
Efficient Result-Hiding Searchable Encryption
with Forward and Backward Privacy

Takumi Amada1, Mitsugu Iwamoto1, and Yohei Watanabe1,2

1 The University of Electro-Communications, Tokyo, Japan
{t.amada, mitsugu, watanabe}@uec.ac.jp

2 National Institute of Information and Communications Technology, Tokyo, Japan.

Abstract. Dynamic searchable symmetric encryption (SSE) realizes ef-
ficient update and search operations for encrypted databases, and there
has been an increase in this line of research in the recent decade. Dy-
namic SSE allows the leakage of insignificant information to ensure effi-
cient search operations, and it is important to understand and identify
what kinds of information are insignificant. In this paper, we propose
an efficient dynamic SSE scheme Laura under the small leakage, which
leads to appealing security requirements such as forward privacy, (Type-
II) backward privacy, and result hiding. Laura is constructed based on
Aura (NDSS 2021) and is almost as efficient as Aura while only allowing
less leakage than Aura. We also provide experimental results to show the
concrete efficiency of Laura.

Keywords: Dynamic searchable encryption · Backward Privacy · En-
crypted database.

1 Introduction

Searchable symmetric encryption (SSE) [12, 24] provides a way to search a large
database efficiently (e.g., cloud storage) for encrypted data. In particular, SSE
that supports update operations is called dynamic SSE [20], which has attracted
attention over the past decade [10, 16, 19, 20, 22, 23].

Forward and Backward Privacy. Dynamic SSE aims to efficiently per-
form keyword searches on encrypted data while revealing some insignificant
information to the server. A common understanding of what kinds of leakage
are insignificant has been updated by exploring leakage-abuse attacks [5, 9, 17,
28] against SSE. In particular, file injection attacks demonstrated by Zhang et
al. [28] showed that forward privacy [7], which guarantees that the adversary
cannot learn if newly-added files contain previously-searched keywords, must be
a de facto standard security requirement for dynamic SSE.

Backward privacy [8], which guarantees that search operations reveal no use-
ful information on previously-deleted files even if they contain searched keywords,
has been spotlighted since it sounds like another natural security requirement.
However, it is more difficult to achieve backward privacy than forward privacy



2 T. Amada et al.

since it is just like we require the server to forget previously-stored information.
For example, we have to hide even information about when and which files are
added and/or deleted to meet backward privacy. Therefore, one of the current
major research interests in dynamic SSE is how efficiently we construct dynamic
SSE schemes with backward privacy.

Importance of Result-Hiding SSE. As described above, leakage-abuse at-
tacks tell us which information should not be leaked during update and search
operations. Existing attacks are classified into passive and active ones. Passive
attacks (e.g., [17]) aim to identify keywords behind search queries from admit-
ted leakage information and seem more likely to happen in the real world than
active attacks (e.g., [28]), which require that the server can force the client to
upload arbitrary files. A major drawback of passive attacks is that they also
require partial information of the stored data as extra information in addition
to the leakage profiles. This is quite an unrealistic assumption. Hence, the sub-
sequent works (e.g., [5, 9]) have attempted to weaken the assumption. Recently,
Bkackstone et al. [5] showed passive attacks that only require 5% of the client’s
data, whereas the Islam et al.’s seminal work [17] requires at least 95% of the
client’s data. In particular, it is worth noting that their attacks only use access
pattern leakage, which is a standard leakage profile of dynamic SSE. Although
there are, fortunately, countermeasures such as volume-hiding techniques [18],
they significantly decrease the efficiency of dynamic SSE schemes. Thus, it be-
comes more important to seek efficient constructions of result-hiding schemes,
which are dynamic SSE schemes mitigating access pattern leakage.

1.1 Our Contribution

In this paper, we propose Laura, a new result-hiding dynamic SSE scheme with
forward and Type-II backward privacy, which is the most investigated security
level of backward privacy. Laura is constructed based on Aura [25]; Laura is built
from only symmetric-key primitives, specifically, from any pseudorandom func-
tion (PRF), any symmetric-key encryption (SKE), and any approximate mem-
bership query (AMQ) data structure. Laura achieves better practical efficiency
to Aura and requires less leakage than Aura; this is the reason why we call our
scheme Laura, which stands for Low-leakage Aura.

We give experimental results to show the concrete efficiency of Laura and
v-Laura, which is a variant of Laura; their deletion and search procedures are
almost as efficient as Aura, and their addition procedures are substantially more
efficient than Aura. For example, Laura and v-Laura take less than a second to
add 200,000 entries, while Aura takes about a minute. For concrete efficiency
comparison among Laura, v-Laura, and Aura, see Section 6.

As a side result, we also figure out that in Aura (as well as Laura and v-Laura),
the client is assumed to never re-add any keyword-identifier pair (w, id) once
deleted, where id is a file identifier. This assumption seems reasonable in prac-
tice since id should be replaced with a new one if the client wants to re-add a
previously-deleted file whose identifier is id. We also show a variant of Laura,



Efficient Result-Hiding SSE with Forward and Backward Privacy 3

Table 1: Efficiency comparison among Type-II backward-private dynamic SSE
schemes. Suppose that the client has performed search and update operations t
times in total. d and n are the total numbers of distinct keywords and files, re-
spectively. aw, nw, and n

(srch)
w,del are the total numbers of all updates for w, files

currently containing a keyword w, and times a keyword w has been affected
by search operations since the last search for w, respectively. It clearly holds
aw ≥ n̂w ≥ nw, where n̂w := nw + n

(srch)
w,del . N is the total numbers of (document,

keyword) pairs, i.e., N := Σwnw. Let N ′ := Σwn̂w and N̂ := Σwaw. Namely, it

holds N̂ ≥ N ′ ≥ N . |σ| and |EDB| denote bit-lengths of client’s state informa-
tion and encrypted database. RT and RH stand for roundtrips and result hiding,
respectively. SK indicates whether the scheme is constructed from only symmetric-
key primitives. RU stands for re-updatability, which allows the client to re-add a
previously-deleted entry (w, id) to EDB.

|σ| |EDB|
Update Search

RT RH SK RU
Comp. Comm. Comp. Comm.

SDa [13] O(1) O(N̂) O(log N̂)†O(log N̂)† O(âw)
♯ O(n̂w) 2 ✓ ✓ ✓

SDd [13] O(1) O(N̂) O(log3 N̂) O(log N̂) O(âw)
♯ O(nw) 2 ✓ ✓ ✓

Fides [8] O(d) O(N ′) O(1) O(1) O(n̂w) O(n̂w) 3 ✓ — ✓

Aura [25]

(+EKPE [14])
O(d) O(N̂) O(1)‡ O(1) O(n̂w) O(nw) 1 — ✓ —

Laura (§4.2) O(d) O(N ′) O(1)‡ O(1) O(n̂w) O(n̂w) 3 ✓ ✓ —

v-Laura (§5.1) O(d) O(N ′) O(1)‡ O(1) O(n̂w) O(n̂w) 2 ✓ ✓ —

s-Laura (§5.2) O(d) O(N ′) O(1)‡ O(1) O(n̂(srch)
w,del )

♯O(n̂w) 3 ✓ ✓ ✓

† Amortized analysis.
‡ To be precise, the deletion procedure depends on the time complexity of the un-
derlying AMQ structure, which is O(1) in almost all existing constructions.

♯ Let âw := aw + log N̂ and n̂
(srch)
w,del := n̂w · n(srch)

w,del for compact notations.

called s-Laura, that removes the assumption, i.e., it allows the client to re-add
previous-deleted entries to the encrypted database, although s-Laura requires
extra search costs.

Efficiency Comparison. We compare the asymptotic efficiency of dynamic
SSE schemes with forward and Type-II backward privacy in Table 1. Note that we
evaluate the server-side complexities of update and search algorithms. Although
the efficiency of Laura and v-Laura seems comparable to Fides [8] and Aura [25],
Laura and v-Laura has clear advantages over them; Fides employs public-key
primitives such as trapdoor permutations for its building block. Moreover, Fides
returns a (tentative) search result that contains deleted identifiers. Therefore,
the client themself has to remove such deleted ones to obtain the correct search
result. Although Laura and v-Laura also require for the client to remove deleted
identifiers, the client can easily find them thanks to the underlying approximate



4 T. Amada et al.

membership query (AMQ) data structure. Aura achieves the minimum roundtrip,
however, the size of encrypted databases is large. Furthermore, Aura reveals the
access pattern and therefore is not a result-hiding scheme. Among the dynamic
SSE schemes that satisfy all properties (RH, SK, and RU) listed in the table,
s-Laura is more efficient than SDa and SDd.

2 Preliminaries

Notations. For any integer a ∈ Z, let [a] := {1, 2, . . . , a}. For a finite set X , we
use x

$← X to represent processes of choosing an element x from X uniformly
at random. For a finite set X , we denote by X ← x and |X | the addition x
to X and cardinality of X , respectively. Concatenation is denoted by ∥. In
the description of the algorithm, all arrays, strings, and sets are initialized to
empty ones. We consider probabilistic polynomial time (PPT) algorithms. For
any non-interactive algorithm A, out← A(in) means that A takes in as input and
outputs out. In this paper, we consider two-party interactive algorithms between
a client and a server, and it is denoted by (outC; outS) ← A(inC; inS), where inC
and inS are input of client and server, respectively and outC and outS are output
of client and server, respectively. If necessary, we mention the transcript trans
and describe the algorithm as ⟨(outC; outS), trans⟩ ← A(inC; inS). The security
parameter and negligible function are denoted by κ and negl(·), respectively.

Pseudorandom Functions (PRFs). A family of functions π := {πkprf : {0, 1}∗
→ {0, 1}m}kprf∈{0,1}κ , where m = poly(κ), is said to be a (variable-input-length)
PRF family if for sufficiently large κ ∈ N and all PPT algorithm D, it holds

|Pr[Dπ(kprf,·)(1κ) = 1 | kprf
$← {0, 1}κ] − Pr[DR(·)(1κ) = 1 | R $← R]| < negl(κ),

where R is a set of all mappings R : {0, 1}∗ → {0, 1}m.

Symmetric-Key Encryption (SKE). An SKE Πske consists of three PPT
algorithms Πske = (G,E,D). G takes a security parameter κ as input and outputs
a secret key kske, and E takes a plaintext m and kske as input and outputs the
ciphertext c. D takes c with kske and outputs m or ⊥ as a symbol of failure.
In this paper, we assume Πske is CPA security. For formal definitions, we refer
the readers to [21]. Also, if necessary, we explicitly describe a nonce used in
an SKE. Specifically, for nonce r, the encryption and decryption algorithms are
denoted by E(kske,m; r) and D(kske, c; r), respectively. The ciphertext is treated
as r∥c. Note that (nonce-based) CTR and CBC modes in block ciphers satisfy
CPA security and the above properties.

Approximate Membership Query (AMQ) Structure. Probabilistic data
structures, known as Approximate Membership Query (AMQ) data structures,
provide membership queries with compact data sizes by allowing “false posi-
tives.” The most appealing feature of AMQ structures is to make the false-
positive probability small enough by setting specific parameters appropriately.
We consider AMQ structures that support both insertion and deletion opera-
tions. While the Bloom filter [6], one of the well-known AMQ structures, does



Efficient Result-Hiding SSE with Forward and Backward Privacy 5

not support deletion, recent ones, such as the cuckoo filter [15] and quotient
filter [4], do. Formally, an arbitrary set U ∈ {0, 1}∗, an AMQ data structure
Πamq = (AMQ.Gen,AMQ.Insert,AMQ.Delete,AMQ.Lookup) consists of the fol-
lowing PPT algorithms:

– (T , aux) ← AMQ.Gen(U , par): it takes U and a parameter par as input, and
outputs an initial structure T and auxiliary information aux. The parameter
par depends on the construction of the specific AMQ structure.

– T ′ ← AMQ.Insert(T , x, aux): it takes as input a data structure T , an element
x ∈ U to be added, and aux, and outputs an updated structure T ′.

– T ′ ← AMQ.Delete(T , x, aux): it takes as input a data structure T , an element
x ∈ U to be deleted, and aux, and outputs an updated structure T ′.

– true/false← AMQ.Lookup(T , x, aux): it takes as input a data structure T ,
an element x ∈ U to be queried, and aux, and outputs true or false.

AMQ structures meet the following two properties. Due to the page limita-
tion, we omit the formal description and will give it in the full version.

– Completeness: Let S be a set of elements that have been inserted (and not
deleted). For all x ∈ S, it holds AMQ.Lookup(T , x, aux) = true, where T is
the corresponding structure.

– Bounded False-Positive Probability : Let n := |S|. Then, there exists µn ∈
(0, 1] such that it holds Pr[AMQ.Lookup(T , x, aux) = true] ≤ µn for any
x ∈ U \ S.

3 Dynamic SSE

3.1 Notation for Dynamic SSE

Λ := {0, 1}λ is a set of possible keywords (sometimes called a dictionary), where
λ = poly(κ). A document fid has its unique identifier id ∈ {0, 1}ℓ, which is
irrelevant to the contents of fid, where ℓ = poly(κ). A counter t represents the
global counter through the protocol; it is initialized to 0 at setup and incremented
for each search or update operation. A database DB(t) at t is represented as a set

of keyword-identifier pairs (w, id), i.e., DB(t) := {(wi, idi)}N(t)
i=1 , where N(t) is the

number of pairs stored in the server at t. We denote ID(t) by a set of identifiers in
DB(t). That is, ID(t) := {id | ∀w ∈ Λ, (w, id) ∈ DB(t)}. Similarly, W(t) is denoted

by a set of keywords in DB(t), i.e., W(t) := {w | ∀id ∈ ID(t), (w, id) ∈ DB(t)}.

3.2 Model

Dynamic SSE consists of three PPT algorithms (Setup,Update,Search). Firstly,
the client runs Setup to generate a secret key, initial state information, and an
initial encrypted database, which is sent to the server. The client interacts with
the server and runs Update and Search repeatedly to add or delete a pair (w, id)
and search for keywords.



6 T. Amada et al.

Definition 1 (Dynamic SSE). A Dynamic SSE Σ := (Setup,Update,Search)
over Λ consists of the following PPT algorithms:

– (k, σ(0),EDB(0)) ← Setup(1κ): it is an non-interactive algorithm that takes
a security parameter κ as input and outputs a secret key k, initial state
information σ(0), and initial encrypted database EDB(0).

– (σ(t+1);EDB(t+1)) ← Update(k, op, in, σ(t);EDB(t)): it is an interactive al-
gorithm that takes k, an operation label op ∈ {add, del}, the corresponding
input in := (w, id), and σ(t) as input of the client and encrypted database

EDB(t) as input of the server, and outputs updated state information σ(t+1)

for the client and updated encrypted database EDB(t+1) for the server.

– (X (t)
q , σ(t+1);EDB(t+1)) ← Search(k, q, σ(t);EDB(t)): it is an interactive al-

gorithm that takes k, a searched keyword q, and σ(t) as input of the client
and encrypted database EDB(t) as input of the server, and outputs updated

state information σ(t+1) and a search result X (t)
q for the client and updated

encrypted database EDB(t+1) for the server.

Briefly, the correctness of the above model ensures that it holds X (t)
q = {id ∈

ID(t) | (q, id) ∈ DB(t)} with overwhelming probability for any keyword q ∈ Λ.
For a formal definition, we refer the readers to [10].

3.3 Security

Dynamic SSE guarantees that the (honest-but-curious) server does not learn
any information beyond some explicit information leakage during a sequence
of operations. Therefore, such information leakage is characterized as a leakage
function L := (LSetup,LUpd,LSrch), where LSetup, LUpd, and LSrch are functions
that refer to information leaked during Setup, Update, and Search, respectively.

L-Adaptive Security. We define L-adaptive security of SSE in a simulation-
based manner. We consider two experiments: a real experiment Real in which
the Dynamic SSE scheme is performed in the real world and an ideal experiment
Ideal that at most leaks a leakage function L. Specifically, a real experiment RealD
is performed by the client and a PPT algorithm D = (D1,D2, . . . ,DQ+1), while
ideal experiment IdealD,S,L is performed by D and a simulator S = (S0,S1, . . . ,SQ)
with leakage function L. In each experiment, D adaptively queries and attempts
to distinguish between the two experiments. If D cannot distinguish between
them, D has not learned more information than the leakage function L; we call
this L-adaptive security. Each experiment is formally given in Fig. 1, and the
security definition is as follows [27].

Definition 2 (L-Adaptive Security). Let Σ be a Dynamic SSE scheme.
Σ is L-adaptively secure, with regard to a leakage function L, if for any PPT
algorithm D, any sufficiently large κ ∈ N, and any Q := poly(κ), there exists a
PPT algorithm S s.t. |Pr [RealD(κ,Q) = 1]− Pr [IdealD,S,L(κ,Q) = 1]| < negl(κ).



Efficient Result-Hiding SSE with Forward and Backward Privacy 7

Real Experiment: RealD(κ,Q)

1: (k, σ(0),EDB(0))← Setup(1κ)
2: stD := {EDB(0)}
3: for t = 1 to Q do
4: query← Dt(stD)
5: if query = (upd, op, in) then
6: ⟨(σ(t);EDB(t)), trans(t)⟩

← Update(k, op, in, σ(t−1);EDB(t−1))
7: if query = (srch, q) then

8: ⟨(σ(t),X (t−1)
q ;EDB(t)), trans(t)⟩

← Search(k, q, σ(t−1);EDB(t−1))
9: stD ← (EDB(t), trans(t))
10: b← DQ+1(stD)
11: return b

Ideal Experiment: IdealD,S,L(κ,Q)

1: (EDB(0), stS)← S0(LSetup(κ))
2: stD := {EDB(0)}
3: for t = 1 to Q do
4: query← Dt(stD)
5: if query = (upd, op, in) then
6: ⟨(st′S;EDB(t)), trans(t)⟩

← St(stS,LUpd(t, op, in);EDB
(t−1))

7: if query = (srch, q) then
8: ⟨(st′S;EDB(t)), trans(t)⟩

← St(stS,LSrch(t, q);EDB
(t−1))

9: stD ← (EDB(t), trans(t))
10: stS := st′S
11: b← DQ+1(stD)
12: return b

Fig. 1: Real and ideal experiments.

Forward and Backward Privacy. The well-known security notions for update
operations are forward privacy [7] and backward privacy [8].

Forward privacy, roughly speaking, ensures that while running an update of
a keyword-identifier pair (q, id), no information about the keyword q is exposed
to the server. This means that the keyword q cannot be associated with all pre-
vious searches and update operations. Forward privacy is an important security
requirement since Zhang et al. [28] showed effective attacks against non-forward-
private dynamic SSE schemes. The formal definition is as follows:

Definition 3 (Forward Privacy [7]). Let Σ be a L-adaptively secure dy-
namic SSE scheme. Σ is forward private if LUpd(for op = add) can be written
as LUpd(t, add, (q, id)) = L′(t, add, id), where L′ is stateless function.

On the other hand, loosely speaking, backward privacy guarantees that while
running a search for a keyword q, the least possible (ideally, no) information
about the deleted pair (q, id) is leaked to the server. However, if leakage regarding
deletion operations is to be completely eliminated, significant costs are required
due to efficiency trade-offs. Therefore, Bost et al. [8] introduced three levels of
backward privacy: from Type-I with the least leakage to Type-III with the most
leakage. In this paper, we focus on Type-II backward privacy, which achieves a
good balance between security levels and achievable efficiency. To describe their
definition, we define several functions of leaked information as follows. Let Q(t)

be the set of all operations of each counter u ∈ [t], and its elements are described
as (u, q) ∈ Q(t) for a search for a keyword q and (u, op, (q, id))) ∈ Q(t) for an
update of a keyword-identifier pair (q, id), where op ∈ {add, del}.



8 T. Amada et al.

– Search pattern SP(t)
q : A set of counters at which the keyword q has been

searched. That is, SP(t)
q := {u | (u, q) ∈ Q(t)}.

– Access pattern TimeDB(t)
q : A set of pairs of an identifier id ∈ ID(t) that

includes a keyword q at t and a counter u when the corresponding keyword-
identifier pair (q, id) was added. That is,

TimeDB(t)
q :=

{
(uadd, id)

∣∣∣∣ (uadd, add, (q, id)) ∈ Q(t)

∧ ∀udel, (udel, del, (q, id)) /∈ Q(t)

}
,

where we assume uadd < udel without the loss of generality.
– Update pattern Update(t)q : It is a set of counters for all update operations

on q, i.e., Update(t)q :=
{
u | (u, add, (q, id)) ∈ Q(t) ∨ (u, del, (q, id)) ∈ Q(t)

}
.

Using the above functions, Type-II backward privacy is defined as follows.

Definition 4 (Type-II Backward Privacy [8]). Let Σ be a L-adaptively
secure dynamic SSE scheme. Σ is Type-II backward private if LUpd and LSrch

can be written as:

LUpd(t, op, (q, id)) = L′(t, op, q) and LSrch(t, q) = L′′(SP(t)
q ,TimeDB(t)

q ,Update(t)q ),

where L′ and L′′ are stateless functions.

Result Hiding. As mentioned in the introduction, taking into account the
recent progress in leakage abuse attacks, it is important to realize an efficient
dynamic SSE scheme that never leaks identifiers of search results. Such a scheme
is called a result-hiding one. Although several result-hiding schemes [13, 8] are
already known, to the best of our knowledge, there is no formal definition of
the result-hiding property. Therefore, we first define it formally. We consider the
following leakage functions.

– Concealed access pattern Time(t)q : It is a set of counters contained in

TimeDB(t)
q . That is, Time(t)q := {u | ∃id s.t. (u, id) ∈ TimeDB(t)

q }.
– Deletion history DelHist(t)q : It is a set of pairs of two counters at which

each of addition and deletion operations is performed on the same (q, id)
pair. That is,

DelHist(t)q :=

{
(uadd, udel)

∣∣∣∣ ∃id s.t. (uadd, add, (q, id)) ∈ Q(t)

∧ (udel, del, (q, id)) ∈ Q(t)

}
.

Although DelHist(t)q is a well-known leakage function to define Type-III backward
privacy, we also use it to define the result-hiding property.

Definition 5 (Result-Hiding Dynamic SSE). Let Σ be a L-adaptively se-
cure dynamic SSE scheme. Σ is called a result-hiding scheme if LUpd and LSrch

can be written as:

LUpd(t, op, (q, id)) = L′(t, op, q) and LSrch(t, q) = L′′(SP(t)
q ,Time(t)q ,DelHist(t)q ),

where L′ and L′′ are stateless functions.



Efficient Result-Hiding SSE with Forward and Backward Privacy 9

Namely, result-hiding schemes do not leak any identifiers during updates and
searches. Note that the search operation may leak all information related to the
counters of update operations on q since the result-hiding property should be
a property in which result-hiding schemes reveal no information on identifiers
themselves contained in search results.

Remark 1. One may think that the result-hiding property conflicts with a com-
mon use case of dynamic SSE, where the server returns both a search result
and the corresponding actual documents. The property prevents the server from
returning the actual documents unless the client reveals the search result to
the server; the reveal means the leakage of the access pattern and makes the
result-hiding property meaningless! Nevertheless, in such a common use case,
the result-hiding property should be valuable since the client can choose whether
the client reveals the access pattern. Of course, the property would be more ap-
pealing in other use cases, e.g., where actual documents are stored on another
server.

4 Laura: Low-leakage Aura

We propose a new efficient dynamic SSE scheme that meets forward privacy,
Type-II backward privacy, and the result-hiding property. Although the con-
struction approach of our scheme is based on Aura, our scheme allows less leakage
than Aura. Thus, we call our scheme Laura, which stands for low-leakage Aura.

4.1 Construction Idea

Construction Overview of Aura. Sun et al. [25] introduced a core building
block of Aura, called symmetric revocable encryption (SRE). Briefly speaking,
SRE supports puncturable decryption. In SRE, plaintexts are encrypted along
with a tag. A decryption key associated with a certain revoked set, containing
revoked tags, cannot decrypt ciphertexts related to the revoked tags. In Aura,
SRE’s puncturable decryption functionality allows the server to decrypt cipher-
texts without leaking deleted entires as follows. When adding (w, id), the client
encrypts id with a tag τ and the ciphertext is stored on the server. When delet-
ing (w, id), the client adds the corresponding tag τ to a revoked tag set Rw on
w, stored in the local storage. When searching for w, the client retrieves the
revoked tag set Rw and generates a decryption key associated with Rw. The
server decrypts ciphertexts with the key and obtains id if the corresponding tag
τ ′ is not revoked (i.e., τ ′ /∈ Rw); it obtains ⊥ otherwise due to the puncturable
decryption functionality. Therefore, the client can delegate the process of re-
moving deleted entries to the server; it does not leak when and which identities
have been deleted. The client just receives and outputs the search result from
the server. Consequently, Aura is the first (efficient) dynamic SSE that supports
both non-interactive search operations and Type-II backward privacy. However,
there is still room for improvement as follows:



10 T. Amada et al.

1) Although a Bloom filter [6] is used to compress the revoked tag set Rw, the
client has to store them on the local storage. It is desirable to reduce the
amount of local storage on the client side (i.e., state information) as much
as possible.

2) Aura employs logical deletion; for a deletion operation of (w, id), an entry
(del, (w, id)) is added to an encrypted database EDB. As a result, the size of

EDB in Aura is N̂ =
∑

w aw, where aw is the total number of updates for w.

3) As seen above, the server decrypts the ciphertexts and gets the access pat-
terns. Namely, Aura is not a result-hiding scheme.

Our Approach. A common approach to realizing result-hiding schemes is to
have the client decrypt the search results [8, 11, 13]. With this approach in mind,
our scheme is based on Aura combined with Etemad et al.’s forward-private
scheme [14], which are not result-hiding schemes; we no longer employ SRE but
the concept of revoked tags. The construction idea for Laura is to perform a
variant of logical deletion using tags; sending the server a revoked tag τ of a
deleted pair (w, id), instead of the (encrypted) pair itself, when deleting (w, id).
Therefore, the client does not have to remember the tags. Laura maintains the
revoked tags with an (arbitrary) AMQ data structure that supports deletion
operations, whereas Sun et al. [25] only considered the Bloom filter for Aura.
Hence, the client easily finds the deleted entries with the AMQ.Lookup algorithm,
which leads to the result-hiding property while keeping efficiency.3

Moreover, we also achieve a smaller EDB through re-addition techniques [14,
26]: for a search query on w, the server retrieves all values related to the query
from EDB and deletes them. After getting the search result, the client re-adds
all entries except for deleted ones for the next search. We summarize what our
approach resolves.

1) Laura achieves a smaller (concrete) storage size on the client side than Aura.

2) Laura achieves a smaller |EDB| = N ′ =
∑

w(nw + n
(srch)
w,del ) than Aura, where

n
(srch)
w,del is the total number of times a keyword w has been affected by search

operations since the last search for w. It clearly holds N̂ ≥ N ′.

3) Laura is a result-hiding scheme. Furthermore, compared to existing these
schemes, Laura achieves compression of EDB and efficient removal of deleted
entries due to the AMQ data structure.

In addition to the above benefits, Laura is more practically efficient than
Aura. We will see that in Section 6.

3 Though the server needs to send the AMQ structure to the client during the search
operation, the size of the structure is reasonably small. For example, if we select
the cuckoo filter [15] as the AMQ structure, its size is 0.79MB for 100,000 deleted
entries with the false-positive probability p = 10−4. As a reference, according to the
Aura paper [25], SDd [13] requires 8.58MB of total communication costs for search.



Efficient Result-Hiding SSE with Forward and Backward Privacy 11

Algorithm: Laura

Setup(1κ)

Client:

1: kprf, krh, kske
$← {0, 1}κ

2: (T , aux)← AMQ.Gen({0, 1}λ, par)
3: fcw, scw, Index[] := ε // ε is an empty value

4: return
(
k := (kprf, krh, kske), σ

(0) := (scw, fcw),EDB
(0) := (Index, T , aux)

)
Update(k, add, (w, id), σ(t);EDB(t))

Client:
1: τ ← π(krh, w∥id)
2: if scw is undefined then
3: (scw, fcw) := (0, 0)
4: fcw := fcw + 1 // increment fcw
5: K

(scw)
w ← g(kprf, w∥scw) // generate the PRF key for address

6: addr← h(K
(scw)
w , fcw), val← E(kske, τ∥id)

7: Send trans
(t)
1 := (addr, val) to the server

8: return σ(t+1) := (scw, fcw)w∈W(t+1)

Server:

10: Index[addr] := val

11: return EDB(t+1) := (Index, T , aux)

Update(k, del, (w, id), σ(t);EDB(t))

Client:
1: if fcw is defined then
2: τ ← π(krh, w∥id)
3: Send trans

(t)
1 := τ to the server

4: return σ(t+1) := σ(t)

Server:

6: T ′ ← AMQ.Insert(T , τ, aux)
7: return EDB(t+1) := (Index, T ′, aux)

Fig. 2: Setup and Update of our dynamic SSE scheme Laura.

4.2 Our Construction

Let π : {0, 1}∗ → {0, 1}λ and g : {0, 1}∗ → {0, 1}κ be (variable-input-length)
PRF families and h : {0, 1}∗ → {0, 1}η be a hash function, where λ and η are
polynomials in κ. LetΠamq = (AMQ.Gen,AMQ.Insert,AMQ.Delete,AMQ.Lookup)
be an AMQ data structure. We propose a dynamic SSE scheme Laura = (Setup,
Update,Search) from Πamq, π, g, and h. The pseudo-codes for Laura are given in
Figs. 2 and 3, and we provide overviews of each algorithm below.

Setup: Setup(1κ). The client generates a secret key k := (kske, kprf, krh), where
kske is an SKE secret key and kprf and krh are PRF keys used to compute ad-



12 T. Amada et al.

Algorithm: Laura

Search(k, q, σ(t);EDB(t))

Client:
1: K

(scw)
q ← g(kprf, q∥scq)

2: Send trans
(t)
1 := (K

(scw)
q , fcq) to the server

Server:

3: for i = 1 to fcq do

4: addr← h(K
(scw)
q , i), val := Index[addr], C(t)q ← val

5: Index[addr] := NULL // delete old addresses

6: Send trans
(t)
2 := (C(t)q , T , aux) to the client // Send copy of T

Client:

7: for ∀c ∈ C(t)q do
8: τ∥id← D(kske, c) // the first λ MSBs of val is tag
9: if AMQ.Lookup(T , τ, aux) = true then // logical deletion of (q, id)

10: D(t)
q ← τ

11: else // search result

12: X (t)
q ← id, Y(t)

q ← (τ, id)

13: scq := scq + 1, fcq := |X (t)
q | // update state

14: K̂
(scq)
q ← g(kprf, q∥scq) // generate new keys

15: ctr := 1
16: for ∀(τ, id) ∈ Y(t)

q do

17: âddr← h(K̂
(scq)
q , ctr), v̂al← E(kske, τ∥id)

18: R(t)
q ← (âddr, v̂al), ctr := ctr + 1

19: Send trans
(t)
3 := (D(t)

q ,R(t)
q ) to the server

20: return (X (t)
q , σ(t+1) := (scq, fcq)q∈W(t+1))

Server:

21: for ∀(âddr, v̂al) ∈ R(t)
q do

22: Index[âddr] := v̂al // set new addresses and value

23: for ∀τ ∈ D(t)
q do

24: T ′ ← AMQ.Delete(T , τ, aux), T := T ′

25: return EDB(t+1) := (Index, T , aux)

Fig. 3: Search of our dynamic SSE scheme Laura.

dresses and tags, respectively. The client initializes two counters fcw and scw,
an array Index, and an AMQ data structure T (along with its auxiliary infor-
mation aux). The client sets the state information σ(0) := (fcw, scw), and sends

EDB(0) := (IndexT , aux) to the server.

Addition: Update(k, add, (w, id), σ(t);EDB(t)). First, the client retrieves the file
counter fcw and the search counter scw in σ(t) and increments fcw. The client
next derives a PRF key K

(scw)
w from the PRF key kprf using the keyword w to

calculate an address addr. Also, the client computes a tag τ , which will be sent



Efficient Result-Hiding SSE with Forward and Backward Privacy 13

to the server during the deletion operation, of the pair (w, id) from the PRF
key krh, and encrypts τ∥id with the SKE secret key kske. The server adds the

ciphertext to Index[addr] in EDB(t).

Deletion: Update(k, del, (w, id), σ(t);EDB(t)). The client only computes the tag
τ of the pair (w, id) using the PRF key krh and sends it to the server. The server

executes AMQ.Insert to insert τ into the data structure T in EDB(t).

Search: Search(k, q, σ(t);EDB(t)). First, the client creates the PRF key K
(scw)
q

for the search keyword q and sends it together with fcq to the server. For every i =

1, . . . , fcq, the server computes an address g(K
(scw)
q , i) and adds its stored value

val to the set C(t)q . The server sends C(t)q and a copy of the data structure T to the
client and frees the memory of all the addresses accessed. For every value val ∈
C(t)q , the client checks whether it has been deleted as follows. The client decrypts
val and obtains τ∥id, and executes AMQ.Lookup with τ to check whether the
pair (w, id) has been logically deleted. If AMQ.Lookup outputs false, id is added

to the search result X (t)
q . Next, the client re-adds the pairs (w, id) except for the

deleted ones. The client increments scq, and adds the pairs in the same way

to the above addition procedure. The server updates EDB(t) as in the addition

procedure and also receives a tag set D(t)
q of the deleted entry. For every tag

τ ∈ D(t)
q , the server executes AMQ.Delete to remove the tags from the data

structure T . This re-addition procedure is important to provide forward privacy
and reduce the size of EDB and T .

4.3 Security Analysis

Correctness. Before analyzing the security of Laura, we show that it satisfies
the correctness. Laura might output wrong search results due to false positives
in the underlying AMQ data structure Πamq. The correctness error probabil-
ity depends on the false-positive probability; due to the bounded false-positive
probability property, there exists, and we can evaluate an upper bound µn of
the false-positive probability. Therefore, by setting the parameters of Πamq ap-
propriately, one can make the correctness error probability negligible.

Security. To show the security of Laura, we consider a leakage function called
deletion pattern DelTime(t)q , which is a set of counters for all deletion operations
on w. Namely,

DelTime(t)q :=

{
udel

∣∣∣∣ ∃id s.t. (uadd, add, (q, id)) ∈ Q(t)

∧ (udel, del, (q, id)) ∈ Q(t)

}
,

where we assume uadd < udel without the loss of generality.

Theorem 1. If Πske is CPA-secure, Πamq is an AMQ data structure, π and g
are (variable-input-length) PRF families, and h is a random oracle, the dynamic
SSE scheme Laura = (Setup,Update,Search) in Figs. 2 and 3 is an L-adaptively



14 T. Amada et al.

secure result-hiding scheme that supports forward privacy and Type-II backward
privacy, with the following leakage function L = (LSetup,LUpd,LSrch):

LSetup(1
κ) = Λ, LUpd(t, op, in) = (t, op),

LSrch(t, q) = (SP(t)
q ,Update(t)q ,DelTime(t)q ),

for any t and any q ∈ Λ.

Note that DelTime(t)q can be derived from Update(t)q and op included in LUpd:

DelTime(t)q := {u ∈ Update(t)q | LUpd(u, op, (q, id)) = (u, del)}. Since Time(t)q and

DelHist(t)q imply Update(t)q , our construction clearly meets both Type-II backward
privacy and the result-hiding property.

Proof (Sketch). Due to the page limitation, we give a proof sketch. We will
provide the detailed proof in the full version. We prove that the simulator S can
simulate the update and search operations only with the leakage functions L.

Addition. With leakage LUpd(t, add, in) = (t, add) for a query (upd, add, in), S

simulates a transcript trans
(t)
1 := (addr, c). In the real experiment Real, addr

and c are η-bit pseudo-random numbers and ciphertexts of τ∥id, respectively. If
h is a random oracle and Πske is CPA-secure, addr and c are indistinguishable
from an η-bit random string r and a ciphertext c′ of 0λ+l, except with negligible

probability, respectively. Hence, S can set trans
(t)
1 := (r, c′).

Deletion. With leakage LUpd(t, del, in) = (t, del) for a query (upd, del, in), S

simulates a transcript trans
(t)
1 := τ . If π is a PRF family, τ is indistinguishable

from a λ-bit random string r′ except with negligible probability. Therefore, S

can set trans
(t)
1 := r′.

Search. With leakage LSrch(t, q) = (SP(t)
q ,Update(t)q ,DelTime(t)q ) for a query

(srch, q), S simulates transcripts trans
(t)
1 := (K

(scw)
q , fcq), trans

(t)
2 := (C(t)q , T ,

aux), and trans
(t)
3 := (D(t)

q ,R(t)
q ). Roughly speaking, due to the security of the

underlying PRF g, S can set a κ-bit random string as K
(scw)
q . Since fcq can be

derived from Update(t)q and DelTime(t)q , S can simulate trans
(t)
1 . Since C(t)q is a

set of all ciphertexts generated during the addition operation for q, S retrieves a

ciphertext simulated at every u ∈ Update(t)q \ DelTime(t)q and sets them as C(t)q .4

S easily simulates T and aux since tags for w, which are entered into AMQ.Insert
and AMQ.Delete, are correctly simulated during the deletion operation. Hence, S

can simulate trans
(t)
2 . The set D(t)

q of deleted tags can also be simulated as above.

R(t)
q can be simulated as in the case of the addition since each (âddr, v̂al) ∈ R(t)

q

is generated in the same manner as the addition operation. Therefore, S can

simulate trans
(t)
3 . ⊓⊔

4 To be precise, S has to change the way to retrieve ciphertexts depending on SP
(t)
q ;

S first retrieves ciphertexts re-added at the last search for q, i.e., at t′ = maxSP
(t)
q ,

and then retrieves ciphertexts simulated from t′ to t.



Efficient Result-Hiding SSE with Forward and Backward Privacy 15

Algorithm: v-Laura

Setup(1κ)

Client:

1: kprf, krh, kske
$← {0, 1}κ

2: fcw, scw,F[], Index[],Cache[] := ε // ε is an empty value

3: return
(
k := (kprf, krh, kske), σ

(0) := (scw, fcw,F),EDB
(0) := (Index,Cache)

)
Update(k, add, (w, id), σ(t);EDB(t))

Client:
1: τ ← π(krh, w∥id)
2: if scw is undefined then
3: (scw, fcw) := (0, 0)
4: (Tw, aux)← AMQ.Gen({0, 1}λ, par)
5: F[w] := (Tw, aux)
6: fcw := fcw + 1 // increment fcw
7: K

(scw)
w ← g(kprf, w∥scw) // generate the PRF key for address

8: c← E(kske, id; τ) // Encryption with nonce

9: addr← h(K
(scw)
w , fcw), val := τ∥c

10: Send trans
(t)
1 := (addr, val) to the server

11: return σ(t+1) :=
(
(scw, fcw)w∈W(t+1) ,F

)
Server:

12: Index[addr] := val

13: return EDB(t+1) := (Index,Cache)

Update(k, del, (w, id), σ(t);EDB(t))

Client:
1: if fcw is defined then
2: τ ← π(krh, w∥id)
3: (Tw, aux)← F[w]
4: T ′

w ← AMQ.Insert(Tw, τ, aux)
5: F[w] := (T ′

w, aux)
6: return σ(t+1) :=

(
(scw, fcw)w∈W(t+1) ,F

)
Fig. 4: Setup and Update of our dynamic SSE scheme v-Laura.

5 Extensions

5.1 A Variant of Laura: v-Laura

Although Laura is very efficient with small client storage, there is a trade-off
between it and the communication cost, as noted in the footnote in Sec. 4.1.
Specifically, the server has to send the AMQ structure together with a search
result during the search algorithm (line 6 in Fig. 3). The idea to reduce commu-
nication cost is to store the AMQ structure on the client side for each keyword,
as in Aura. For clients with ample storage or narrow bandwidth, a more suitable



16 T. Amada et al.

Algorithm: v-Laura

Search(k, q, σ(t);EDB(t))

Client:
1: K

(scw)
q ← g(kprf, q∥scq)

2: tknq ← g(kprf, q)
3: (Tq, aux) := F[q]

4: Send trans
(t)
1 :=

(
K

(scw)
q , tknq, fcq, (Tq, aux)

)
to the server

Server:

5: C(t)q := Cache[tknq]
6: for i = 1 to fcq do

7: addr← h(K
(scw)
q , i), val := Index[addr], C(t)q ← val

8: Index[addr] := NULL // delete old addresses

9: for ∀val ∈ C(t)q do
10: parse val = τ∥c // the first λ MSBs of val is tag(nonce)
11: if AMQ.Lookup(Tq, τ, aux) = true then // logical deletion of (w, id)

12: C(t)q := C(t)q \ {val}
13: Cache[tknq] := C(t)q

14: Send trans
(t)
2 := C(t)q to the client

15: return EDB(t+1) := (Index,Cache)

Client:

7: for ∀(τ, c) ∈ C(t)q do

8: X (t)
q ← D(kske, c; τ) // decrypt c to get search result

9: (T ′
q , aux)← AMQ.Gen({0, 1}λ, par)

10: fcq := 0, scq := scq + 1, F[q] := (T ′
q , aux) // update state

11: return
(
X (t)

q , σ(t+1) :=
(
(scq, fcq)q∈W(t+1) ,F

))
Fig. 5: Search of our dynamic SSE scheme v-Laura.

and efficient variant scheme than Laura, called v-Laura, can be constructed. At
first glance, it seems to be the same as Aura, but the following are differences;

1) AMQ is used only as a compression of the deleted tag set without SRE
functionality. Therefore, efficient AMQs can be selected, not limited to the
bloom filter used for SRE in Aura. The v-Laura also achieves efficient search
by eliminating SRE processing, which is dominant in Aura searches (see
Sec. 5).

2) The server removes the deleted entries using AMQ structure while the client
decrypts the search results to achieve result-hiding, similar to Laura.

3) The v-Laura can compress the size of val in EDB with the idea of using τ as
a nonce in encryption. In some block cipher modes of CPA-secure Πske, the
nonce is used for security and is stored with the ciphertext. Since τ plays
the role of nonce, it can compress the size of the original nonce.



Efficient Result-Hiding SSE with Forward and Backward Privacy 17

The pseudo-codes for v-Laura are given in Figs. 4 and 5, and we provide
overviews of each algorithm below. However, we omit the same part of Laura.

Setup: Setup(1κ). The client generates a secret key k := (kske, kprf, krh). The
client initializes two counters fcw and scw, and three array Index and Cache
and F. The client sets the state information σ(0) := (fcw, scw,F), and sends

EDB(0) := (IndexCache) to the server.

Addition: Update(k, add, (w, id), σ(t);EDB(t)). First, the client calculates an
address addr and tag τ , like Laura. Also, the client encrypts id using τ as nonce
(i.e., c← E(kske, id; τ)) and sends addr and val := τ∥c to the server. The server

adds val to Index[addr] in EDB(t).

Deletion: Update(k, del, (w, id), σ(t);EDB(t)). The client only computes the tag
τ and executes AMQ.Insert to insert τ into the data structure Tw for w in σ(t).

Search: Search(k, q, σ(t);EDB(t)). First, the client creates K
(scw)
q and tknq with

the PRF key kprf and sends them together with fcq and Tq to the server. The

server gets Cache[tknq] as a set C(t)q . For every i = 1, . . . , fcq, the server computes

an address g(K
(scw)
q , i) and adds its stored value val to the set C(t)q . For every

val ∈ C(t)q , the server parse val := τ∥c and executes AMQ.Lookup with τ and
Tq to check whether the pair (q, id) has been logically deleted. If AMQ.Lookup

outputs true, val is removed from C(t)q . Next, the server sets C(t)q to Cache[tknq]

and updates EDB(t), and sends C(t)q to the client. For every value val ∈ C(t)q , the

client decrypts val to obtain id and adds it to the search result X (t)
q . Finally,

the client initializes Tq and fcq and increments scq.
v-Laura also satisfies Theorem 1. The proof is shown in full version.

5.2 A Strongly Secure variant of Laura: s-Laura

As explained in the introduction, Aura implicitly requires every pair of (w, id)
to be added at most only once; it does not allow the client to re-add previously
deleted pairs. Indeed, Laura and v-Laura work well under the same assumption.
In other words, if the client wants to add and delete a pair (w, id) multiple
times, those schemes are no longer Type-II backward private. This limitation
stems from the fact that the corresponding tag of the pair (w, id) is generated
deterministically in those schemes. The extended scheme s-Laura, which stands
for strongly-secure Laura, allows to run Update of pair (w, id) any number of
times. The basic idea of s-Laura is that the deletion tag of the pair (w, id) changes
with each deletion. The client holds extra information dcw which increments
for each deletion regarding w. When pair (w, id) is deleted, a delete tag τdcw is
generated from τ and dcw. The client then computes tags τ1, . . . , τdcw from τ and
dcw, and executes AMQ.Lookup with τi for every i ∈ [dcw] to check whether the
pair (w, id) has been logically deleted. If AMQ.Lookup outputs false for all tags,

id is added to the search result X (t)
q . However, the search time of s-Laura increases

linearly with the number of deletions, as shown in Table. 1. Hence, s-Laura has



18 T. Amada et al.

not been evaluated for implementation in Sec. 6. Efficient construction is a future
work.

We give the pseudo-codes for s-Laura in Appendix A, and provide overviews
of each algorithm below.

Setup: Setup(1κ). The client generates a secret key k := (kske, kprf, krh), where
kske is an SKE secret key and kprf and krh are PRF keys used to compute
addresses and tags, respectively. The client initializes three counters fcw, scw,
and dcw, an array Index, and an AMQ data structure T (along with its auxiliary
information aux). The client sets the state information σ(0) := (fcw, scw, dcw),

and sends EDB(0) := (IndexT , aux) to the server.

Addition: Update(k, add, (w, id), σ(t);EDB(t)). First, the client retrieves the file
counter fcw and the search counter scw in σ(t) and increments fcw. The client
next derives a PRF key K

(scw)
w,0 from the PRF key kprf using the keyword w to

calculate an address addr. Also, the client computes a persistent tag τ , which
will be used to derive an ephemeral tag τi during the deletion operation, of the
pair (w, id) from the PRF key krh, and encrypts τ∥id with the SKE secret key

kske. The server adds the ciphertext to Index[addr] in EDB(t).

Deletion: Update(k, del, (w, id), σ(t);EDB(t)). First, the client retrieves the dele-
tion counter dcw and increments it. The client computes the persistent tag τ as

in the addition operation. Then, the client derives a key K
(scw)
w,1 from the PRF

key kprf using the keyword w and generates an ephemeral tag τdcw from the de-

rived key K
(scw)
w,1 , the persistent tag τ , and the counter dcw. The server executes

AMQ.Insert to insert τ into the data structure T in EDB(t).

Search: Search(k, q, σ(t);EDB(t)). First, the client creates the PRF key K
(scw)
q,0

for the search keyword q and sends it together with fcq to the server. For every i =

1, . . . , fcq, the server computes an address g(K
(scw)
w,0 , i) and adds its stored value

val to the set C(t)q . The server sends C(t)q and a copy of the data structure T to the
client and frees the memory of all the addresses accessed. For every value val ∈
C(t)q , the client checks whether it has been deleted as follows. The client decrypts
val and obtains τ∥id. The client then computes ephemeral tags τ1, . . . , τdcq from
τ and dcq, and executes AMQ.Lookup with τi for every i ∈ [dcq] to check whether
the pair (w, id) has been logically deleted. If AMQ.Lookup outputs false for all

ephemeral tags, id is added to the search result X (t)
q . Next, the client re-adds

the pairs (w, id) except for the deleted ones. The client increments scq, and adds
the pairs in the same way to the above addition procedure. The server updates

EDB(t) as in the addition procedure and also receives a set D(t)
q of the ephemeral

tags of the deleted entry. For every ephemeral tag τi ∈ D(t)
q , the server executes

AMQ.Delete to remove the tags from the data structure T . This re-addition
procedure is important to provide forward privacy and reduce the size of T .

s-Laura also satisfies Theorem 1. The proof is shown in full version.



Efficient Result-Hiding SSE with Forward and Backward Privacy 19

 0

 10

 20

 30

 40

 50

 60

 0  50000  100000  150000  200000

ti
m

e
 (

s
)

number of inserted entries

Aura
Laura

v-Laura

Fig. 6: Addition cost.

 0

 200

 400

 600

 800

 1000

 1200

 0  50000  100000  150000  200000

ti
m

e
 (

m
s
)

Number of pairs containing a query keyword

Aura
Laura

v-Laura

Fig. 7: Search cost without deletion.

6 Experiments

Implementation. We implemented the proposed protocols Laura and v-Laura
in C++ and evaluated their performance comparatively.5 We compare them
with Aura [25] implemented in C++ [1] for each protocol. For instances and
technical details of Aura, please refer to [25, 1]. These experiments were done in
an Ubuntu 18.04 LTS server with 756GB RAM, using Docker (version 24.0.4) [3].
We used AES-GCM for the instantiation of SKE Πske. The PRFs π, g, and the
random oracle h are realized with AES-GCM and GMAC, respectively. They are
implemented using the EVP functions API on the open SSL library (version 3.0.2
15 Mar 2022), and AES-GCM is accelerated by the Intel AES-NI instruction set.
For the instance of the AMQ data structure of Laura and v-Laura, we choose the
cuckoo filter [15] implemented in [2].

The sizes of keys and outputs of AES and PRF are 128 bits, respectively. The
identifier id and each counter (i.e. fcw, scw) are 32-bit integers. For experiments
on search, we measure the time it takes the server to get all the decrypted
identifiers in the search results. Note that both the client and server run locally
and communication costs are not taken into account.

Parameter Setting. Throughout the experiments, we set the false-positive
probability p = 10−4, which was also considered practically acceptable in the
Aura paper [25]. To ensure that false-positive probability, we need to set the max-
imum number dw of elements inserted into the AMQ data structure in Laura and
v-Laura (resp., the Bloom filter in Aura) at the beginning of the protocol. To be
precise, Aura and v-Laura prepares a filter per keyword, while Laura employ only
one AMQ structure for the whole system. Therefore, unless otherwise stated, we
set dw = 1,000 for Aura and v-Laura and dΛ = 10,000,000 for Laura, where dw
and dΛ =

∑
w∈Λ dw.

Addition Cost. We give the addition costs of Aura, Laura, and v-Laura in
Fig. 6. This results surprisingly show a marked performance difference between

5 We did not implement sOurs since we want to compare dynamic SSE schemes with
the same security level. Note that s-Laura is secure even if deleted entries are re-
added.



20 T. Amada et al.

 0

 100

 200

 300

 400

 500

 600

 700

 0  200  400  600  800  1000

ti
m

e
 (

u
s
)

number of deleted entries (dcw)

Aura
Laura

v-Laura

Fig. 8: Deletion cost.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0  200  400  600  800  1000

ti
m

e
 (

m
s
)

number of deleted entries (dcw)

Aura
Laura

v-Laura

Fig. 9: Search cost with deletion.

ours and Aura. Specifically, Laura and v-Laura takes less than 1.0 s to add 200,000
keyword-identifier pairs, whereas Aura takes 59.5 s. This is due to the concrete
construction of the underlying SRE scheme, which requires many resources for
the addition.

Search Cost without Deletion. Fig. 7 compares the search costs of Aura,
Laura, and v-Laura when no entries on w have been deleted. The search costs of
the three schemes increase linearly with the number of pairs. When the search
results is 200,000 pairs, Laura, v-Laura, and Aura take 1.05 s, 0.75 s and 1.18 s
respectively.

Deletion Cost. As can be seen in Fig. 8, the deletion costs for Aura, Laura, and
v-Laura are remarkably fast since the deletion procedures of these schemes only
require the calculation of the tag corresponding to the pair to be deleted and the
insertion to the filter. Specifically, for 1,000 deleted entries, Laura, v-Laura and
Aura take 0.68ms, 0.67ms and 0.52ms respectively. The Laura and v-Laura are
slightly slower since the cuckoo filter [15] has the property that as more items
are inserted to the filter, the frequency of kicked out an item in the insertion
also increases.

Search Cost with Deletion. We show the effect of deletion on search costs in
Fig. 9. After adding 2,000 pairs of (w, id), we delete pairs and then search for w.
Fig. 9 shows the search time with the range of the number of the deleted pairs
from 0 to 1,000. The Laura and v-Laura are remarkably faster than Aura. Specif-
ically, when deleting 1,000 entries (i.e., 1,000 results of 2,000 entries), Laura,
v-Laura and Aura take 0.61ms, 0.41ms and 169.0ms respectively. Compared
Aura with v-Laura, it is clear that the computational complexity of SRE is dom-
inant. More interestingly, Aura takes longer when no deletion occurred due to
the underlying SRE construction.

Acknowledgment This work was supported by JSPS KAKENHI Grant Num-
bers JP21H03395, JP21H03441, JP22H03590, JP23H00468, JP23H00479, JP23K17455,
JST CREST JPMJCR23M2, and MEXT Leading Initiative for Excellent Young
Researchers.



Efficient Result-Hiding SSE with Forward and Backward Privacy 21

References

1. Aura. https://github.com/MonashCybersecurityLab/Aura
2. Cuckoo filter. https://github.com/efficient/cuckoofilter/tree/master
3. Docker. https://www.docker.com/
4. Bender, M.A., Farach-Colton, M., Johnson, R., Kraner, R., Kuszmaul, B.C., Med-

jedovic, D., Montes, P., Shetty, P., Spillane, R.P., Zadok, E.: Don’t thrash: How to
cache your hash on flash. Proc. VLDB Endow. 5(11), 1627–1637 (2012)

5. Blackstone, L., Kamara, S., Moataz, T.: Revisiting leakage abuse attacks. In: NDSS
2020. The Internet Society (2020)

6. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970)

7. Bost, R.:
∑

oφoς: Forward secure searchable encryption. In: Proc. of ACM CCS
2016. pp. 1143–1154. ACM (2016)

8. Bost, R., Minaud, B., Ohrimenko, O.: Forward and backward private searchable
encryption from constrained cryptographic primitives. In: Proc. of ACM CCS 2017.
pp. 1465–1482. ACM (2017)

9. Cash, D., Grubbs, P., Perry, J., Ristenpart, T.: Leakage-abuse attacks against
searchable encryption. In: Proc. of ACM CCS 2015. pp. 668–679. ACM (2015)

10. Cash, D., Jaeger, J., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.C., Steiner,
M.: Dynamic searchable encryption in very-large databases: Data structures and
implementation. In: Proc. of NDSS 2014. The Internet Society (2014)

11. Chamani, J.G., Papadopoulos, D., Papamanthou, C., Jalili, R.: New constructions
for forward and backward private symmetric searchable encryption. In: Proc. of
ACM CCS 2018. pp. 1038–1055. ACM (2018)

12. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable symmetric en-
cryption: improved definitions and efficient constructions. In: Proc. of ACM CCS
2006. pp. 79–88. ACM (2006)

13. Demertzis, I., Chamani, J.G., Papadopoulos, D., Papamanthou, C.: Dynamic
searchable encryption with small client storage. In: Proc. of NDSS 2020. The In-
ternet Society (2020)

14. Etemad, M., Küpçü, A., Papamanthou, C., Evans, D.: Efficient dynamic searchable
encryption with forward privacy. PoPETs 2018(1), 5–20 (2018)

15. Fan, B., Andersen, D.G., Kaminsky, M., Mitzenmacher, M.D.: Cuckoo filter: Prac-
tically better than bloom. In: Proc. of CoNEXT 2014. pp. 75–88 (2014)

16. Hahn, F., Kerschbaum, F.: Searchable encryption with secure and efficient updates.
In: ACM SIGSAC Conference on Computer and Communications Security, CCS
2014. pp. 310–320. ACM, New York, NY, USA (2014)

17. Islam, M.S., Kuzu, M., Kantarcioglu, M.: Access pattern disclosure on searchable
encryption: Ramification, attack and mitigation. In: Proc. of NDSS 2012. The
Internet Society (2012)

18. Kamara, S., Moataz, T.: Computationally volume-hiding structured encryption.
In: Ishai, Y., Rijmen, V. (eds.) Advances in Cryptology – EUROCRYPT 2019. pp.
183–213. Springer International Publishing, Cham (2019)

19. Kamara, S., Papamanthou, C.: Parallel and dynamic searchable symmetric encryp-
tion. In: Proc. of FC 2013. pp. 258–274. Springer (2013)

20. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryp-
tion. In: Proc. of ACM CCS 2012. pp. 965–976. ACM (2012)

21. Katz, J., Lindell, Y.: Introduction to Modern Cryptography, Second Edition. CRC
Press (2014)



22 T. Amada et al.

22. Miers, I., Mohassel, P.: IO-DSSE: scaling dynamic searchable encryption to millions
of indexes by improving locality. In: Network and Distributed System Security
Symposium, NDSS 2017 (2017)

23. Naveed, M., Prabhakaran, M., Gunter, C.: Dynamic searchable encryption via
blind storage. In: IEEE Symposium on Security and Privacy, S&P 2014. pp. 639–
654 (May 2014)

24. Song, D.X., Wagner, D.A., Perrig, A.: Practical techniques for searches on en-
crypted data. In: IEEE S&P 2000. pp. 44–55. IEEE (2000)

25. Sun, S., Steinfeld, R., Lai, S., Yuan, X., Sakzad, A., Liu, J.K., Nepal, S., Gu,
D.: Practical non-interactive searchable encryption with forward and backward
privacy. In: Proc. of NDSS 2021. The Internet Society (2021)

26. Wang, J., Chow, S.S.M.: Omnes pro uno: Practical multi-writer encrypted
database. In: 31st USENIX Security Symposium, USENIX Security 2022, Boston,
MA, USA, August 10-12, 2022. pp. 2371–2388. USENIX Association (2022)

27. Watanabe, Y., Ohara, K., Iwamoto, M., Ohta, K.: Efficient dynamic searchable
encryption with forward privacy under the decent leakage. In: Proc. of ACM CO-
DASPY 2022. pp. 312–323. ACM (2022)

28. Zhang, Y., Katz, J., Papamanthou, C.: All your queries are belong to us: The power
of file-injection attacks on searchable encryption. In: Proc. of USENIX Security
2016. pp. 707–720. USENIX Association (2016)

A Formal Description of s-Laura

We give the concrete procedures of s-Laura in Figs 10 and 11.



Efficient Result-Hiding SSE with Forward and Backward Privacy 23

Algorithm: s-Laura

Setup(1κ)

Client:

1: kprf, krh, kske
$← {0, 1}κ

2: (T , aux)← AMQ.Gen({0, 1}λ, par)
3: fcw, scw, dcw, Index[] := ε // ε is an empty value

4: return
(
k := (kprf, krh, kske), σ

(0) := (scw, fcw, dcw),EDB
(0) := (Index, T , aux)

)
Update(k, add, (w, id), σ(t);EDB(t))

Client:
1: τ ← π(krh, w∥id)
2: if scw is undefined then
3: (scw, fcw, dcw) := (0, 0, 0)
4: fcw := fcw + 1 // increment fcw
5: K

(scw)
w,0 := g(kprf, w∥scw∥0) // generate the PRF key for address

6: addr← h(K
(scw)
w,0 , fcw)

7: val← E(kske, τ∥id)
8: Send trans

(t)
1 := (addr, val) to the server

9: return σ(t+1) := (scw, fcw, dcw)w∈W(t+1)

Server:

10: Index[addr] := val

11: return EDB(t+1) := (Index, T , aux)

Update(k, del, (w, id), σ(t);EDB(t))

Client:
1: if dcw is defined then
2: dcw := dcw + 1
3: τ ← π(krh, w∥id)
4: K

(scw)
w,1 := g(kprf, w∥scw∥1)

5: τdcw ← π(K
(scw)
w,1 , τ ||dcw)

6: Send trans
(t)
1 := τdcw to the server

7: return σ(t+1) := (scw, fcw, dcw)w∈W(t+1)

Server:

8: T ′ ← AMQ.Insert(T , τdcw , aux)
9: return EDB(t+1) := (Index, T ′, aux)

Fig. 10: Setup and Update of our dynamic SSE scheme s-Laura.



24 T. Amada et al.

Algorithm: s-Laura

Search(k, q, σ(t);EDB(t))

Client:
1: K

(scw)
q,0 := g(kprf, q∥scw∥0)

2: Send trans
(t)
1 := (K

(scw)
q,0 , fcq) to the server

Server:

3: for i = 1 to fcq do

4: addr← h(K
(scw)
q,0 , i), C(t)q ← Index[addr]

5: Index[addr] := NULL // delete old addresses

6: Send trans
(t)
2 := (C(t)q , T , aux) to the client // Send copy of T

Client:

7: K
(scw)
q,1 := g(kprf, q∥scq∥1)

8: for ∀c ∈ C(t)q do // define Loop1 for Jump
9: τ∥id← D(kske, c) // the first λ MSBs of val is tag
10: for i = 1 to dcq do

11: τi ← π(K
(scw)
q,1 , τ∥i)

12: if AMQ.Lookup(T , τi, aux) = true then

13: D(t)
q ← τi

14: Jump Loop1 and next element
15: X (t)

q ← id, Y(t)
q ← (id, τ)

16: scq := scq + 1, fcq := |X (t)
q |, dcq := 0 // update state

17: K̂
(scq,0)
q,0 := g(kprf, q∥scq∥0) // generate new keys

18: ctr := 1
19: for ∀(τ, id) ∈ Y(t)

q do

20: R(t)
q ← (h(K̂

(scq,0)
q,0 , ctr),E(kske, τ∥id)) // new (âddr, v̂al) pair

21: ctr := ctr + 1
22: Send trans

(t)
3 := (D(t)

w ,R(t)
q ) to the server

23: return (X (t)
q , σ(t+1) := (scw, fcq, dcq)q∈W(t+1))

Server:

24: for ∀(âddr, v̂al) ∈ R(t)
q do

25: Index[âddr] := v̂al // set new addresses and value

26: for ∀τi ∈ D(t)
q do

27: T ′ ← AMQ.Delete(T , τi, aux), T := T ′

28: return EDB(t+1) := (Index, T , aux)

Fig. 11: Search of our dynamic SSE scheme s-Laura.


