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Abstract. We propose a new Hamming metric code-based signature
scheme (called HWQCS) based on quasi-cyclic low density parity-check
(QC-LDPC) codes. We propose the use of high error on QC-LDPC codes
for constructing this signature and analyse its complexity. We show that
HWQCS signature scheme achieves EUF-CMA security in the classical
random oracle model, assuming the hardness of the syndrome decoding
problem and the codeword finding problem for QC-LDPC codes. Further-
more, we also give a detailed security analysis of the HWQCS signature
scheme. Based on the complexities of solving the underlying problems,
the public key size and signature size of the HWQCS signature scheme
are 1568 bytes and 4759 bytes respectively at 128-bit security level.
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1 Introduction

Code-based cryptography is based on the problem of decoding random linear
codes, which is referred to as the syndrome decoding problem and is known to
be NP-hard [11]. The most common code-based cryptosystems are the McEliece
cryptosystem [30] and the Niederreiter cryptosystem [33], which are equivalent
in terms of their security. Solving the NP-hard syndrome decoding problem is
believed to be hard even for quantum computers. Over the years, a number
of code-based cryptographic schemes have been proposed. These include some
promising key encapsulation mechanisms called BIKE [4], Classic McEliece[12]
and HQC [1], which become fourth-round candidates in the NIST call for post-
quantum cryptography standardization.

Unlike encryption and key encapsulation mechanisms, the construction of
code-based digital signature schemes seems to be more challenging. This is in-
dicated by the absence of code-based signature scheme in the second round
onwards of the NIST PQC standardization. The most common techniques to
construct signatures are based on two generic frameworks, which are, hash-and-
sign constructions and Fiat-Shamir framework [23] constructions. The hash-and-
sign construction requires some trapdoor functions, such as CFS [17] and Wave
[19]. On the other hand, Fiat-Shamir framework construction does not necessar-
ily use trapdoor functions in general, such as Stern [41], CVA [15], MPT [31],
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CVE [8], cRVDC [9], etc. However, most of them are inefficient or have large
key or signature sizes. Furthermore, some of the proposed code-based signatures
were even found to be insecure. For example, the KKS [24], RZW [37], CVE [8],
SHMWW [39] and MPT [31] are shown to be insecure in [34], [18], [25], [5] and
[35] respectively.

Recently, there is a new technique to construct signature schemes, which
is called MPC (multiparty computation) in the head paradigm. This approach
combines secret key sharing scheme and identification scheme in the multi-party
computations setting, for example, CCJ signature [14], FJR signature [22], etc.
The purpose of this construction is to reduce the signature size. But most of the
signature size is still around eight thousand bytes. Therefore, it is still a challenge
to construct signature schemes with practical signature size and public key size.

In this paper, we proposed a new signature scheme (called HWQCS) based
on quasi-cyclic low density parity-check (QC-LDPC) codes. The proposed sig-
nature scheme is based on the Fiat-Shamir transformation and introduces high
weight error on QC-LDPC codes. HWQCS signature scheme resists Prabowo-
Tan’s attack [35] on MPT-like signature scheme [31]. This is achieved by signing
a message depending on a new ephemeral secret key for each signature rather
than relying only on a fixed secret key. So, each signature can be viewed as a one-
time signature. Furthermore, this signature is also secure against Bit-Flipping
algorithm attack and statistical attack.

The organization of this paper is as follows. In Section 2, we provide a brief
review of the properties of linear codes, quasi-cyclic codes and also define the
syndrome decoding problem, etc. In Section 3, we propose a new high weight
signature scheme (called HWQCS) which is based on 2-quasi-cyclic codes. We
also provide security proof of the proposed HWQCS signature scheme under the
random oracle model. In Section 4, we give a detailed analysis of various possible
attacks on the proposed signature scheme HWQCS. In Section 5, we examine
the public/secret key size and signature size for various security levels. Finally,
the paper is concluded in Section 6.

2 Preliminaries

In this paper, let n, k be integers, denote by F2 the finite field of two elements,
let a = (a1, . . . , an) ∈ Fn

2 be a vector in Fn
2 .

2.1 Linear Codes

Definition 1 Let a = (a1, . . . , an) ∈ Fn
2 . The support of a is the set consisting

of all indices i ∈ {1, . . . , n} such that ai ̸= 0. The Hamming weight of a, denoted
by wt(a) is the cardinality of its support. The Hamming distance between a and
b, denoted by d(a,b) is defined as wt(a− b), i.e., the number of coordinates a
and b differs on.
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Definition 2 Let k and n be two positive integers with k ≤ n. An [n, k]-linear
code C of length n and dimension k is a linear subspace of dimension k of the
vector space Fn

2 . The rate of the code C is R = k
n .

Definition 3 Let C be an [n, k]-linear code of length n and dimension k. We call
its minimum distance δ the minimum Hamming weight of a non-zero codeword
in C, i.e.,

δ = min{wt(a) | a ∈ C,a ̸= 0}
= min{wt(a− b) | a,b ∈ C,a ̸= b}.

We sometimes refer to C as an [n, k, δ]-code if δ is known.

Definition 4 A matrix G ∈ Fk×n
2 is said to be a generator matrix of an [n, k]-

linear code C if its rows form a basis of C. Then, C = {uG | u ∈ Fk
2}. The

parity-check matrix of C is H ∈ F(n−k)×n
2 such that GHT = 0 or cHT = 0 for

all c ∈ C. Furthermore, G and H are said to be in systematic form if they are
written as

G = [Ik A] resp. H = [In−k B],

for some A ∈ Fk×(n−k)
2 and B ∈ F(n−k)×k

2 .

Problem 1 (Syndrome Decoding Problem (SDP)). Given a matrix H ∈
F(n−k)×n
2 , a vector s ∈ Fn−k

2 and an integer w > 0 as input. The Syndrome
Decoding problem is to determine a vector e ∈ Fn

2 such that wt(e) ≤ w and
s = eHT .

Problem 2 (Codeword Finding Problem (CFP)). Given a matrix H ∈
F(n−k)×n
2 , and an integer w > 0 as input. The Codeword Finding problem is to

determine a vector e ∈ Fn
2 such that wt(e) = w and eHT = 0.

The SDP problem and CFP problem are well known and was proved to be
NP-complete by Berlekamp, McEliece and van Tilborg in [11]. Moreover, it is
proved that there exists a unique solution to SDP if the weight w is below the
so-called GV Distance.

Definition 5 Let C be an [n, k] linear code over F2. The Gilbert–Varshamov
(GV) Distance is the largest integer d such that

d−1∑
i=0

(
n

i

)
≤ 2n−k.

The first generic decoding method to solve SDP is called the Information
Set Decoding (ISD) method, introduced by Prange [36] (denoted as Pra62) in
1962. It is the best known algorithm for decoding a general linear code. Since
then, several improvements of the ISD method have been proposed for codes
over the binary field, such as LB88 [26], Leon88 [27], Stern88 [40], Dum91 [20],
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and more recently by BLP11 [13], MMT11 [28], BJMM12 [7], MO15 [29]. The
computational complexity of solving the syndrome decoding problem is quanti-
fied by the work factor WFA(n, k, w), which is defined as the average cost in
binary operations of algorithm A to solve it. The work factor of Pra62 is given
as follows.

WFPra62(n, k, w) =
min{

(
n
w

)
, 2n−k}(

n−k
w

) .

When w = o(n), then WFPra62(n, k, w) =
(nw)
(n−k

w )
and 1

w log2
(nw)
(n−k

w )
≈ c, where

c := − log2(1− k
n ). Therefore, we have WFPra62(n, k, w) ≈ 2cw(1+o(1)).

Among the variants of solving algorithms for the syndrome decoding problem,
the following result from [42] shows that their work factors are asymptotically
the same.

Proposition 1 [42] Let k and w be two functions of n such that limn→∞
k
n = R,

0 < R < 1, and limn→∞
w
n = 0. For any algorithm A among the variants of

Pra62, Stern88, Dum91, MMT11, BJMM12 and MO15, their work factors are
asymptotically the same as

WFA(n, k, w) = 2cw(1+o(1)), where c = − log2(1−R)

when n tends to infinity.

2.2 Quasi-Cyclic Linear Codes

Let F2 be the finite field of two elements and let R := F2[x]/(x
k − 1) be the

quotient ring of polynomials over F2 of degree less than k. Given a = a0+a1x+
. . . + ak−1x

k−1 ∈ R, we denote a := (a0, a1, . . . , ak−1) ∈ Fk
2 . Let R∗ = {a ∈

R | a is invertible inR}. Let V be a vector space of dimension k over F2. Denote
Vk,w := {a ∈ R = F2[x]/(x

k−1) | wt(a) = w}. We sometimes abuse the notation
by interchanging a with a ∈ R.

Definition 6 (Circulant Matrix) Let v = (v0, · · · , vk−1) ∈ V, a circulant matrix
defined by v is

V :=


v0 v1 . . . vk−1

vk−1 v0 . . . vk−2

...
...

. . .
...

v1 v2 . . . v0

 ∈ Fk×k
2 .

For u,v ∈ R, the product w = uv can be computed as w = uV = vU , and
wl =

∑
i+j=l mod k uivj for l = 0, · · · , k − 1, where w = (w0, · · · , wk−1). To find

the weight of uv, we first compute the probability that wi = 1, say p′, then
wt(w) = p′ ∗ k. Now, we compute the probability that wi = 1 as follows.
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Lemma 1 [35] Let u ∈ Vk,ωu
, v ∈ Vk,ωv

and w = uv = (w0, · · · , wk−1).
Denote the probability that wi = 1, for i ∈ {0, · · · , k− 1}, as P (k, ωu, ωv). Then

P (k, ωu, ωv) =
1(
k
ωv

) ∑
1≤l≤min(ωu,ωv)

l odd

(
ωu

l

)(
k − ωu

ωv − l

)
.

Definition 7 (Quasi-Cyclic Codes) A linear block code C of length lk over F2 is
called a quasi-cyclic code of index l if for any c = (c0, · · · , cl−1) ∈ C, the vector
obtained after applying a simultaneous circular shift to every block c0, · · · , cl−1

is also a codeword.

Definition 8 (Systematic 2-Quasi-Cyclic Codes, 2-QC Codes) A systematic 2-
quasi-cyclic [2k, k]-code has generator matrix of the form [H Ik] ∈ Fk×2k

2 and
parity check matrix [Ik HT ] ∈ Fk×2k

2 .

Due to the quasi-cyclic structure of a code, any blockwise circular shift of a
codeword is also a codeword. So, any circular shift of a syndrome will correspond
to a blockwise circular shift of the error pattern. It has been shown in [38] that
the work factor of the ISD algorithm for solving the syndrome decoding problem
and the codeword finding problem for 2-quasi-cyclic codes for n = 2k are

WFA,2QCSD(n, k, w) :=
WFA(n, k, w)√

n− k
= 2c[1/2+w(1+o(1))]−(log2 n)/2

and
WFA,2QCCF(n, k, w) :=

WFA(n, k, w)

n− k
= 2c[1+w(1+o(1))]−log2 n

respectively. Since the methods and the work factors for solving the syndrome
decoding problem and the codeword finding problem for 2-quasi-cyclic codes re-
quire exponential time, therefore, we assume that the syndrome decoding prob-
lem and the codeword finding problem on quasi-cyclic codes are hard problems.
We define the decisional codeword finding problem for 2-quasi-cyclic codes as
follows.

Problem 3 (Decisional Codeword Finding Problem for 2-Quasi-Cyclic Codes
(2QC-DCFP)). Given a matrix [Ik h] ∈ F2k×k

2 , and an even integer w > 0 as
input, decide if there exists h0,h1 ∈ R such that wt(h0) = wt(h1) = w/2 and

(h0,h1)

[
Ik
h

]
= 0.

In the special case of 2-quasi-cyclic codes with parity check matrix H =
[h0 h1] ∈ Fk×2k

2 , where (h0,h1) and e are of low weight approximate to
√
2k,

we have what is called the quasi-cyclic low density parity check (QC-LDPC)
codes. These codes are commonly used in the construction of key encapsulation
mechanisms and signatures, such as BIKE [4] and HQC [1]. The Bit-Flipping
algorithm [43] is used to decode an error e in BIKE.
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On the other hand, for our signature (proposed in Section 3), we have n = 2k,
H = [Ik c] and e = (e1, e2) is of high weight such that wt(e)≫

√
n, wt(e)

n < 1
2 ,

wt(e1)
k + wt(ce2)

k > 1
2 and wt(c) <

√
k. Experimental results show that the Bit-

Flipping algorithm [43] is unable to obtain e correctly in this case (many bits
are decoded incorrectly). Up to our knowledge, there is no efficient decoding
algorithm for high weight error. Therefore, we define the following problem and
assume that it is a hard problem.

Problem 4 (Syndrome Decoding Problem for High Weight on QC-LDPC Codes
(HWQC-LDPC-SDP)) Let ω be integer, n = 2k, H = [Ik c] and e = (e1, e2) is of
high weight such that ω=wt(e) ≫

√
n, wt(e)

n < 1
2 ,

wt(e1)
k + wt(ce2)

k > 1
2 and

wt(c) <
√
k. Given H ∈ Fk×2k

2 , s ∈ Fk
2 and ω as input. The syndrome decoding

problem for high weight on QC-LDPC code is to determine e such that wt(e) = ω
and s = eHT .

3 HWQCS Signature Scheme

In this section, we present the Hamming-metric code-based digital signature
scheme from QC-LDPC codes with high weight errors, which we call the HWQCS
signature scheme. The HWQCS signature scheme is based on the hardness of
the syndrome decoding problem and the codeword finding problem on quasi-
cyclic codes. Furthermore, the HWQCS signature scheme is different from the
MPT signature scheme [31] and is resistant to Prabowo-Tan’s attack [35] as each
signature can be thought of as a one-time signature with a new ephemeral secret
key, while the MPT signature is based on a fixed secret key.

A signature scheme consists of three algorithms: KeyGen, Sign and Verify.

– KeyGen: Given a security parameter λ, the key generation algorithm returns
a key pair (pk, sk) where pk and sk are the public key and the secret key
respectively.

– Sign: The algorithm, on input a message m and the secret key sk, returns a
signature σ.

– Verify: Given a message m, a public key pk and a signature σ as input, the
algorithm returns either 0 or 1 depending on whether the signature σ is valid
or not.

Before we describe a HWQCS signature scheme, we first define the required
parameters. Let k, ωf , ωu, ωe, ωc, ωs, ωt be integers as public parameters. The
HWQCS signature scheme is described as follows.
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Algorithm 1: Key Generation of HWQCS Signature Scheme
Input : k, ωf , security parameter λ
Output: pk = (h)

1 Choose random f1, f2 ∈ Vk,ωf and both are invertible
2 Compute h := f−1

1 f2 in R∗

3 The public key is pk = (h) and the secret key is sk = (f1, f2)

Algorithm 2: Signing of HWQCS Signature Scheme
Input : k, ωf , ωu, ωe, ωc, ωs, ωt, message m, pk = (h) and sk = (f1, f2)
Output: signature σ

1 Choose random e1, e2 ∈ Vk,ωe and u1,u2 ∈ Vk,ωu

2 Compute b := (e1, e2)

[
h

h−1

]
in R

3 Compute c := H(m∥b∥(u1f2 + u2f1)∥pk) ∈ Vk,ωc

4 Compute si := uifi + cei in R for i = 1, 2
5 if wt(s1) > ωs or wt(s2) > ωs or wt(u1f2 + u2f1) > ωt then
6 repeat from Step 1
7 else
8 the signature is σ = (c,b, s1, s2)
9 end if

Algorithm 3: Verification of HWQCS Signature Scheme
Input : message m, pk, signature σ = (c,b, s1, s2)
Output: validity of the signature

1 Compute t := (s1, s2)

[
h

h−1

]
− cb in R

2 Compute c′ := H(m∥b∥t∥pk) ∈ Vk,ωc

3 if c′ = c and wt(t) ≤ ωt and t ̸= 0 in R then
4 the signature is valid
5 else
6 the signature is invalid
7 end if
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Correctness:

t = (s1, s2)

[
h

h−1

]
− cb

= (u1f2 + ce1h) + (u2f1 + ce2h
−1)− c(e1h+ e2h

−1)

= u1f2 + u2f1

We define the notion of existential unforgeability under adaptive chosen mes-
sage attack as follows.

Definition 9 (EUF-CMA Security) A signature scheme is existential un-
forgeable under adaptive chosen message attack (EUF-CMA) if given a public
key pk to any polynomial-time adversary A who can access the signing oracle
Sign(sk, ·) and query a number of signatures, then the adversary A can produce
a valid signature σ for a message m which has not been previously queried to the
signing oracle only with negligible success probability (the success probability is
denoted as Pr[Forge]).

The advantage Adv of an adversary A in successfully solving a problem is
defined as follows.

Definition 10 The advantage of an adversary A in solving a problem B denoted
as Adv(B) is defined as the probability that A successfully solves problem B.

We define the following assumptions which are used to prove the security of
the proposed signature scheme.

Assumption 1 (Syndrome Decoding for 2-Quasi-Cyclic Code (2QC-SDP) As-
sumption) The syndrome decoding for 2-quasi-cyclic code assumption is the as-
sumption that the advantage of an adversary A in solving 2QC-SDP is negligible,
i.e. Adv(2QC-SDP) < ϵ2QC-SDP.

Assumption 2 (Codeword Finding for 2-Quasi-Cyclic Codes (2QC-CFP) As-
sumption) The codeword finding for quasi-cyclic codes assumption is the as-
sumption that the advantage of an adversary A in solving 2QC-CFP is negligible,
i.e. Adv(2QC-CFP) < ϵ2QC-CFP.

Assumption 3 (Decisional Codeword Finding for 2-Quasi-Cyclic Codes (2QC-DCFP)
Assumption) The decisional codeword finding for 2-quasi-cyclic codes assump-
tion is the assumption that the advantage of an adversary A in solving 2QC-DCFP
is negligible, i.e. Adv(2QC-DCFP) < ϵ2QC-DCFP.

Assumption 4 (Syndrome Decoding for High Weight on QC-LDPC Codes
(HWQC-LDPC-SDP) Assumption) The syndrome decoding for high weight of QC-
LDPC codes assumption is the assumption that the advantage of an adversary A
in solving HWQC-LDPC-SDP is negligible, i.e. Adv(HWQC-LDPC-SDP) < ϵHWQC-LDPC-SDP.
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Theorem 1 Under the 2QC-SDP, 2QC-DCFP, 2QC-CFP, HWQC-LDPC-SDP assumptions,
the HWQCS signature scheme with parameters (k, ωf , ωu, ωe, ωc, ωs, ωt) is secure
under the EUF-CMA model in the classical random oracle model.

Proof. We consider a chosen-message EUF adversary A against the HWQCS
signature scheme. To prove the security, adversary A interacts with the real
signature scheme and makes a sequence of experiments. The adversary A is
first given a public key h. A made qs signing queries and qH hash (H) queries.
Finally, A outputs a message/signature pair such that the message has not been
queried previously to the signing oracle. Let Pri[Forge] be the probability of an
event in experiment i that A obtains a valid signature of a message that has
not been queried previously to the signing oracle. Let Pr0[Forge] be the success
probability of an adversary A at the beginning (Experiment 0). Our goal is to
give an upper-bound of Pr0[Forge].

Experiment 1. During the course of the experiment, if there is a collision in H,
then we abort the experiment. The number of queries to the hash oracle or the
signing oracle throughout the experiment is at most qs + qH. Thus,

| Pr0[Forge]− Pr1[Forge] | ≤
qs + qH(

k
ωc

) .

Experiment 2. During the course of the experiment, A received a number of
signatures σj = (c,b, s1, s2)j for j = 1, · · · , qs. If A could solve for (e1, e2)j

from bj = (e1, e2)j

[
h

h−1

]
for some j, then A could forge a new signature. But,

the probability that A could solve it is bounded by ϵ2QC-SDP and we abort the
experiment in this case. Thus,

| Pr1[Forge]− Pr2[Forge] | ≤ ϵ2QC-SDP.

Experiment 3. During the course of the experiment, A received a number of
signatures σj = (c,b, s1, s2)j for j = 1, · · · , qs. If A could solve for (uifi, ei)

from (si)j = (uifi, ei)j

[
Ik
cj

]
for i = 1, 2 for some j, then A could forge a new

signature. But, the probability that A could solve it is bounded by ϵHWQC-LDPC-SDP
and we abort the experiment in this case. Thus,

| Pr2[Forge]− Pr3[Forge] | ≤ 2ϵHWQC-LDPC-SDP.

Experiment 4. In this experiment, a public key h is replaced by a random h′ ∈
R∗. To distinguish Experiment 4 from Experiment 3, the adversary must in fact
distinguish a well-formed public key h = f−1

1 f2 from a random invertible element
of R. Thus, we have

| Pr3[Forge]− Pr4[Forge] | ≤ ϵ2QC-DCFP.
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Furthermore, in this experiment, an adversary A has no signature information
on h′ and needs to solve a codeword finding problem for 2-quasi-cyclic codes in
order to forge a signature. Thus,

| Pr4[Forge] | ≤ ϵ2QC-CFP.

Combining the above experiments, the success probability of the adversary
A is

| Pr0[Forge] | ≤
3∑

i=0

| Pri[Forge]− Pri+1[Forge] |+ | Pr4[Forge] |

≤ ϵ2QC-CFP + ϵ2QC-DCFP + 2ϵHWQC-LDPC-SDP + ϵ2QC-SDP +
qs + qH(

k
ωc

) .

4 Security Analysis

Let λ be the security level. For the security analysis, we consider two common
types of attacks, namely, key recovery attacks and signature forgeries.

4.1 Key Recovery Attack

Finding the secret key (f1, f2) from the public key h = f−1
1 f2 is equivalent

to finding the codeword (f1, f2) with parity check matrix [h Ik] such that

(f1, f2)

[
h
Ik

]
= 0. The work factor of solving the codeword finding problem for

quasi-cyclic parity-check codes is

WFA,2QCCF(2k, k, 2ωf ) = 2c[1+2ωf (1+o(1))]−log2 2k, where c = 1.

Therefore, we can prevent key recovery attack by choosing the parameters such
that 1 + 2ωf (1 + o(1))− log2 2k ≥ λ, where λ is the security level.

Another method to find the secret key (f1, f2) is by performing exhaustive
search for f1 and checking whether f1h is of small Hamming weight wf . The
complexity of performing this exhaustive search is

(
k
ωf

)
. So, we must choose the

parameters such that log2
(

k
ωf

)
≥ λ, where λ is the security level.

Based on the above, we choose the parameters such that

min
{
log2

(
k

ωf

)
, 1 + 2ωf (1 + o(1))− log2 2k

}
≥ λ.

This ensures that the scheme is resistant against key recovery attacks.
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4.2 Signature Forgery

4.2.1 Collision

For a signature scheme based on the Schnorr scheme, it is important to
address the issue of collisions between different messages. In order to prevent
collisions, one way is to use a collision-free hash function. Another way is to
use a secure hash function such that the collision is minimal, that is, satisfying
log2

(
k
ωc

)
≥ 2λ, where λ is the security level.

4.2.2 Forgery From Known Signature

We consider the following methods to forge a signature.

4.2.2.1 Forgery via Syndrome Decoding Algorithm

From a given signature, we have b = e1h + e2h
−1, si = uifi + cei, where

i = 1, 2. Equivalently, b = (e1, e2)

[
h

h−1

]
, si = (uifi, ei)

[
Ik
c

]
for i = 1, 2.

(1) One may use syndrome decoding algorithms to recover (e1, e2) from b =

(e1, e2)

[
h

h−1

]
. The work factor is

WFA,2QCSD(2k, k, 2ωe) = 2c[1/2+2ωe(1+o(1))]−(log2 2k)/2, where c = 1.

In order to prevent this attack, we choose k, ωe such that

1/2 + 2ωe(1 + o(1))− (log2 2k)/2 ≥ λ,

where λ is the security level.
(2) One may also use syndrome decoding algorithms to recover (e1, e2,u1f1,u2f2)
from b

s1
s2

 =

h h−1 0k 0k

c 0k Ik 0k

0k c 0k Ik




e1
e2
u1f1
u2f2


Note that the weight of (e1, e2,u1f1,u2f2) is ω = 2(ωe+wt(u1f1)). So, the work
factor is

WFA,4QCSD(4k, k, ω) =
min{

(
4k
ω

)
, 24k−k}(

4k−k
ω

)√
4k − k

=
min{

(
4k
ω

)
, 23k}(

3k
ω

)√
3k

.

(3) Another method to find the ephemeral secret (e1, e2) is by performing ex-
haustive search on e1 and checking whether e2 = bh+e1h

2 is of small Hamming
weight we. The complexity of performing this method is

(
k
ωe

)
. In order to prevent

this attack, we choose k, ωe such that log2
(
k
ωe

)
≥ λ, where λ is the security level.

Suppose an adversary can recover (e1, e2) using any of the above methods.
Then, the adversary obtains uifi = si−cei for i = 1, 2. Afterwards, he can forge
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a new signature by generating new b′ = e′1h+e′2h
−1 and setting s′i = uifi+c′e′i,

for i = 1, 2.
Based on the above analysis, in order to resist forgery attacks with security

level λ, we choose the parameters k, ω, ωe satisfying the following conditions:

min
{
log2

(
k

ωe

)
, 1/2 + 2ωe(1 + o(1))− (log2 2k)/2, log2

min{
(
4k
ω

)
, 23k}(

3k
ω

)√
3k

}
≥ λ.

4.2.2.2 Forgery via Bit-Flipping Algorithm

Given a signature, we have si = uifi + cei, where i = 1, 2. One may try to

apply the bit-flipping algorithm on si = (uifi, ei)

[
Ik
c

]
for i = 1, 2 to recover ei.

In this case, n = 2k, H =

[
Ik
c

]
and the threshold τ = ⌊ρ ·ωc⌋, where ρ is the

probability that (ei)j = (si)j = 1 for j ∈ {0, · · · , k− 1} and will be given in the
following proposition.

Proposition 2 If c0 = 1 and (si)j = 1, then ρ = Prob[ (ei)j = (si)j = 1 ] is
equal to

(1−P (k, ωu, ωf )) ∗ (1−P (k, ωc−1, ωe−1))+P (k, ωu, ωf ) ∗P (k, ωc−1, ωe−1).

Proof. If c0 = 1, then

(si)j = (uifi + cei)j = (ei)j +

k−1∑
l=0

(ui)l(fi)j−l mod k +
∑

0≤l≤k−1
l̸=j

cl(ei)j−l mod k.

Note that the probability that (uifi)j = 1 and
∑

l ̸=j(ci)l(ei)j−l mod k = 1 are
P (k, ωu, ωf ) and P (k, ωc − 1, ωe − 1) respectively. Hence, the probability that
(ei)j = (si)j = 1 is

(1−P (k, ωu, ωf ))∗ (1−P (k, ωc−1, ωe−1))+P (k, ωu, ωf ) ∗P (k, ωc−1, ωe−1).

As in Problem 4, we choose the parameters such that wt(uifi) + ωe ≫
√
2k,

wt(uifi)+wt(cei)
k > 1

2 and ωc ≪
√
k. With this choice of parameters, the bit-

flipping algorithm will not be able to decode correctly to obtain ei for i = 1, 2.
Hence, one cannot obtain uifi and forge a new signature.

4.2.3 Forgery Without Knowing Any Signature

Note that an adversary can generate b = e1h+ e2h
−1. To forge a signature,

the adversary has to produce si of low weight. As the adversary needs to pro-
duce uifi of low Hamming weight and u1f1h such that u2f2h

−1 are also of low
Hamming weight, therefore wt(uifi) must be set to low. In order to ensure this,
we need to define the normal distribution and present the following lemma and
corollary.

Let N (0, σ2) be the normal distribution with mean 0 and standard deviation

σ. Its density function is ρσ(x) = ( 1√
2πσ2

)e−
x2

2σ2 for x ∈ R.
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Lemma 2 [16] For k > 2, Z ∼ N (0, σ2), then

Pr[ |z| > kσ | z ← Z ] ≤ 1

2
(e−k2

+ e−
k2

2 ).

Corollary 1 (1) For κ > 2, Y ∼ N (µ, σ2), then Pr[ |y − µ| > κσ | y ← Y ] ≤
1
2 (e

−κ2

+ e−
κ2

2 ).

(2) Let n be a large positive integer and 0 < p < 1. If Y is a binomial distribution
with parameters n and p (denoted Bin(n, p)), then Y approximates to N (µ, σ2),
where µ = np and σ =

√
np(1− p).

(3) In (2), if 0 < l < p < 1 and κ = (p−l)
√
n√

p(1−p)
, then

Pr[ |y − np| > (p− l)n | y ← Y ] ≤ 1

2
(e−κ2

+ e−
κ2

2 ) < e−κ2/2.

Setting n = k, p = 1
2 and l < 1

2 in Corollary 1 (3), we have Pr[|y − k
2 | >

( 12−l)k | y ← Bin(k, p)] < e−κ2/2. To ensure that the probability is negligible, we
should choose κ such that κ = (1−2l))

√
k and 1

2 (e
−κ2

+e−κ2/2) < e−κ2/2 < 2−λ,
that is,

κ2

2
log2 e > λ =⇒ κ >

√
2λ

log2 e
.

Letting κ0 =
√

2λ
log2 e , we have

λ 128 192 256
κ0 13.320 16.314 18.838

This means that if an adversary randomly picks an element a in place of
uifi for i = 1, 2, then the probability that |wt(a) − k

2 | ≤ κ
√

k/4 is more than
1− 2−λ. Hence, by selecting appropriate l, k such that (1− 2l)

√
k ≥ κ0, we can

ensure that the adversary cannot find a of weight less than lk. Therefore, it is
not possible to forge a signature with probability more than 2−λ.

5 Parameters Selections

Based on the above security analysis, the parameters (k, ωf , ωu, ωe, ωc, ωs) of the
signature scheme must be chosen properly in order to achieve λ-bit computa-
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tional security. The following conditions are to be fulfilled:

min
{
log2

(
k

ωf

)
, 1 + 2ωf (1 + o(1))− log2 2k

}
≥ λ,

log2

(
k

ωc

)
≥ 2λ,

min
{
log2

(
k

ωe

)
,
1

2
+ 2ωe(1 + o(1))− log2 2k

2
, log2

min{
(
4k
ω

)
, 23k}(

3k
ω

)√
3k

}
≥ λ,

(1− 2l)
√
k >

√
2λ

log2 e
,

wt(uifi) + ωe ≫
√
2k,

wt(uifi) + wt(cei)

k
>

1

2
.

The parameters for various security levels are given in the following Table 1.

Table 1. The parameters of the HWQCS signature

Name λ k ωf ωu ωe ωc
wt(s)

k
wt(uf)

k
wt(t)

k

Para-1 128 12539 145 33 141 31 0.3863 0.2694 0.3937
Para-2 192 18917 185 41 177 39 0.3938 0.2779 0.4013
Para-3 256 25417 201 51 191 51 0.3978 0.2786 0.4019

To compute the size of HWQCS signature scheme, the public key size is ⌈k/8⌉
bytes, the secret key size is 2 ∗ ⌈⌈log2 k⌉ ∗ ωf/8⌉ bytes and the signature size is
3 ∗ ⌈k/8⌉+ ⌈⌈log2 k⌉ ∗ ωc/8⌉ bytes. We list their sizes for various security levels
in Table 2.



High Weight Code-based Signature Scheme from QC-LDPC Codes 15

Table 2. Size of Signature Schemes (at certain classical security levels)

Scheme Security Size (in Bytes)
PK SK Sg

HWQCS-I 128 1,568 508 4,759
HWQCS-II 192 2,365 694 7,169
HWQCS-III 256 3,178 754 9,630

As listed in Table 2, the public key size, secret key size and signature size
of the proposed signature scheme HWQCS-I are 1568 bytes, 508 bytes and 4759
bytes respectively for 128-bit classical security level.

We provide comparison of the key sizes and signature size for various code-
based signature schemes in Table 3.

Table 3. Comparison of Various Code-based Signature Schemes (at certain classical
security levels)

Scheme PK size SK size Sg size C.Sec
HWQCS-I 1.568 KB 508 B 4.759 KB 128

Durandal-I19 [3] 15.25 KB 2.565 KB 4.060 KB 128
WAVE23 [32] 3.60 MB 2.27 MB 737 B 128
CCJ23 [14] 90 B 231 B 12.52 KB 128
SDitH23 [2] 120 B 404 B 8.26 KB 128
BG23 [10] 1 KB 2 KB 13.5 KB 128

cRVDC19 [9] 0.152 KB 0.151 KB 22.480 KB 125
CVE18 [8] 7.638 KB 0.210 KB 436.600 KB 80

In Table 3, it can be observed that the signature size of the proposed signa-
ture scheme HWQCS-I is smaller than the other signature schemes except for
the WAVE23 signature scheme [32] and the Durandal-I19 signature scheme [3].
However, it should be noted that the public key sizes for both the WAVE23 and
Durandal-I19 signature schemes exceed ten thousand bytes. These are larger
than that of the signature scheme HWQCS-I. Moreover, recently there is an
attack on Durandal-I19 [6] which requires it to increase its parameter sizes.

Although the public key size of the CCJ23 signature scheme [14] and the
SDitH23 signature scheme [2] are relatively small, but their signature sizes
are more than eight thousand bytes. Overall, the proposed signature scheme
HWQCS-I has shorter combined key and signature sizes than other signature
schemes.

6 Conclusion

In this paper, we constructed a new Hamming metric code-based signature
scheme (called HWQCS signature scheme). The security of HWQCS signature
is based on the hardness of the syndrome decoding problem and the codeword
finding problem on 2-quasi-cyclic codes, as well as on high error for quasi-cyclic



16 Chik How Tan and Theo Fanuela Prabowo

low parity-check codes respectively. We provided security proof of the HWQCS
signature scheme under the random oracle model and gave detailed analysis on
the security of the HWQCS signature scheme against Bit-Flipping attack and
statistical attack. Furthermore, we also provided concrete parameter choices for
the HWQCS signature scheme and compared its key sizes and signature size to
other existing signature schemes. The signature scheme HWQCS-I outperforms
other code-based signature schemes with a public key size of 1568 bytes, secret
key size of 508 bytes and signature size of 4759 bytes at 128-bit security level.
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