Step5. ct = {ct1, · · · , ctn+1}: a ciphertext
Return ct.

Finally, we can decrypt ct and recover the plaintext v by using the secret
key SK = {(f0, · · · , fn), Πc(t2), E(v1)} as follows:

Dec(SK, ct) //SK := {(f0, · · · , fn), Πc(t2), E(v1)}
Step1. (f0, f1, · · · , fn)→ sx := (f0, f1X1, · · · , fnXn)
Step2. c̄t1 := (ct1[[1]], Π

−1
c (τ) t(ct1[[2]], · · · , ct1[[n+ 1]]))

...
...

...
c̄tn+1 := (ctn+1[[1]], Π

−1
c (τ) t(ctn+1[[2]], · · · , ctn+1[[n+ 1]]))

Step3. EX1 :=< sx, c̄t1 >, · · · , EXn+1 :=< sx, c̄tn+1 >
Step4.

(I)


EX1 = EXn+1

...
...

...
EXn = EXn+1

(System of simultaneous linear equations with X1, · · · , Xn)
Step5. X̄1, · · · , X̄n: formal solution of simultaneous linear equations (I) with
unknown τ
Step6. EX1|X1←X̄1,··· ,Xn←X̄n

− E(v1)|v1
0←X̄1,··· ,vn

0←X̄n
= 0

(algebraic equation of τ)
Step7. Solve the rational number solution τ = α and substitute them for
X̄1, · · · , X̄n

v0 = (v10 , · · · , vn0 ) = (X̄1|τ←α, · · · , X̄n|τ←α)

Step8. Finally, obtain the plaintext v as follows

v = v0 − dv.

Return v.
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Example
In the Finsler space (⋆⋆) in p.4, we put (a, b, h1, h2,m, t0, t1) = (1, 1, 1, 1, 1, 1

2 , 1),
then

SK:
(f0, f1, f2) := (mh1, at0h2, bt1h

2
2) = (1,

1

2
, 1)

Πcm(τ) =

(
τ+1
2τ2 − τ−1

2τ2

− τ−1
2τ2

τ+1
2τ2

)
.

E(v1) = G(v1, v1) =
tv2Gv2 = tv1

tΠcGΠcv1 = tv0
tC tΠcGΠcCv0

=
1

8
(3τ2 − 2τ + 3)(v10)

2 +
1

4
(1− τ2)v10v

2
0 +

1

8
(3τ2 + 2τ + 3)(v20)

2

PK:

PK = (
E0

f0
, V 1

3 , V
2
3 ) (See Appendix (6)).

From E(v1) = (E0

f0
)f0 + ( E1

f1v1
0
)f1v

1
0 + ( E2

f2v2
0
)f2v

2
0 → V = ( E1

f1v1
0
, E2

f2v2
0
),

(V 1
3 , V

2
3 ) = V3 = Πc(τ)V . Then, PK is obtained.

4 Security Analysis

4.1 Strength of SK

In this section, the strength of each secret key (f0, · · · , fn), Πc(t2) and E(v1) is
stated about the security from a viewpoint of a calculation amount.

1. (f0, · · · , fn): Each component is arbitrary rational number.
2. Πc(t2): The regular matrix Πc(t2) is derived from a certain simultaneous
differential equations. The differential equations are made by the Finsler metric
function F . Therefore nobody knows the equations without F (LPD problem,
see Appendix (1)). Further, in general, the linear parallel displacement of a
Finsler space satisfying asymmetric property is asymmetric, namely,

Π−1c ̸= Πc−1

is satisfied. This means that any informations of Π−1c used in the algorithm of
decryption are not obtained from Πc−1 , where c−1 is the inverse curve of c. Πc

is an one-way function(cf.[8, 9]).
3. E(v1): The energy of the vector v1. This equation is directly affected by the
matrix C(τ). If you replace C(τ) for the following matrix(

τ 1
τ − 1 1

)
,
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then the expression of E(v1) is changed as follows

E(v1) =
1

8
(4τ2 − 4τ + 3)(v10)

2 +
1

2
(2τ − 1)v10v

2
0 +

1

2
(v20)

2.

Therefore nobody knows three coefficients
1

8
(4τ2 − 4τ + 3),

1

2
(2τ − 1) and

1

2
without recognition of C(τ). C(τ) is completely arbitrary regular matrix.
On the other hand, the matrix E is composed by three regular matrixes C(τ), Πc(τ)
and G, namely,

E = tC tΠcGΠcC, (E(v1) =
tv0Ev0),

where G is called the Finsler metric tensor field. If E can be decomposed, then
the attacker can get C(τ), Πc(τ) and G. Then the attacker can decrypt any ci-
phertext. However, to decompose E to 5-pieces regular matrix tC, tΠc, G,Πc, C
is computationally hard under the assumption of Mapping-Decomposition Prob-
lem(cf.[12, 13]).

4.2 Strength of PK

In the encryption algorithm, the ciphertext ct is made from (1+(n+1)k) param-
eters βi at Step3. Each component cti(i = 1, · · · , n+ 1) of ct = {ct1, · · · , ctn+1}
is made by k-pieces parameters βj (j = (i − 1)k + 1, · · · , ik). Thus, algebraic
equations made by the public key PK and ct have the property that the number
of its unknown variables is more than ones of equations. For example, in the
former case PK = (E0

f0
, V 1

3 , V
2
3 ), if k = 2, we have the following equation:

If a ciphertext ct = (ct1, ct2, ct3) = (ct11, ct12, ct13, ct21, ct22, ct23, ct31, ct32, ct33),
ct1 = (ct11, ct12, ct13)← 1

2
(E1
f0

, V 1
3 , V

2
3 )|t2←β1 + 1

2
(E1
f0

, V 1
3 , V

2
3 )|t2←β2

ct2 = (ct21, ct22, ct23)← 1
2
(E1
f0

, V 1
3 , V

2
3 )|t2←β3 + 1

2
(E1
f0

, V 1
3 , V

2
3 )|t2←β4

ct3 = (ct31, ct32, ct33)← 1
2
(E1
f0

, V 1
3 , V

2
3 )|t2←β5 + 1

2
(E1
f0

, V 1
3 , V

2
3 )|t2←β6

for example, from ct1, we have following three equations
ct11 = 1

2
E1

f0
|t2←β1

+ 1
2
E1

f0
|t2←β2

, ct12 = 1
2V

1
3 |t2←β1

+ 1
2V

1
3 |t2←β2

, ct13 = 1
2V

2
3 |t2←β1

+
1
2V

2
3 |t2←β2

.
From ct2,
ct21 = 1

2
E1

f0
|t2←β3

+ 1
2
E1

f0
|t2←β4

, ct22 = 1
2V

1
3 |t2←β3

+ 1
2V

1
3 |t2←β4

, ct23 = 1
2V

2
3 |t2←β3

+
1
2V

2
3 |t2←β4

From ct3,
ct31 = 1

2
E1

f0
|t2←β5

+ 1
2
E1

f0
|t2←β6

, ct32 = 1
2V

1
3 |t2←β5

+ 1
2V

1
3 |t2←β6

, ct33 = 1
2V

2
3 |t2←β5

+
1
2V

2
3 |t2←β6

Thus, in total, we have 9-pieces unknown variables v10 , v
2
0 , τ, β1, · · · , β6 and

9-pieces equations. Here k is known, however. In general, for ct11, the attacker
must solve the following equation.

1

k

E1

f0
|t2←β1 + · · ·+

1

k

E1

f0
|t2←βk

= ct11
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is satisfied. Namely, let (v10 , v20 , τ, k, t21, · · · , t2k) be unknown variables, then the
attacker must solve the following equation with (4+k)-pieces unknowm variables

1

64kt421
×(

t621
(
3τ2(v10)

2 − 6τ(v10)
2 + 3(v10)

2 − 6τ2v10v
2
0 + 6v10v

2
0 + 3τ2(v20)

2

+6τ(v20)
2 + 3(v20)

2)
+ t521

(
−8τ2(v10)

2 − 8τ(v10)
2 + 16(v10)

2 − 8τ2v10v
2
0 + 48τv10v

2
0

+8v10v
2
0 + 16τ2(v20)

2 + 8τ(v20)
2 − 8(v20)

2)
+ t421

(
−2τ2(v10)

2 + 28τ(v10)
2 + 10(v10)

2 + 28τ2v10v
2
0 + 24τv10v

2
0

−28v10v20 + 10τ2(v20)
2 − 28τ(v20)

2 − 2(v20)
2)

+ t321
(
16τ2(v10)

2 + 16τ(v10)
2 − 32(v10)

2 + 16τ2v10v
2
0 − 96τv10v

2
0

−16v10v20 − 32τ2(v20)
2 − 16τ(v20)

2 + 16(v20)
2)

+ t221
(
44τ2(v10)

2 − 40τ(v10)
2 + 68(v10)

2 − 40τ2v10v
2
0 + 48τv10v

2
0

+40v10v
2
0 + 68τ2(v20)

2 + 40τ(v20)
2 + 44(v20)

2)
+ 24τ2(v10)

2 − 48τ(v10)
2 + 24(v10)

2 − 48τ2v10v
2
0 + 48v10v

2
0

+ 24τ2(v20)
2 + 48τ(v20)

2 + 24(v20)
2
)
+

+ · · · · · · (sum of k-terms) · · · · · ·+

+
1

64kt42k
×(

t62k
(
3τ2(v10)

2 − 6τ(v10)
2 + 3(v10)

2 − 6τ2v10v
2
0 + 6v10v

2
0 + 3τ2(v20)

2

+6τ(v20)
2 + 3(v20)

2)
+ t52k

(
−8τ2(v10)

2 − 8τ(v10)
2 + 16(v10)

2 − 8τ2v10v
2
0 + 48τv10v

2
0

+8v10v
2
0 + 16τ2(v20)

2 + 8τ(v20)
2 − 8(v20)

2)
+ t42k

(
−2τ2(v10)

2 + 28τ(v10)
2 + 10(v10)

2 + 28τ2v10v
2
0 + 24τv10v

2
0

−28v10v20 + 10τ2(v20)
2 − 28τ(v20)

2 − 2(v20)
2)

+ t32k
(
16τ2(v10)

2 + 16τ(v10)
2 − 32(v10)

2 + 16τ2v10v
2
0 − 96τv10v

2
0

−16v10v20 − 32τ2(v20)
2 − 16τ(v20)

2 + 16(v20)
2)

+ t22k
(
44τ2(v10)

2 − 40τ(v10)
2 + 68(v10)

2 − 40τ2v10v
2
0 + 48τv10v

2
0

+40v10v
2
0 + 68τ2(v20)

2 + 40τ(v20)
2 + 44(v20)

2)
+ 24τ2(v10)

2 − 48τ(v10)
2 + 24(v10)

2 − 48τ2v10v
2
0 + 48v10v

2
0

+ 24τ2(v20)
2 + 48τ(v20)

2 + 24(v20)
2
)

= ct11.

Further, from ct12 and ct13,

1

k
V 1
3 |t2←β1 + · · ·+

1

k
V 1
3 |t2←βk

= ct12,
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1

k
V 2
3 |t2←β1 + · · ·+

1

k
V 2
3 |t2←βk

= ct13

are satisfied. After all, (4+ k)-pieces (v10 , v20 , τ, k, t21, · · · , t2k) are unknown vari-
ables. Next, from ct2 = (ct21, ct22, ct23), according to the same manner, we have
(4+k)-pieces (v10 , v20 , τ, k, t2(k+1), · · · , t2(2k)) unknown variables and, further from
ct3 = (ct31, ct32, ct33), we have (4+k)-pieces (v10 , v20 , τ, k, t2(2k+1), · · · , t2(3k)) un-
known variables. Totally, we have (4 + 3k)-pieces (v10 , v

2
0 , τ, k, t1, · · · , t2(3k)) un-

known variables. 3k ≥ 6 is true if k ≥ 2, so unknown variables number satisfies
4 + 3k ≥ 10 if k ≥ 2. The other side, equation’s number is 9, obviously. This
means that the simultaneous equations made by 9-pieces algebraic equations are
not able to be solved because these are underdetermined on rational numbers
(SUS problem). In general, if an n-dimensional vector v is a plaintext, then
the unknown variables are n + 2 + (n + 1)k-pieces because the components of
v is n-pieces and other parameters are (2 + 3k)-pieces

{
k, τ, β1, · · · , β(n+1)k

}
.

Therefore the equation’s number is (n + 1)2 and if k ≥ n + 1 is satisfied then
n+ 2 + (n+ 1)k > (n+ 1)2 is true(Underdetermined system)([13]).

4.3 Length of SK

Finally, we remark the length of the secret key SK= {(f0, · · · , fn), Πc(τ), E(v1)}.
The length depend on the dimension n.
(f0, · · · , fn): n+ 1-pieces arbitrary rational numbers.

Πc(τ) =


a11(τ)

b11(τ)
· · · a1n(τ)

b1n(τ)
...

. . .
...

an1(τ)

bn1(τ)
· · · ann(τ)

bnn(τ)


E(v1) =

n∑
i=1

ai(τ)

bi(τ)
(vi0)

2 +
∑

i<j,i=1,··· ,n−1,j=2,··· ,n

cij(τ)

dij(τ)
vi0v

j
0,

where aij(τ) and bij(τ) are polynomials of τ of degree p and q and ai(τ), bi(τ), cij(τ)
and dij(τ) are polynomials of τ of degree r, s, t and w. Therefore all of integer as
coefficients of all polynomial aij , bij , ai, bi, cij , dij is 2n+(p+1)n2 +(q+1)n2 +
rn+sn+ t nC2+w nC2 ≈ αn2+βn+γ(α, β, γ : certain natural numbers). Thus
we can recognize that the length of the secret key increases linearly to square of
the dimension n (i.e. O(n2)).

4.4 IND-CPA Security

We prove here the IND-CPA security of FE under the LPD assumption.
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To construct the public key PK and the secret key SK of FE needs some pa-
rameters. In the case of the example of Appendix, the values (a, b, h1, h2,m, t0, t1, α, f0, f1, f2)
and the matrix C(α), Πc(α) are needed. In addition the energy form E(v1) is also
needed. Especially, for PK, certain methods of rationalization and splitting are
essentially needed. The values (a, b, h1, h2,m, t0, t1, α, f0, f1, f2, C(α)) and the
method of splitting of E(v1) decides PK, and the values (a, b, h1, h2,m, t0, t1, α)
and the method of rationalization of t2 decides Πc(α).

Here, we state the LPD assumption([8–10]).
Computational problem of linear parallel displacement (LPD Problem)
Suppose that each variable is quantized with λ-bit uniformly. (Note that λ is the secu-
rity parameter. ) Let (M,F ) be a Finsler space and p, q be points on M . For a geodesic
c from p to q, the problem is stated as the computational problem to find values of the
parameters of linear parallel displacement along c from TpM to TqM , where TpM,TqM
are tangent spaces at p, q respectively. Formally,
• Input: (p, q, c)
• Output: A matrix Πc(α) of linear parallel displacement along c from TpM to TqM .
LPD Assumption
For a fixed Finsler space with Hi

j ̸= 0(See Appendix (2)), there exists no polynomial
time algorithm to solve a random instance of LPD problem.

We will prove the following theorem.

Theorem 41 FE has the IND-CPA security under LPD assumption.

Propositions for Theorem. First we consider the following problem;
Problem Let Πc(α) and Πc(α

′) be the matrices of the linear parallel displacement
made by the values (a, b, h1, h2,m, t0, t1, α) and (a, b, h1, h2,m, t0, t1, α

′), respectively.
Then we distinguish Πc(α) and Πc(α

′), where the method of rationalization is un-
known and (a, b, h1, h2,m, t0, t1) are same values.

We can state the two matrices in the Problem are indistinguishable under LPD
assumption.

Proposition 41 The two matrices in the above Problem are indistinguishable un-
der LPD assumption.

Proof We assume that the two matrices in Problem are capable of being identified.
This assumption means that m-pieces matrices Πc(α1), · · · , Πc(αm) which are corre-
spondent to the different m values α1, · · · , αm are distinguishable.
Now, we have no information of the method of the rationalization of t2. Then the
general form of Πc(α) is put by

Πc(α) =


a11(α)

b11(α)

a12(α)

b12(α)
a21(α)

b21(α)

a22(α)

b22(α)

 ,

where the forms a11(α), a12(α), a21(α), a22(α), b11(α), b12(α), b21(α), b22(α) are polyno-
mials with respect to unknown value α. If the amount of unknown coefficients of α of
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all forms aij(α), bij(α)(i, j = 1, 2) are m, then all coefficients are solvable under infor-
mations of distinguished m-pieces matrices Πc(α1), · · · , Πc(αm). Namely, the general
form of Πc(α) is obtained. That means that LPD assumption is broken. Therefore this
proposition’s assertion is true. □

Further, we have the following proposition.

Proposition 42 In FE, if parameter values (a, b, h1, h2,m, t0, t1, f0, f1, f2, α) and
the values of entries of the matrix of linear parallel displacement Πc(α) are known,
then any ciphertext ct = {ct1, ct2, ct3} is solvable. Namely, to decrypt any ciphertext is
no need of E(v1).

Proof Let ct1 = (ct11, ct12, ct13), ct2 = (ct21, ct22, ct23), ct3 = (ct31, ct32, ct33) be the
components of the ciphertext ct, where all ctij(i, j = 1, 2) are rational numbers.
First, respectively, we can obtain ct12, ct13, ct22, ct23, ct32, ct33 from ct1, ct2, ct3 and
Πc(α) as follows;(
ct12
ct13

)
= Π−1

c (α)

(
ct12
ct13

)
,

(
ct22
ct23

)
= Π−1

c (α)

(
ct22
ct23

)
,

(
ct32
ct33

)
= Π−1

c (α)

(
ct32
ct33

)
.

Next, we can construct the following simultaneous linear equations of X1, X2;{
ct11f0 + ct12f1X1 + ct13f2X2 = ct31f0 + ct32f1X1 + ct33f2X2

ct21f0 + ct22f1X1 + ct23f2X2 = ct31f0 + ct32f1X1 + ct33f2X2.

Finally, the solution X1, X2 of the above system leads to the plain text v = (v1, v2).
In this algorithm, there is no using of E(v1).□

Proof of Theorem We consider the following game of any given ppt attacker A
and our FE, (1) to (5), that is in accordance with the experiment Expind-cpa

FE,A (1λ).
(1) The challenger sends the public key PK of FE to the attacker.
(2) The attacker gives two plaintext m0,m1 ∈ Z2

+ to the challenger (We denote a mes-
sage as mi instead of vi to avoid confusion).
(3) The challenger selects b = 0 or b = 1 at random.
(4) The challenger selects α ∈ Q+ at random and sends the ciphertext ctb(α) (that is
encryption of mb with Πc(α)) to the attacker.
(5) The attacker returns a guess b′ to the challenger.

Now we consider another game that is the same as the above procedure (1) to (5)
except that a simulated ctb(α, α

′) is used, which is generated using Πc(α
′) where a

random α′ is sampled independently of α, while E0/f0 is dependent of α. (This is an
analogy of the security proof of IND-CPA security of the El Gamal encryption [18, 19].
) Then Πc(α) and Πc(α

′) are indistinguishable under the LPD assumption because of
Proposition 41. Therefore the following relation holds.∣∣∣Pr[b′ = b | Πc(α)]− Pr[b′ = b | Πc(α

′)]
∣∣∣ < ε (1)

On the other hand, ctb(α, α′) is actually a one-time pad because α′ is sampled uniformly
at random and independently of α, and the components of a ciphtertext, except the

E0/f0, is obtained by multiplying Πc(α
′). Therefore Pr[b′ = b|Πc(α

′)] =
1

2
is true.

Thus, the following holds.

Advind-cpa
FE,A (λ) =

∣∣∣Pr[b′ = b | Πc(α)]−
1

2

∣∣∣ < ε (2)
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Therefore, the theorem holds. □

Remark 41 In the case of the example in Appendix, the determined differen-
tial equations(Appendix (4)) is completely solved and the general solution Πc(t) is ob-
tained(Appendix (5)).
Therefore there is the polynomial time algorithm to generate key (PK,SK).

4.5 Remarks
In this section, we state other strength, for example, splitting method of E(v1) and
transforming method to rational form for parameter t2. And any other issues requiring
special attention are stated.

1. In Step5 of KeyGen, we treat the splitting E(v1) =
∑n

i=0 Ei. We first use different
parameters t2, t3 and make the matrix

Ẽ = tC(τ) tΠc(t3)G(t2)Πc(t3)C(τ)

because of E = tC tΠcGΠcC. Next Ẽ(v1) =
tv0Ẽv0 is calculated and is splitted to

Ẽ(v1) =
∑n

i=0 Ẽi. And last, parameter t3 of each component Ẽi is change to t2. In
this way, we have the splitting of E(v1) =

∑n
i=0 Ei. Therefore, by different splitting of

Ẽ(v1) we have other splitting of E(v1). The splitting method is arbitrary.

2. In §2.1, we use the following transformation because of obtaining rational forms
of formations in G,Πc

t22 := l2 − (b2h1 + a2h2m
2)t.

However, many other transformations exist, for example,

t42 := l2 − (b2h1 + a2h2m
2)t,

(t2 + 1)2 := l2 − (b2h1 + a2h2m
2)t,

(
t2 + 1

t2
)2 := l2 − (b2h1 + a2h2m

2)t,

...

The transforming method of the parameter t in the solution(B1
1 , B

1
2 , B

1
2 , B

2
2) of the

differential equation (⋆) is arbitrary. By using above transformations, all equations in
PK and SK come to algebraic (or rational), fortunately. However, such thing will not
always happen to us. Further, the differential equations(which give geodesics in Ap-
pendix (4)) which we must solve and its solutions are always complex.

3. Next, we state the regularity of the simultaneous linear equation (I). In Step4
of Dec(SK, ct), for the ciphertext ct = (ct1, · · · , ctn+1), each inner product EX1 :=<
sx, c̄t1 >, · · · , EXn+1 :=< sx, c̄tn+1 > is expressed as follows:

EX1 = ct11f0 + c̄t12f1X1 + · · ·+ c̄t1(n+1)fnXn

...
...

EXn+1 = ct(n+1)1f0 + c̄t(n+1)2f1X1 + · · ·+ c̄t(n+1)(n+1)fnXn
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Then, the determinant Det of (I)

Det =

∣∣∣∣∣∣∣
f1(c̄t12 − c̄t(n+1)2) · · · fn(c̄t1(n+1) − c̄t(n+1)(n+1))

...
. . .

...
f1(c̄tn2 − c̄t(n+1)2) · · · fn(c̄tn(n+1) − c̄t(n+1)(n+1))

∣∣∣∣∣∣∣
For example, in the case n = 2 in p.7,
Det = 1

2
(ct12ct23 − ct12ct33 + ct13ct32 − ct13ct22 + ct22ct33 − ct23ct32)τ

3

is satisfied. If Det = 0, then we can change βi so that Det ̸= 0 is satisfied. Therefore
the regularity of (I) is recognized from the ciphertext ct only.

4. The encryption map PKα,β1,··· ,β(n+1)k
: Z2

+ → Q9 defined by parameters (α, β1, · · · , β(n+1)k)
is one to one if Det ̸= 0 of (I) is satisfied.Namely, different plaintexts v, v̄( ̸= v)
don’t have the same ciphertext ct = PKα,β1,··· ,β(n+1)k

(v) = PKα,β1,··· ,β(n+1)k
(v̄). On

the other hand, if (α, β1, · · · , β(n+1)k) ̸= (ᾱ, β̄1, · · · , β(n+1)k), PKα,β1,··· ,β(n+1)k
(v) ̸=

PKᾱ,β̄1,··· ,β(n+1)k
(v) will happen for a plaintext v.

5. We state the solution of the energy equation

EX1|X1←X̄1,··· ,Xn←X̄n
− E(v1)|v1

0←X̄1,··· ,vn
0←X̄n

= 0.

This equation is an algebraic equation of a certain degree in τ . Further the real so-
lution’s number is two only. In addition, true solution is rational number. Indeed, in
Decryption of the case n = 2 in p.7, this is an algebraic equation of degree 4 in τ . How
to solve this equation? It, however, is no problem because we have known the method
of finding rational solutions, for example, Newton-Raphson method for an algebraic
equation.
The next problem is particularly important.

6. Does the energy equation

EX1|X1←X̄1,··· ,Xn←X̄n
− E(v1)|v1

0←X̄1,··· ,vn
0←X̄n

= 0

have two rational solutions α1 and α2? Further, do α1 and α2 yield two integer plaintext
v, v̄? This means that different plaintext v, v̄ have the same ciphertext with different
parameters (α, β1, · · · , β(n+1)k) ̸= (ᾱ, β̄1, · · · , β(n+1)k). This is an open problem.

7. In 2 above, we state the transformations about t. This is called “coordinate
transformation” in differential geometry, in general. Then, the transformation t = ϕ(t2)
must satisfy

dt

dt2
= ϕ′(t2) ̸= 0.

If there exist a certain t̃ which satisfies ϕ′(t̃) = 0, then we omit such t̃.

5 Conclusion

Based on a Finsler space, we formalized Finsler encryption.
1. We must choose a Finsler space with the asymmetry property(See Appendix (2)).
2. We must choose a geodesic on the Finsler space.



Finsler Encryption 15

3. We must obtain the linear parallel displacement on the geodesic.
4. The strength is based on the three following open problems (i),(ii),(iii):
(i). LPD problem(See Appendix (1)),
(ii). Mapping-decomposition problem: To decompose the matrix E = tC tΠcGΠcC is
computationally hard (See §4.1, 3),
(iii). SUS problem: To solve underdetermined system of equations is very hard(See
§4.2),
and further, it owes of arbitrariness of C(τ), splitting of E and the method of ratio-
nalization of forms.
5. In Example(p.4), Finsler space is defined as a single (a, b, h1, h2), namely, the form
(⋆⋆) expresses the family of Finsler spaces, its amount is about 104λ(λ is a security
parameter). The parameter m expresses a geodesic, and t0, t1 express the start point
and the end point. Therefore the amount of (PK,SK) is about at least 107λ.
6. In our Finsler encryption scheme FE, all calculations are over rational number
field Q with λ-bit quantization.

Key generation, encryption and decryption were given in detail. For intuitive un-
derstanding, an example was presented. Then we analyzed the strength of Finsler
encryption. Future direction would be a digital signature scheme on a Finsler space.

Appendix

(1) LPD problem and LPD assumption

Computational problem for linear parallel displacement (LPD problem)
Suppose that each variable is quantized with λ-bit, uniformly. Let (M,F ) be a Finsler
space and p, q be points on M . For a geodesic c from p to q, the problem is stated as the
computational problem to find values of the parameters of linear parallel displacement
along c from TpM to TqM , where TpM,TqM are tangent spaces at p, q respectively.

LPD assumption
For a fixed Finsler space with Hi

j ̸= 0, there exists no polynomial time algorithm to
solve a random instance of LPD problem.

(2) Let M be an n-dimensional differentiable real manifold. Let (M,F ) be a Finsler
space with the metric function F which is 2n-variable real-valued function on the
tangent bundle TM . F plays very important role of which geodesic, linear parallel
displacement and norm are determined. Further, we assume that

Hi
j(x, y) :=

∑
r

F i
rj(x, y)y

r +
∑
r

F i
rj(x,−y)(−yr) ̸= 0

where

F i
rj :=

1

2

∑
k

gik(
δgrk
δxj

+
δgkj
δxr

− δgjr
δxk

) ((gij) = (gij)
−1),

δ

δxi
:=

∂

∂xi
−

∑
r,j

Nr
i (x, y)

∂

∂yr
.
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Hereafter the indices h, i, j, · · · , p, q, r, · · · of
∑

run from 1 to n(= dimM).

(3)

N i
j(x, y) =

∑
r

γi
rj(x, y)y

r −
∑
p,q,r

Ci
jr(x, y)γ

r
pq(x, y)y

pyq,

where

γi
pq(x, y) =

∑
h

1

2
ghi

(
∂gph
∂xq

+
∂ghq
∂xp

− ∂gpq
∂xh

)
,

Ci
jr(x, y) =

∑
h

1

2
ghi

∂gjh
∂yr

.

(4) Geodesic is the curve which is minimizing of the distance between two points locally.
Then, a geodesic c(t) = (ci(t)) satisfies the following equation

d2ci

dt2
+

∑
j,r

F i
jr(c, ċ)ċ

j ċr = 0 (ċ = (ċi), ċi =
dci

dt
),

where t is an affine parameter.

(5)

B1
1 = − 1

(a2 (b2 (m2 + 1)− h2m2(t+ t0))− b2h1(t+ t0))
3/2
×(

a2
(
h2m

2(t+ t0)
√

a2 (b2 (m2 + 1)− h2m2t0)− b2h1t0

− b2
(√

a2 (b2 (m2 + 1)− h2m2(t+ t0))− b2h1(t+ t0)

+m2
√

a2 (b2 (m2 + 1)− h2m2t0)− b2h1t0
))

+b2h1t0
√

a2 (b2 (m2 + 1)− h2m2(t+ t0))− b2h1(t+ t0)
)

B1
2 =

1

(a2 (b2 (m2 + 1)− h2m2(t+ t0))− b2h1(t+ t0))
3/2
×(

abm
(
b2

(√
a2 (b2 (m2 + 1)− h2m2(t+ t0))− b2h1(t+ t0)

−
√

a2 (b2 (m2 + 1)− h2m2t0)− b2h1t0
)

+ h2

(
t
√

a2 (b2 (m2 + 1)− h2m2t0)− b2h1t0

+ t0
√

a2 (b2 (m2 + 1)− h2m2t0)− b2h1t0

−t0
√

a2 (b2 (m2 + 1)− h2m2(t+ t0))− b2h1(t+ t0)
)))
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B2
1 =

1

(a2 (b2 (m2 + 1)− h2m2(t+ t0))− b2h1(t+ t0))
3/2
×(

abm
(
a2

(√
a2 (b2 (m2 + 1)− h2m2(t+ t0))− b2h1(t+ t0)

−
√

a2 (b2 (m2 + 1)− h2m2t0)− b2h1t0
)

+ h1

(
t
√

a2 (b2 (m2 + 1)− h2m2t0)− b2h1t0

+ t0
√

a2 (b2 (m2 + 1)− h2m2t0)− b2h1t0

−t0
√

a2 (b2 (m2 + 1)− h2m2(t+ t0))− b2h1(t+ t0)
)))

B2
2 = − 1

(a2 (b2 (m2 + 1)− h2m2(t+ t0))− b2h1(t+ t0))
3/2
×(

−a2b2
(
m2

√
a2 (b2 (m2 + 1)− h2m2(t+ t0))− b2h1(t+ t0)

+
√

a2 (b2 (m2 + 1)− h2m2t0)− b2h1t0
)

+ b2h1(t+ t0)
√

a2 (b2 (m2 + 1)− h2m2t0)− b2h1t0

+a2h2m
2t0

√
a2 (b2 (m2 + 1)− h2m2(t+ t0))− b2h1(t+ t0)

)

(6)

E0

f0
=

1

64t42
×(

t62
(
3τ2(v10)

2 − 6τ(v10)
2 + 3(v10)

2 − 6τ2v10v
2
0 + 6v10v

2
0 + 3τ2(v20)

2 +6τ(v20)
2 + 3(v20)

2)
+ t52

(
−8τ2(v10)

2 − 8τ(v10)
2 + 16(v10)

2 − 8τ2v10v
2
0 + 48τv10v

2
0

+8v10v
2
0 + 16τ2(v20)

2 + 8τ(v20)
2 − 8(v20)

2)
+ t42

(
−2τ2(v10)

2 + 28τ(v10)
2 + 10(v10)

2 + 28τ2v10v
2
0 + 24τv10v

2
0

−28v10v20 + 10τ2(v20)
2 − 28τ(v20)

2 − 2(v20)
2)

+ t32
(
16τ2(v10)

2 + 16τ(v10)
2 − 32(v10)

2 + 16τ2v10v
2
0 − 96τv10v

2
0

−16v10v20 − 32τ2(v20)
2 − 16τ(v20)

2 + 16(v20)
2)

+ t22
(
44τ2(v10)

2 − 40τ(v10)
2 + 68(v10)

2 − 40τ2v10v
2
0 + 48τv10v

2
0

+40v10v
2
0 + 68τ2(v20)

2 + 40τ(v20)
2 + 44(v20)

2)
+ 24τ2(v10)

2 − 48τ(v10)
2 + 24(v10)

2 − 48τ2v10v
2
0 + 48v10v

2
0 + 24τ2(v20)

2 + 48τ(v20)
2 + 24(v20)

2
)
,



18 T. Nagano et al.

V 1
3 =

−1
64τ2t42v

1
0v

2
0

×(
t62

(
2τ3(v10)

3 − 6τ2(v10)
3 + 6τ(v10)

3 − 2(v10)
3 + 3τ3(v10)

2v20

−3τ2(v10)
2v20 − 3τ(v10)

2v20 + 3(v10)
2v20 − 12τ3v10(v

2
0)

2

−12τ2v10(v
2
0)

2 + 12τv10(v
2
0)

2 + 12v10(v
2
0)

2 + 7τ3(v20)
3 + 21τ2(v20)

3 +21τ(v20)
3 + 7(v20)

3)
+ t52

(
−4τ2(v10)

3 + 8τ(v10)
3 − 4(v10)

3 − 12τ3(v10)
2v20 − 12τ2(v10)

2v20

+4τ(v10)
2v20 + 20(v10)

2v20 − 12τ3v10(v
2
0)

2 + 48τ2v10(v
2
0)

2

+76τv10(v
2
0)

2 + 16v10(v
2
0)

2 + 24τ3(v20)
3 + 40τ2(v20)

3 + 8τ(v20)
3 −8(v20)3

)
+ t42

(
−8τ3(v10)

3 + 20τ2(v10)
3 − 24τ(v10)

3 + 12(v10)
3 − 30τ3(v10)

2v20

+6τ2(v10)
2v20 + 26τ(v10)

2v20 − 26(v10)
2v20 + 56τ3v10(v

2
0)

2

+76τ2v10(v
2
0)

2 − 56τv10(v
2
0)

2 − 60v10(v
2
0)

2 − 38τ3(v20)
3

−106τ2(v20)
3 − 110τ(v20)

3 − 42(v20)
3)

+ t32
(
8τ2(v10)

3 − 16τ(v10)
3 + 8(v10)

3 + 24τ3(v10)
2v20 + 24τ2(v10)

2v20

−8τ(v10)2v20 − 40(v10)
2v20 + 24τ3v10(v

2
0)

2 − 96τ2v10(v
2
0)

2

−152τv10(v20)2 − 32v10(v
2
0)

2 − 48τ3(v20)
3 − 80τ2(v20)

3 − 16τ(v20)
3 +16(v20)

3)
+ t22

(
8τ2(v10)

3 + 8τ(v10)
3 − 16(v10)

3 + 52τ3(v10)
2v20 + 44τ2(v10)

2v20

+36τ(v10)
2v20 + 108(v10)

2v20 − 8τ3v10(v
2
0)

2 + 64τ2v10(v
2
0)

2

+144τv10(v
2
0)

2 + 24v10(v
2
0)

2 + 100τ3(v20)
3 + 124τ2(v20)

3 + 68τ(v20)
3 +44(v20)

3)
+ 16τ3(v10)

3 − 48τ2(v10)
3 + 48τ(v10)

3 − 16(v10)
3 + 24τ3(v10)

2v20

− 24τ2(v10)
2v20 − 24τ(v10)

2v20 + 24(v10)
2v20 − 96τ3v10(v

2
0)

2

− 96τ2v10(v
2
0)

2 + 96τv10(v
2
0)

2 + 96v10(v
2
0)

2 + 56τ3(v20)
3 + 168τ2(v20)

3

+ 168τ(v20)
3 + 56(v20)

3
)
,
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V 2
3 =

1

64τ2t42v
1
0v

2
0

×(
t62

(
2τ3(v10)

3 − 2τ2(v10)
3 − 2τ(v10)

3 + 2(v10)
3 + 3τ3(v10)

2v20

−25τ2(v10)
2v20 + 25τ(v10)

2v20 − 3(v10)
2v20 − 12τ3v10(v

2
0)

2

+20τ2v10(v
2
0)

2 + 20τv10(v
2
0)

2 − 12v10(v
2
0)

2 + 7τ3(v20)
3 +7τ2(v20)

3 − 7τ(v20)
3 − 7(v20)

3)
+ t52

(
−4τ2(v10)

3 + 4(v10)
3 − 12τ3(v10)

2v20 − 4τ2(v10)
2v20

+52τ(v10)
2v20 − 20(v10)

2v20 − 12τ3v10(v
2
0)

2 + 88τ2v10(v
2
0)

2

−44τv10(v20)2 − 16v10(v
2
0)

2 + 24τ3(v20)
3 − 8τ2(v20)

3 − 24τ(v20)
3 +8(v20)

3)
+ t42

(
−8τ3(v10)

3 + 4τ2(v10)
3 − 12(v10)

3 − 30τ3(v10)
2v20

+114τ2(v10)
2v20 − 126τ(v10)

2v20 + 26(v10)
2v20 + 56τ3v10(v

2
0)

2

−84τ2v10(v
2
0)

2 − 96τv10(v
2
0)

2 + 60v10(v
2
0)

2 − 38τ3(v20)
3

−30τ2(v20)
3 + 26τ(v20)

3 + 42(v20)
3)

+ t32
(
8τ2(v10)

3 − 8(v10)
3 + 24τ3(v10)

2v20 + 8τ2(v10)
2v20

−104τ(v10)2v20 + 40(v10)
2v20 + 24τ3v10(v

2
0)

2 − 176τ2v10(v
2
0)

2

+88τv10(v
2
0)

2 + 32v10(v
2
0)

2 − 48τ3(v20)
3 + 16τ2(v20)

3 + 48τ(v20)
3 −16(v20)3

)
+ t22

(
8τ2(v10)

3 + 24τ(v10)
3 + 16(v10)

3 + 52τ3(v10)
2v20 − 28τ2(v10)

2v20

+148τ(v10)
2v20 − 108(v10)

2v20 − 8τ3v10(v
2
0)

2 + 144τ2v10(v
2
0)

2

−96τv10(v20)2 − 24v10(v
2
0)

2 + 100τ3(v20)
3 − 76τ2(v20)

3 + 20τ(v20)
3 −44(v20)3

)
+ 16τ3(v10)

3 − 16τ2(v10)
3 − 16τ(v10)

3 + 16(v10)
3 + 24τ3(v10)

2v20

− 200τ2(v10)
2v20 + 200τ(v10)

2v20 − 24(v10)
2v20 − 96τ3v10(v

2
0)

2

+ 160τ2v10(v
2
0)

2 + 160τv10(v
2
0)

2 − 96v10(v
2
0)

2 + 56τ3(v20)
3

+ 56τ2(v20)
3 − 56τ(v20)

3 − 56(v20)
3
)
.
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