
Compact Identity-based Signature and
Puncturable Signature from SQISign

Abstract. Puncturable signature (PS) offers a fine-grained revocation
of signing ability by updating its signing key for a given message m such
that the resulting punctured signing key can produce signatures for all
messages except for m. In light of the applications of PS in proof-of-stake
blockchain protocols, disappearing signatures and asynchronous trans-
action data signing services, this paper addresses the need for design-
ing practical and efficient PS schemes. Existing proposals pertaining to
PS suffer from various limitations, including computational inefficiency,
false-positive errors, vulnerability to quantum attacks and large key and
signature sizes. To overcome these challenges, we aim to design a PS
from isogenies. We first propose an Identity-Based Signature (IBS) by
employing the Short Quaternion and Isogeny Signature (SQISign). We
provide a rigorous security analysis of our IBS and prove it is secure
against unforgeability under chosen identity and chosen message attacks.
More interestingly, our IBS achieves the most compact key and signa-
ture size compared to existing isogeny-based IBS schemes. Leveraging
our proposed IBS, we introduce the first Short Quaternion and Isogeny
Puncturable Signature (SQIPS) which allows for selective revocation of
signatures and is supported by a comprehensive security analysis against
existential forgery under chosen message attacks with adaptive punctur-
ing. Our PS scheme SQIPS provides resistance from quantum attacks,
enjoys small signature size and is free from false-positive errors.

Keywords: Puncturable signature, Isogenies, Identity-based signature,
Post-quantum cryptography.

1 Introduction

With the proliferation of digital technology and the widespread adoption of on-
line transactions, ensuring the privacy and security of sensitive data has emerged
as a paramount concern. Cryptographic techniques lay the foundation for secure
transactions by protecting the integrity and confidentiality of digital communica-
tions. Digital signatures are of particular importance among these cryptographic
techniques as they enable parties to verify the authenticity and integrity of com-
munications over the Internet. Puncturable signature (PS) is a variant of digital
signature proposed by Bellare, Stepanovs and Waters [1] at EUROCRYPT 2016.
It offers a fine-grained revocation of signing ability by updating the secret key
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with selective messages. In contrast to a conventional digital signature, PS in-
cludes an additional algorithm known as Puncture which enables the signer to
create punctured secret key with messages chosen by itself. Precisely, with the
punctured secret key that has been punctured at a specific message m, the signer
can sign on any message except for the punctured message m. The security defi-
nition of a PS requires that the adversary cannot forge signatures on punctured
messages even though the punctured secret key is compromised.
Applications. Puncturable signatures have been identified as a versatile cryp-
tographic primitive with numerous applications. These include improving the
resilience of proof-of-stake blockchain protocols, designing disappearing signa-
tures and securing asynchronous transaction data signing services. We delve
deeper into these applications and their significance below:

– Proof of Stake (PoS) and Proof of Work (PoW) are two consensus mech-
anisms used in blockchain networks to validate transactions. While PoW
requires substantial computational power, PoS relies on participants’ cryp-
tocurrency stake, resulting in a more energy-efficient approach. However, the
majority of existing PoS protocols are prone to long-range attacks [9] [7]. In
this attack, the attacker can tweak the historical records of the blockchain
which could lead to double-spending of cryptocurrency or the deletion of
prior transactions. PS provide a viable solution to construct practical PoS
blockchain resilient to long-range attacks by enabling the selective revoca-
tion of past signatures. By puncturing prior used signatures associated with
a specific stakeholder, the potential for an attacker to leverage accumulated
stakes from the past and manipulate the blockchain’s history is reduced.
This prevents the forging of past signatures and deter long-range attacks.

– Puncturable signatures are essential building blocks for designing disappear-
ing signature [10] in the bounded storage model. A disappearing signature
refers to a signature scheme where the signature becomes inaccessible or
“disappears” once the streaming of the signature stops. In the context of
bounded storage model, a disappearing signature ensures that the signature
can only be verified online and cannot be retained by any malicious party.

– Asynchronous transaction data signing services involve the signing and verifi-
cation of transaction data in a non-interactive manner without necessitating
all parties involved to be online simultaneously [15]. In this context, messages
may be delayed and participants may not be available simultaneously due to
factors like connectivity issues or delivery failures. PS have applications in
ensuring the integrity and authenticity of transaction data in asynchronous
signing services. By using PS, the transaction session identity can serve as a
prefix that is subsequently punctured after the honest user signs the trans-
action data. This ensures that no other signature can exist for messages with
the same prefix, thereby upholding the integrity of the transaction data.

Related Works. Several studies have been carried out pertaining to PS, explor-
ing their potential applications and security properties. The notion of PS was first
proposed by Bellare et al. [1] in 2016. However, their proposed scheme was based
on indistinguishability obfuscation which resulted in excessive computational
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overhead, rendering the scheme impractical. In a subsequent work, Halevi et al.
[11] proposed a PS by combining a statistically binding commitment scheme with
non-interactive zero-knowledge proofs. Their approach differed from the conven-
tional PS schemes as it involved updating the public key instead of the secret
key during each puncture operation which posed significant challenges in prac-
tical deployment. In 2020, Li et al. [13] presented a PS using a bloom filter that
surpasses prior schemes in terms of signature size and algorithm efficiency. Addi-
tionally, the authors explored the application of PS in proof-of-stake blockchain
protocols, specifically addressing the issue of long-range attacks caused by secret
key leakage [9] [7]. However, their proposed scheme faced a notable challenge in
the form of non-negligible false-positive errors, stemming from the probabilistic
nature of the bloom filter data structure. Moreover, their proposed scheme was
based on the Strong Diffie-Hellman (SDH) assumption in bilinear map setting
and is thus susceptible to quantum attacks due to Shor’s algorithm [18]. In light
of the devastating consequences that quantum computers have had on the secu-
rity of classical cryptosystems, Jiang et al. [12] proposed a generic construction
of PS from identity-based signatures (IBS). Moreover, they presented different
instantiations of their generic construction from lattice-based, pairing-based and
multivariate-based assumptions. More precisely, their lattice-based instantiation
leverages the efficient IBS proposed by Tian and Huang [19] and is based on
the Short Integer Solution (SIS) assumption. Their pairing-based instantiation
uses the identity-based version of Paterson’s signature [20] which is based on
the Computational Diffie-Hellman (CDH) assumption. The instantiation over
multivariate assumption relies on ID-based Rainbow signature [4].

Contributions. The existing proposals for PS are undesirable for practical ap-
plications. Some PS schemes have large key and signature sizes as they rely on
heavy cryptographic structures, making them computationally expensive and in-
efficient. The PS based on bloom filter suffers from non-negligible false-positive
errors, providing economical benefits to the attackers in blockchain. Some PS
schemes are prone to quantum attacks raising significant security concerns. To
address these limitations, it is imperative to develop improved and more practi-
cal approaches to PS. In this work, we identify a gap in the existing literature,
noting the absence of a construction for PS from isogenies. The emergence of
isogeny-based cryptography as a promising candidate for post-quantum cryp-
tosystems, characterized by its compact key sizes compared to other alterna-
tives, has motivated us to focus on the design of an isogeny-based PS scheme.
The compactness of isogeny-based cryptography makes it particularly appealing
for practical applications, where efficiency and scalability are crucial factors. To
show an instantiation of the generic construction of PS proposed by Jiang et
al. [12], we seek an IBS scheme from isogenies. One of the main technical chal-
lenges encountered during our research is the absence of a suitable IBS based
on isogenies to instantiate the generic construction. Though there exist two con-
structions of IBS from isogenies in the literature, none appears to be a suitable
candidate to design PS. Peng et al. [16] proposed the first construction of IBS
from isogenies. Unfortunately, their IBS scheme was proven to be flawed by Shaw
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and Dutta [17] who provided a viable fix and designed an IBS scheme from ID-
based identification scheme. However, we find that the IBS scheme of [17] has a
large key and signature size, rendering it unsuitable for blockchain applications.
Furthermore, both the prior IBS schemes are based on Commutative Supersin-
gular Isogeny Diffie-Hellman (CSIDH) based group action [2] which suffers from
a subexponential attack [5] leading to poor concrete efficiency. The somewhat
unsatisfactory state-of-art motivates us to first design an IBS from isogenies with
compact key and signature size.

The most recent and sophisticated Short Quaternion and Isogeny Signature
(SQISign) by De Feo et al. [6] is the starting point in designing our IBS. The
signature scheme SQISign is derived from a one-round, high soundness, interac-
tive identification protocol. The combined size of the signature and public key of
SQISign are an order of magnitude smaller than all other post-quantum signature
schemes. We then employ our proposed IBS to design our PS from isogenies.
Thus, our main contributions in this paper are two-fold, as summarized below:

– Firstly, we design an IBS scheme from SQISign which we refer to as Short
Quaternion and Isogeny Identity-based Signature (SQIIBS). We provide a
rigorous security reduction showing it is secure against unforgeability under
chosen identity and chosen message attacks (UF-IBS-CMA). We compare our
scheme with the existing IBS schemes from isogenies and show that our
scheme outperforms existing schemes in terms of key size and signature size
which thereby reduces the storage and communication cost.

– Secondly, we employ our identity-based signature scheme SQIIBS to con-
struct our PS from isogenies which we refer to it as Short Quaternion and
Isogeny Puncturable Signature (SQIPS). We prove our scheme to be secure
against existential unforgeability under chosen message attacks with adaptive
puncturing (UF-CMA-AP). We also compare the features of our scheme with
the existing PS schemes. Our scheme works for a pre-determined time of
key punctures since the range of prefix space is fixed in advance. The size
of the punctured secret key decreases linearly as the times of key puncture
increase. Our scheme involves an efficient puncture operation that only con-
tain a conversion from a bit string to a decimal integer and the deletion of a
part in the current secret key. More positively, our scheme provides quantum
security, enjoys small signature size and is free from false-positive errors.

2 Preliminaries

Let λ ∈ N denotes the security parameter. By i ∈ [T ], we mean i belongs to
the set {1, 2, . . . , T}. The symbol #S denotes the cardinality of S. By bin(x),
we mean the binary representation of x. A function ϵ(·) is negligible if for every
positive integer c, there exists an integer k such that for all λ > k, |ϵ(λ)| < 1/λc.
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2.1 Quaternion Algebras, Orders and Ideals

Quaternion Algebras. For a, b ∈ Q∗ = Q \ {0}, the quaternion algebra over
Q, denoted by H(a, b) = Q + iQ + jQ + kQ, is defined as a four-dimensional
non-commutative vector space with basis {1, i, j, k} such that i2 = a, j2 = b
and k = ij = −ji. Every quaternion algebra H(a, b) is associated by a standard
convolution g : H(a, b) → H(a, b) given by g : α = a1 + a2i + a3j + a4k →
a1 − a2i − a3j − a4k = ᾱ. The reduced norm nr : H(a, b) → Q of a standard
convolution g is the map nr : α → αg(α). In this work, we are interested in the
quaternion algebra Bp,∞ = H(−1,−p) for some prime p.

Ideals and Orders. A fractional ideal I = α1Z+α2Z+α3Z+α4Z is a Z-lattice
of rank four with {α1, α2, α3, α4} a basis of Bp,∞. The norm of I, denoted by
nr(I), is defined as the largest rational number such that nr(α) ∈ nr(I)Z for
any α ∈ I. The conjugate ideal Ī of I is given by Ī = {ᾱ |α ∈ I}. An order
is a subring of Bp,∞ that is also a fractional ideal. A maximal order O is an
order that is not properly contained in any other order. The left order of a
fractional ideal I, denoted by OL(I), is defined as OL(I) = {α ∈ Bp,∞ |αI ⊆ I}.
Similarly, right order of a fractional ideal I, denoted by OR(I), is defined as
OR(I) = {α ∈ Bp,∞ | Iα ⊆ I}. Here I is said to be a left OL(I)-ideal or a right
OR(I)-ideal or an (OL(I),OR(I))-ideal. An Eichler order is the intersection
of two maximal orders inside Bp,∞. A fractional ideal I is called integral if
I ⊆ OL(I) or I ⊆ OR(I). Two left O-ideals I and J are equivalent if there exists
β ∈ Bp,∞ \ {0} such that I = Jβ and is denoted by I ∼ J . A special extremal
order is an order O in Bp,∞ which contains a suborder of the form R+ jR where
R = Z[ω] ⊂ Q[i] is a quadratic order and ω has smallest norm in O.

2.2 Elliptic curves, isogenies and Deuring’s correspondence

Isogenies. Let E1 and E2 be two elliptic curves over a finite field F . An isogeny
from E1 to E2 is a non-constant morphism φ : E1 → E2 over F satisfying
φ(ΘE1) = ΘE2 where ΘEi

is the point at infinity of the curve Ei for i = 1, 2.
The degree of the isogeny φ, denoted by deg(φ) is its degree as a rational map. A
non-zero isogeny φ : E1 → E2 is called separable if and only if deg(φ) = #ker(φ)
where ker(φ) = φ−1(ΘE2) is the kernel of φ. An isogeny φ is said to be cyclic
(non-backtracking) if its kernel is a cyclic group. For any isogeny φ : E1 → E2,
there exists a unique dual isogeny φ̂ : E2 → E1 satisfying φ ◦ φ̂ = [deg(φ)], the
multiplication-by- deg(φ) map on E2. An isogeny from an elliptic curve E to itself
is called an endomorphism. The set of all endomorphisms of E forms a ring under
pointwise addition and composition, called the endomorphism ring of E and is
denoted by End(E). For a supersingular elliptic curve E, the endomorphism ring
End(E) is isomorphic to an order in a quaternion algebra. The j-invariant of an
elliptic curve E : y2 = x3 +Ax+B over F is given by j(E) = 1728 4A3

4A3+27B2 .
Theorem 2.21. [2] Given a finite subgroup G of an elliptic curve E1, there
exists a unique (up to F -isomorphism) elliptic curve E2 and a separable isogeny
φ : E1 → E2 such that ker(φ) = G and E2 := E1/G with deg(φ) = #ker(φ).
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Throughout this work, we focus on supersingular curves over F = Fp2 . We
fix the curve E0 : y2 = x3 +x over Fp2 which has special extremal endomorphism
ring End(E0) = O0 = ⟨1, i, i+j2 , 1+k

2 ⟩ where i2 = −1, j2 = −p and k = ij.

Deuring’s correspondence: Deuring’s correspondence [8] establishes a one-
to-one correspondence between the set of isomorphism classes of supersingular
curves over Fp2 and the set of ideal classes of a given maximal order. Under this
correspondence, we look into the connection between ideals in maximal orders
of quaternions and separable isogenies between supersingular curves over Fp2 .

Theorem 2.22. Let φ : E0 → E1 be a separable isogeny and O0 = End(E0)
and O1 = End(E1) are the maximal orders corresponding to the endomorphism
rings of E0 and E1. Then we define the corresponding left O0-ideal Iφ = {α ∈
O0 |α(P ) = ΘE0 for all P ∈ ker(φ)}. Conversely, given a left O0-ideal I, we
can define the kernel E0[I] = ∩α∈IE0[α] = {P ∈ E0 |α(P ) = ΘE0 for all α ∈ I}
and compute the separable isogeny φI : E0 → E0/E0[I] that corresponds to I.

Lemma 2.23. [6]. Let O be a maximal order, I be a left O-ideal and β ∈ I \{0}.
Then χI(β) = I β̄

nr(I) is a left O-ideal equivalent to I and has norm nr(β)
nr(I) .

Pushforward and pullback isogeny. Consider three elliptic curves E0, E1,
E2 over Fp2 and two separable isogenies φ1 : E0 → E1 and φ2 : E0 → E2
of coprime degrees N1 and N2 respectively. The pushforward of φ1 by φ2 is
denoted by [φ2]∗φ1 and is defined as the separable isogeny [φ2]∗φ1 from E2 to
some new curve E3 such that ker([φ2]∗φ1) = φ2(ker(φ1)) and deg([φ2]∗φ1) = N1.
Similarly, the pushforward of φ2 by φ1 is denoted by [φ1]∗φ2 and is defined as the
separable isogeny [φ1]∗φ2 : E1 → E3 such that ker([φ1]∗φ2) = φ1(ker(φ2)) and
deg([φ1]∗φ2) = N2. Pullback isogeny is the dual notion of pushforward isogeny.
Consider two separable isogeniers φ1 : E0 → E1 and ρ2 : E1 → E3 of coprime
degrees. The pullback of ρ2 by φ1 is denoted by [φ1]∗ρ2 and is defined as the
separable isogeny [φ1]∗ρ2 from E0 to a new curve E4 satisfying [φ1]∗ρ2 = [φ̂1]∗ρ2.

The pushforward and pullback terms can be extended to ideals as well.
Consider a (O0,O1)-ideal J and a (O0,O2)-ideal K where O0 = End(E0),
O1 = End(E1) and O2 = End(E2). The pushforward of J by K, denoted by
[K]∗J is the ideal I[φK ]∗φJ

corresponding to the pushforward isogeny [φK ]∗φJ .
Consider a (O1,O3)-ideal L where O1 = End(E1), O3 = End(E3), then the
pullback of L by J , denoted by [J ]∗L is defined as [J ]∗L = [J̄ ]∗L .

Lemma 2.24. [6] Let I is an ideal with left order O0 and right order O and
J1, J2 be O0-ideals with J1 ∼ J2 and gcd(nr(J1), nr(J2), nr(I)) = 1. Suppose that
J1 = χJ2(β) and β ∈ J2 ∩O0 ∩O. Then [I]∗J1 ∼ [I]∗J2 and [I]∗J1 = χ[I]∗J2(β).

2.3 SigningKLPT algorithm

We briefly review below the sub-algorithms invoked by the algorithm Sign-
ingKLPT. The details of which can be found in the work of De Feo et al. [6].
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Cornacchia(M)→ (x, y): This algorithm on input M ∈ Z either outputs ⊥ if M
cannot be represented as f(x, y) or returns a solution (x, y) to f(x, y) = M .

EquivalentPrimeIdeal(I) → L ∼ I: This algorithm takes as input a left O0-ideal
I represented by Minkowski reduced basis [14] (δ1, δ2, δ3, δ4). It chooses an
integer m, generates a random element δ = Σixiδi with xi ∈ [−m,m] and
checks if nr(δ)

nr(I) is a prime number. If not, it continues to generate random
δ until it finds a δ ∈ I for which nr(δ)

nr(I) is a prime number. The algorithm
outputs the ideal L = χI(δ) = I δ̄

nr(I) equivalent to I and of prime norm.
EquivalentRandomEichlerIdeal(I, N) → L ∼ I: This algorithm takes as input a

left O0-ideal I and an integer N and finds a random equivalent left O0-ideal
L of norm coprime to N .

FullRepresentIntegerO0(M) → γ: This algorithm takes input an integer M ∈ Z
with M > p and outputs an element γ ∈ O0 with nr(γ) = M as follows.

i. Sets m′ = ⌊
√

4M
p ⌋ and samples a random integer z′ ∈ [−m′,m′].

ii. Sets m′′ = ⌊
√

4M
p − (z′)2⌋ and samples a random integer t′ ∈ [−m′′,m′′].

iii. Sets M ′ = 4M−p
(
(z′)2+(t′)2)

and runs Cornacchia(M ′) until Cornacchia
returns a solution (x′, y′) to f(x′, y′) = M ′.

iv. If x′ ̸= t′ (mod 2) or z′ ̸= y′ (mod 2) then go back to Step (i).
v. The algorithm outputs γ = x+ yi+ z i+j2 + t 1+k

2 ∈ O0 of norm M where
x = x′−t

2 , y = y′−z
2 , z = z′ and t = t′.

IdealModConstraint(I, γ)→ (C0 : D0): On input a left O0-ideal I of norm N and
an element γ ∈ O0 of norm Nn, this algorithm outputs a projective point
(C0 : D0) ∈ P1(Z/NZ) satisfying γµ0 ∈ I with µ0 = (C0 + ωD0)j ∈ Rj.

EichlerModConstraint(I, γ, δ) → (C0 : D0): This algorithm takes input a left
O0-ideal I of norm N , elements γ, δ ∈ O0 of norms coprime to N and
outputs a projective point (C0 : D0) ∈ P1(Z/NZ) satisfying γµ0δ ∈ I where
µ0 = (C0 + ωD0)j ∈ Rj.

FullStrongApproximationS(N,C,D) → µ: Taking as input a prime N , integers
C, D and a subset S ⊂ N, this algorithm outputs µ ∈ O0 of norm in S
satisfying 2µ = λµ0 + Nµ1 where µ0 = (C0 + ωD0)j ∈ Rj, λ ∈ Z and
µ1 ∈ O0. When S = {d ∈ N : d|D} for some D ∈ N, we simply write
FullStrongApproximationD.

CRTM,N (x, y) → z: This is the algorithm for Chinese Remainder Theorem
which takes as input x ∈ ZM , y ∈ ZN and returns z ∈ ZMN satisfying z ≡ x
(mod M) and z ≡ y (mod N) where M and N are coprime to each other.

We now describe the algorithm SigningKLPTℓe(Iτ , I) [6] which takes as input a
prime l, a fixed e ∈ N, a left O0 and a right O-ideal Iτ of norm Nτ and a left
O-ideal I and outputs an ideal J ∼ I of norm ℓe. The steps involved in the
algorithm SigningKLPT are illustrated in Fig. 1 and explicitly described below.

1. Runs the algorithm EquivalentRandomEichlerIdeal(I,Nτ ) to generate a ran-
dom ideal K ∼ I with gcd(nr(K), Nτ ) = 1. We denote the right order of the
ideal K (or I) by O2.
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2. Performs the pullback of the (O,O2)- ideal K by the (O0,O)-ideal Iτ to
obtain a (O0, O′)-ideal K ′ = [Iτ ]∗K where O′ = End(E′) for some curve E′.

3. Computes an ideal L = K ′ δ̄′

nr(K′) = χK′(δ′) ← EquivalentPrimeIdeal(K ′)
equivalent to K ′ but of prime norm N for some δ′ ∈ K ′. (See Lemma 2.23)

4. Chooses e0 ∈ N and runs the algorithm FullRepresentIntegerO0(Nℓe0) to ob-
tain an element γ ∈ O0 such that nr(γ) = Nℓe0 . Sets e1 = e− e0 ∈ N.

5. Finds the projective point (C0 : D0) ∈ P1(Z/NZ)← IdealModConstraint(L, γ)
satisfying γµ0 ∈ L where µ0 = (C0 + ωD0)j ∈ Rj.

6. Chooses δ ∈ O0 with gcd(nr(δ), Nτ ) = 1 and runs the algorithm Eichler-
ModConstraint(Z + Iτ , γ, δ) on input the ideal Z + Iτ of norm Nτ and ele-
ments γ, δ ∈ O0 of norms coprime to Nτ to find the projective point (C1 :
D1) ∈ P1(Z/NτZ) satisfying γµ1δ ∈ Z + Iτ where µ1 = (C1 + ωD1)j ∈ Rj.

7. Computes C ← CRTN,Nτ (C0, C1) where C is the solution modulo NNτ to
the system of congruences C ≡ C0 (mod N) and C ≡ C1 (mod Nτ ) and
D ← CRTN,Nτ

(D0, D1) where D is the solution modulo NNτ to the system
of congruences D ≡ D0 (mod N) and D ≡ D1 (mod Nτ ). If ℓep(C2 + D2)
is not a quadratic residue, go back to Step 4 and repeat the process.

8. Executes the algorithm FullStrongApproximationℓ⋆(NNτ , C,D) to generate
µ ∈ O0 of norm ℓe1 where ℓ⋆ = {ℓα : α ∈ N}.

9. Sets β = γµ, obtains the (O0,O′)-ideal χL(β) = L β̄
nr(L) (See Lemma 2.23)

and computes the (O,O2)- ideal J = [Iτ ]∗χL(β) by using pushforward of
the ideal χL(β) by the (O0,O)-ideal Iτ . (See Lemma 2.24)

10. The algorithm then returns the ideal J ∼ I.

Fig. 1. Pictorial description of SigningKLPT algorithm

Correctness. Step 5 and Step 8 ensure β ∈ L whereas Step 6 ensures β ∈
Z + Iτ . Also we have, nr(β) = nr(γ)nr(µ) = Nℓe0 ℓ̇e1 = Nℓe which implies nr(J)
= nr([Iτ ]∗χL(β)) = nr(β)

nr(L) = Nℓe

N = ℓe. Also, Lemma 2.24 applied to χL(β) =

L β̄
nr(L) = χK′(δ′) β̄

nr(L) = K ′ δ̄′

nr(K′)
β̄

nr(L) = χK′( βδ
′

nr(L) ) implies that [Iτ ]∗χL(β) ∼
[Iτ ]∗K ′. This proves J ∼ K and we also have K ∼ I, which implies J ∼ I.
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2.4 Signature Scheme

Definition 2.41. A signature scheme associated with a message space M is a
tuple of probabilistic polynomial-time (PPT) algorithms Sig = (Setup, KeyGen,
Sign, Verify) with the following syntax:
Sig.Setup(1λ) → pp : A trusted party taking input 1λ outputs the public pa-

rameter pp and makes it publicly available.
Sig.KeyGen(pp) → (sk, pk) : On input pp, the user runs this algorithm to gen-

erate a signing and verification key pair (sk, pk).
Sig.Sign(pp, sk, m)→ σ : Taking input pp, sk and a message m ∈M, the signer

executes this algorithm to generate a signature σ on the message m.
Sig.Verify(pp, pk, m, σ) → Valid/Invalid : On input pp, pk, m ∈ M and a

signature σ, the verifier checks the validity of the signature σ on m.

Correctness. For all pp← Sig.Setup(1λ), all (sk, pk)← Sig.KeyGen(pp) and all
signature σ ← Sig.Sign(pp, sk, m), it holds that

Sig.Verify(pp, pk,m, σ) = Valid

Definition 2.42. A signature scheme Sig is secure against existential unforge-
ability under chosen-message attacks (UF-CMA) if for all PPT adversary A, there
exists a negligible function ϵ such that

AdvUF-CMA
Sig,A (λ) = Pr[Awins in ExpUF-CMA

Sig,A (λ)] < ϵ

where the experiment ExpUF-CMA
Sig,A (λ) is depicted in Fig.2.

Setup: The challenger C generates the public parameter pp ← Sig.Setup(1λ) and secret-public
key pair (sk, pk) ← Sig.KeyGen(pp). It forwards pp and pk to the adversary A while keeps sk
secret to itself. It also maintains a list SList and initializes SList to ∅.

Query Phase: A issues polynomially many adaptive signature queries to the following oracle:
− OS(sk, ·) : On receiving a signature query on a message m, the challenger C checks if

m /∈ M. If the check succeeds, it returns ⊥. Otherwise, it computes a signature σ ←
Sig.Sign(pp, sk,m) on the message m under the secret key sk and updates SList ← SList ∪
{m}. It returns the computed signature σ to the adversary A.

Forgery: The adversary A eventually submits a forgery (m∗, σ∗). The adversary A wins the
game if m∗ /∈ SList and Valid ← Sig.Verify(pp, pk, m∗, σ∗).

Fig. 2. ExpUF-CMA
Sig, A (λ): Existential unforgeability under chosen-message attack

2.5 SQISign: an isogeny-based signature scheme

The signature scheme SQISign [6] comprises of four PPT algorithms (Setup,
KeyGen, Sign, Verify) having the following interface:
SQISign.Setup(1λ) → ppsgn: A trusted authority runs this algorithm on input a
security parameter 1λ and performs the following steps:

i. Chooses a prime p and fixes the supersingular curve E0 : y2 = x3+x over Fp2

with special extremal endomorphism ring End(E0) = O0 = ⟨1, i, i+j2 , 1+k
2 ⟩.

ii. Picks a smooth number D = 2e where 2e > p3.
iii. Picks an odd smooth number Dc = ℓe where ℓ is a prime and e ∈ N and

computes µ(Dc) = (ℓ+ 1) · ℓe−1.
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iv. Samples a cryptographic hash function H1 : Fp2 × {0, 1}∗ → [µ(Dc)].
v. Samples an arbitrary function ΦDc

(E, s) that maps a curve E and an integer
s ∈ [µ(Dc)] to a non-backtracking isogeny of degree Dc from E [3].

vi. Sets the public parameter ppsgn = (p,E0, Dc, D,H1, ΦDc).
SQISign.KeyGen(ppsgn)→ (sk, pk): On input ppsgn, the key generation algorithm
run by a user generates a signing-verification key pair (sk, pk) as follows:

i. Picks a random isogeny τ : E0 → EA of degree Nτ .
ii. Sets the signing key sk = τ and verification key pk = EA.

SQISign.Sign(ppsgn, sk,m) → σ: Taking input ppsgn, signing key sk = τ and a
message m ∈ {0, 1}∗, the signer generates a signature σ on m as follows:

i. Picks a random commitment isogeny ψ : E0 → E1.
ii. Computes s = H1(j(E1),m) and sets the challenge isogeny ΦDc

(E1, s) = φ
where φ : E1 → E2 is a non-backtracking isogeny of degree Dc.

iii. Computes Īτ , Iτ , Iψ and Iφ corresponding to τ̂ , τ , ψ and φ respectively.
iv. The signer having the knowledge of O = End(EA) through sk = τ and O2 =

End(E2) through φ ◦ψ : E0 → E2, executes the algorithm SigningKLPT2e(Iτ , I)
described in Section 2.3 on input the (O0,O)-ideal Iτ and the left O-ideal
I = IφIψ Īτ to obtain a (O,O2)-ideal J ∼ I of norm D = 2e.

v. Constructs a cyclic isogeny η : EA → E2 of degree D corresponding to the
ideal J such that φ̂ ◦ η is cyclic. The signature is the pair σ = (E1, η).

SQISign.Verify(ppsgn, pk,m, σ) → Valid/Invalid: The verifier verifies the validity
of the signature σ = (E1, η) on the message m as follows:

i. Computes s = H1(j(E1),m) and then recovers the isogeny ΦDc(E1, s) = φ.
ii. Checks if η is an isogeny of degree D from EA to E2 and that φ̂ ◦ η : EA → E1

is cyclic.
iii. If all the checks succeed returns Valid, otherwise returns Invalid.
Correctness. It follows from the correctness of SigningKLPT algorithm.

3 Security Aspect of SQISign

To prove the security of the signature scheme SQISign, the authors resort to
a computational assumption that formalises the idea that the isogeny η corre-
sponding to the ideal J returned by the algorithm SigningKLPT is indistinguish-
able from a random isogeny of the same degree. Before defining the problem
formally, we analyze the structure of η.

Lemma 3.01. [6] Consider the ideal L and element β ∈ L computed as in
steps 3, 9 respectively of the algorithm SigningKLPT described in Section 2.3.
The isogeny η corresponding to the output J of SigningKLPT algorithm is equal
to η = [τ ]∗ι where ι is an isogeny of degree ℓe satisfying β = ι̂ ◦ φL.

We recall the following notations before defining the (computationally) indistin-
guishable problem underlying the security of SQISign.
UL,Nτ

: For a given ideal L of norm N , UL,Nτ
denotes the set of all isogenies

ι computed in Lemma 3.01 from elements β = γµ ∈ L where γ is any
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possible output of the algorithm FullRepresentIntegerO0 and µ is computed
by algorithm FullStrongApproximation in Step 8 of SigningKLPT.

PNτ : We define PNτ =
⋃
C∈Cl(O) UC,Nτ where we write UC,Nτ for UL,Nτ where

L ← EquivalentPrimeIdeal(C) for an equivalence class C in the ideal class
group Cl(O0) of O0.

IsoD,j(E): Denotes the set of cyclic isogenies of degree D whose domain is a
curve inside the isomorphism class of E.

[τ ]∗P: Denotes the subset {[τ ]∗φ | φ ∈ P} of IsoD,j(E0) where P is a subset of
IsoD,j(E) and τ : E → E0 is an isogeny with gcd(deg(τ), D) = 1.

K: a probability distribution on the set of cyclic isogenies whose domain is E0,
representing the distribution of SQISign private keys.

Definition 3.02. [6] Let p be a prime and D be a smooth integer. Let τ : E0 →
EA be a random isogeny drawn from K and let Nτ be its degree. Let Oracleτ be
an oracle sampling random elements in [τ ]∗PNτ

. Let η be an isogeny of degree
D whose domain curve is E. Given p,D,K, EA, η and a polynomial number of
queries to Oracleτ , the Real or Random Isogeny problem is to determine where
1. whether η is uniformly random in IsoD,j(EA)
2. or η is uniformly random in [τ ]∗PNτ .

Informally speaking, the problem states that the ideals output by the algo-
rithm SigningKLPT are indistinguishable from uniformly random ideals of the
same norm. The hardness assumption underlying the security of SQISign is the
Real or Random Isogeny problem defined in Definition 3.02.

Theorem 3.03. [6] The scheme SQISign is UF-CMA secure under the hardness
of Real or Random Isogeny Problem defined in Definition 3.02.

3.1 Identity-based signature

Definition 3.11. An identity-based signature is a tuple IBS = (Setup, Extract,
Sign, Verify) of four PPT algorithms with the following syntax:
IBS.Setup(1λ) → (ppibs,msk): The key generation centre (KGC) on input 1λ

generates a public parameter ppibs and a master secret key msk.
IBS.Extract(ppibs,msk, id) → uskid: The KGC runs this key extract algorithm

on input the public parameter ppibs, the master secret key msk and user
identity id. It generates the user secret key uskid for the given identity id.

IBS.Sign(ppibs, uskid,m) → σ: Taking input the public parameter ppibs, user
secret key uskid and a message m, the signer executes this randomized algo-
rithm and outputs a signature σ on the message m.

IBS.Verify(ppibs, id,m, σ) → Valid/Invalid: The verifier runs this deterministic
algorithm on input the public parameter ppibs, an identity id, a message m
and a signature σ to verify the validity of the signature σ.

Correctness. For all (ppibs, msk)← IBS.Setup(1λ), all uskid← IBS.Extract(ppibs,
msk, id), all m and all id, it holds that

IBS.Verify(ppibs, id,m, IBS.Sign(ppibs, uskid,m))→ Valid.
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Definition 3.12. An IBS scheme is said to be secure against unforgeability
under chosen identity and chosen message attacks (UF-IBS-CMA) if for all PPT
adversary A, there exists a negligible function ϵ such that

AdvUF-IBS-CMA
IBS,A (λ) = Pr[Awins in ExpUF-IBS-CMA

IBS,A (λ)] < ϵ

where the experiment ExpUF-IBS-CMA
IBS,A (λ) that formalizes the unforgeability game

is described in Fig.3.

Setup: The challenger C takes input the security parameter 1λ and generate (ppibs,msk) ←
IBS.Setup(1λ). It gives the public parameter ppibs to A while keeps the master secret key msk
secret to itself. Also it maintains three lists Klist, Clist and Mlist and initializes each to ∅.

Query Phase: C responds to polynomially many adaptive queries made by A as follows:
– Oracle OExtract(·): On receiving a query on a user identity id from A, C checks whether
(id, uskid) ∈ Kist. If so, it returns uskid and appends id to CList. Otherwise, it generates uskid ←
IBS.Extract(ppibs,msk, id), returns uskid and appends (id, uskid) to Klist and id to Clist.
– Oracle OSign(·): On receiving a query on a message m and a user identity id from A, C
computes uskid as in the extraction query, except for appending identity id to Clist. It then
computes a signature σ ← IBS.Sign(ppibs, uskid,m) and appends (m, id, σ) to Mlist.

Forgery: The adversary A eventually outputs a message m∗, user identity id∗ and a forge sig-
nature σ∗. The adversary A wins the game if IBS.Verify(ppibs, id

∗,m∗, σ∗) → Valid with the
restriction that id∗ /∈ Clist and (m∗, id∗, ·) /∈ Mlist.

Fig. 3. ExpUF-IBS-CMA
IBS, A (λ) : Unforgeability under chosen identity and chosen message

attacks

3.2 Puncturable Signature Scheme

Definition 3.21. A puncturable signature is a tuple PS = (PS.Setup, PS.Puncture,
PS.Sign, PS.Verify) of PPT algorithms associated with a message space M and
prefix space P that satisfy the following requirements. Note that, if x ∈ P, then
there exists some m ∈M with prefix x and every message m has a unique prefix.
PS.Setup(1λ) → (ppps, sk0): On input 1λ, the signer executes this algorithm to

generate the public parameter pkps and initial secret key sk0.
PS.Puncture(sk, x′)→ sk′: The signer takes as input its secret key sk and a prefix
x′ ∈ P and runs this randomized algorithm to output an updated secret key
sk′. We say the prefix x′ has been punctured and refer the updated secret
key sk′ as a punctured secret key.

PS.Sign(ppps, sk,m) → Σ/ ⊥: Taking input ppps, secret key sk and a message
m ∈ M, the signer runs this randomized algorithm to generate a signature
Σ if the prefix x′ ∈ P has not been punctured. Otherwise, it returns ⊥.

PS.Verify(ppps,m,Σ) → Valid/Invalid: This is a deterministic algorithm that
takes as input the public parameter ppps, a message m and a signature Σ.
It outputs Valid if Σ is a valid signature on m and Invalid otherwise.

Correctness. The scheme PS is correct if it satisfies the following conditions:
i. For any messagem ∈M, any prefix x′ ∈ P and any (ppps, sk0)← PS.Setup(1λ),

it holds that PS.Verify(ppps,m,PS.Sign(ppps, sk0,m)) → Valid where sk0 is
the initial non-punctured secret key.
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ii. For any message m ∈M with prefix x′ ∈ P which has been punctured with
secret key sk, it holds that PS.Verify(ppps,m,PS.Sign(ppps, sk′,m))→ Invalid
where sk′ ← PS.Puncture(sk, x′) is the punctured secret key corresponding
to the prefix x′.

iii. For any message m ∈ M with prefix x ∈ P which has not been punc-
tured, we have PS.Verify(ppps,m,PS.Sign(ppps, sk′,m))→ Valid where sk′ ←
PS.Puncture(sk, x′) is the punctured secret key corresponding to the prefix
x′ ̸= x of a message m′ with m′ ̸= m.

Definition 3.22. A puncturable signature scheme PS is secure against existen-
tial unforgeability under chosen-message attacks with adaptive puncturing (UF-
CMA-AP) if for all PPT adversary A, there exists a negligible function ϵ such
that

AdvUF-CMA-AP
PS,A (λ) = Pr[Awins in ExpUF-CMA-AP

PS,A (λ)] < ϵ

where the experiment ExpUF-CMA-AP
PS,A (λ) is described in Fig. 4.

Setup: The challenger C takes input the security parameter 1λ and generates (ppps, sk0) ←
PS.Setup(1λ). It forwards ppps to A while keeps sk secret to itself. It also maintains the set
Qsig for signed messages and the set Qpun for punctured prefixes and initializes each to ∅.

Query Phase: The adversary A issues polynomially many adaptive queries to the oracles
OPuncture(sk, ·) and OSign(ppps, sk, ·) as follows:
− OPuncture(sk, ·) : Upon receiving a query on prefix x′, the challenger C generates a punctured

secret key sk′ ← Puncture(sk, x′) and updates Qpun ← Qpun ∪{x′}.
− OSgn(sk, ·) : On receiving a signature query on a message m with prefix x′ ∈ P, the

challenger C checks if x′ ∈ Qpun. If the check succeeds, it returns ⊥. Otherwise, it
computes the signature Σ ← PS.Sign(ppps, sk,m) on the message m and updates Qsig ←
Qsig ∪ {m}. It returns the computed signature Σ to the adversary A.

Challenge: The adversary A sends a target prefix x∗ to the challenger C and issues additional
puncture and signature queries as described in the Query phase.

Corruption Query: C returns the current secret key sk∗ if x∗ ∈ Qpun and ⊥ otherwise.
Forgery: The adversary A eventually submits a forgery (m∗, Σ∗, x∗) where x∗ is the prefix of

m∗. A wins the game if m∗ /∈ Qsig, x∗ ∈ Qpun and Valid ← PS.Verify(ppps, m∗, Σ∗).

Fig. 4. ExpUF-CMA-AP
PS, A (λ): Existential unforgeability under chosen-message attacks with

adaptive puncturing

4 Our Identity-based Signature from SQISign

In this section, we propose our identity-based signature from SQISign. We refer to
our scheme as Short Quaternion and Isogeny Identity-based Signatures (SQIIBS).
SQIIBS.Setup(1λ) → (ppibs,msk): A KGC on input the security parameter 1λ
generates the public parameter ppibs and a master secret key msk as follows:

i. Same as the algorithm SQISign.Setup described in Section 2.5. Additionally,
it picks a random isogeny τ1 : E0 → E

(1)
A .

ii. Publishes the public parameter ppibs = (p,E0, Dc, D,H1, ΦDc , E
(1)
A ) and

keeps the master secret key msk = τ1 secret to itself.
SQIIBS.Extract(ppibs,msk, id) → uskid: On input the public parameter ppibs =
(p,E0, Dc, D,H1, ΦDc

, E
(1)
A ), master secret key msk = τ1 and an identity id, the

KGC executes this algorithm to generate the user secret key uskid as follows:
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i. Picks a random isogeny τ2 : E0 → E
(2)
A .

ii. Selects a random commitment isogeny ψ1 : E0 → E
(1)
1 .

iii. Computes s1 = H1(j(E(1)
1 ), bin(j(E(2)

A ))||id) and sets ΦDc(E(1)
1 , s1) = φ1

where φ1 : E(1)
1 → E

(1)
2 is a non-backtracking isogeny of degree Dc.

iv. Computes the ideals Īτ1 , Iτ1 , Iψ1 and Iφ1 corresponding to the isogenies τ̂1,
τ1, ψ1 and φ1 respectively.

v. The KGC having the knowledge of O(1) = End(E(1)
A ) through τ1 and O(1)

2 =
End(E(1)

2 ) through φ1 ◦ ψ1 : E0 → E
(1)
2 , executes the SigningKLPT2e(Iτ1 , I1)

algorithm (Section 2.3) on input the (O0,O(1))-ideal Iτ1 and a left O(1)-ideal
I1 = Iφ1Iψ1 Īτ1 to obtain a (O(1),O(1)

2 )-ideal J1 ∼ I1 of norm D = 2e.
vi. Constructs the isogeny η1 : E(1)

A → E
(1)
2 of degree D corresponding to the

ideal J1 such that φ̂1 ◦ η1 : E(1)
A → E

(1)
1 is cyclic and sets certid = (E(1)

1 , η1).
vii. Issues the user secret key uskid = (τ2, certid = (E(1)

1 , η1)).
SQIIBS.Sign(ppibs, uskid,m)→ σ: On input ppibs = (p,E0, Dc, D,H1, ΦDc

, E
(1)
A ),

user secret key uskid = (τ2, certid) and a message m ∈ {0, 1}∗, the signer generates
a signature σ on m as follows:

i. Picks a random commitment isogeny ψ2 : E0 → E
(2)
1 .

ii. Computes s2 = H1(j(E(2)
1 ),m) and sets the challenge isogeny ΦDc

(E(2)
1 , s2) =

φ2 where φ2 : E(2)
1 → E

(2)
2 is a non-backtracking isogeny of degree Dc.

iii. Computes the ideal Īτ2 , Iτ2 , Iψ2 and Iφ2 corresponding to the isogenies τ̂2,
τ2, ψ2 and φ2 respectively.

iv. The signer having the knowledge of O(2) = End(E(2)
A ) through τ2 and O(2)

2 =
End(E(2)

2 ) through φ2 ◦ ψ2, executes the algorithm SigningKLPT2e(Iτ2 , I2)
described in Section 2.3 on input the (O0,O(2))-ideal Iτ2 and a left O(2)-ideal
I2 = Iφ2Iψ2 Īτ2 to obtain a (O(2),O(2)

2 )-ideal J2 ∼ I2 of norm D.
v. Constructs the isogeny η2 : E(2)

A → E
(2)
2 of degree D corresponding to the

ideal J2 such that φ̂2 ◦ η2 : E(2)
A → E2

1 is cyclic and sets σ= (E(2)
1 , η2).

vi. Extracts certid from uskid and sets the signature σ = (σ,E(2)
A , certid).

SQIIBS.Verify(ppibs, id,m, σ) → Valid/Invalid: The verifier employing ppibs =
(p,E0, Dc, D,H1, ΦDc

, E
(1)
A ) verifies the validity of signature σ = (σ,E(2)

A , certid)
on m ∈ {0, 1}∗ as follows:

i. Parses σ = (σ= (E(2)
1 , η2), E(2)

A , certid = (E(1)
1 , η1)).

ii. Computes s1 = H1(j(E(1)
1 ), bin(j(E(2)

A ))||id) and s2 = H1(j(E(2)
1 ),m).

iii. Recovers the isogenies ΦDc(E(1)
1 , s1) = φ1 and ΦDc(E(2)

1 , s2) = φ2.
iv. Checks if η1 is an isogeny of degree D from E

(1)
A to E(1)

2 and that φ̂1 ◦ η1 :
E

(1)
A → E

(1)
1 is cyclic.

v. Checks if η2 is an isogeny of degree D from E
(2)
A to E(2)

2 and that φ̂2 ◦ η2 :
E

(2)
A → E

(2)
1 is cyclic.

vi. If all the checks succeed returns Valid, otherwise returns Invalid.
Correctness. The correctness of our proposed scheme SQIIBS follows immedi-
ately from the correctness of SQISign signature described in Section 2.5.
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4.1 Efficiency

A theoretical comparison of our scheme SQIIBS with the existing works on IBS
from isogenies is provided in Table 1 and Table 2. We compare our scheme
with the CSIDH-based IBS scheme by Peng et al. [16] as well as the recently
proposed IBS scheme by Shaw et al. [17]. Table 2 depicts that the secret key size
and signature size of the existing IBS scheme grows with the value of S1. The
exponential size of S1 = 2η1−1 leads to large key and signatures, making them
impractical for real-life applications. The user secret key in our scheme comprises
of an elliptic curve over the field Fp2 and two isogenies of degree 2e. The elliptic
curve is represented by its j-invariant and thus it is of size 2 log p. As discussed in
[6], an isogeny of degree 2e can be compressed to e bits where e = 15

4 log p. Thus
the user secret key is of size 2 log p+2( 15

4 ) log p = 2 log p+ 15
2 log p. The signature

in our scheme comprises of three elliptic curves over Fp2 and two isogenies of
degree 2e. Thus, the signature in our scheme is of size 3(2 log p) + 2( 15

4 ) log p =
6 log p + 15

2 log p. Our scheme enjoys improved efficiency in terms of key and
signature sizes which thereby reduces the storage and communication cost.

Table 1. Comparison of our SQIIBS with existing IBS schemes

Scheme Security Analysis Rejection Sampling Security
Peng et al.’s IBS[16] ✗ ✓ CSIDH
Shaw et al.’s IBS [17] ✓ ✗ CSI-FiSh

Our Work ✓ ✗ SQISign

CSIDH = Commutative Supersingular Isogeny Diffie-Hellman, CSI-FiSh = Commutative Supersingular
Isogeny based Fiat-Shamir signature, SQISign = Short Quaternion and Isogeny Signature.

Table 2. Comparison of secret and signature size of our SQIIBS with existing IBS
schemes from isogenies

Scheme |uskid| |σ|
Peng et al.’s IBS[16] nT1S1 log(2I1 + 1) + T1S1 log p T1T2[n log(2I2 + 1) + logS1] + T1S1 log p
Shaw et al.’s IBS [17] T1S1[logS0 + logN ] T1T2[logN + logS1] + T1S1 log p

Our Work 2 log p + 15
2 log p 6 log p + 15

2 log p

Here n ∈ N, p is a prime, I0, I1 = δ0I0, I2 = δ1I1, T1, T2, S0 = 2η0 − 1 and S1 = 2η1 − 1 are
integers with T1 < S0 and T2 < S1. N is the size of ideal class group for CSIDH-512 parameter set.

4.2 Security Analysis

Theorem 4.21. Our proposed scheme SQIIBS is UF-IBS-CMA secure as the
underlying signature scheme SQISign is UF-CMA secure.

Proof. Let us assume that there exists an adversaryA that wins the UF-IBS-CMA
game with non-negligible probability. At the end of the game, A outputs a valid
forgery (m∗, id∗, σ∗) where σ∗ = (σ∗, (E(2)

A )∗, certid∗). We employ the adversary A
as a subroutine to design an adversary B that breaks the UF-CMA security of the
signature scheme SQISign. To complete the security reduction, B simulating the
IBS security game with A must embed the public key given to B by its UF-CMA
challenger C into some part of the “target” which A takes as a target of forgery.
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There are two attack points in our construction. The adversary A may either
take the public parameter ppibs provided by B or it reuses the components certid∗

and (E(2)
A )∗ of the answer of the signing oracle on id∗ and message m ̸= m∗ for

its forgery. We denote the later event as “REUSE”. Then the advantage of A is
given by Pr[Success] = Pr[Success|¬REUSE] + Pr[Success|REUSE] where Success
is the event that A wins in ExpUF-IBS-CMA

IBS,A (λ). For each of the two cases ¬REUSE
and REUSE, we give reductions as follows:

Case 1 Pr[Success|¬REUSE]: We describe below how the UF-CMA adversary B
plays the role of the challenger and simulates the experiment ExpUF-IBS-CMA

IBS,A (λ).

Setup: The UF-CMA challenger C generates the public parameter ppsgn =
(p,E0, Dc, D,H1, ΦDc) by executing the algorithm SQISign.Setup(1λ) and
computes a secret-public key pair (sk, pk) ← SQISign.KeyGen(ppsgn) where
sk = τ1 and pk = E

(1)
A and forwards ppsgn and pk to the adversary B. It keeps

sk secret to itself. The challenger C also maintains a list SList and initializes
SList to ∅. Upon receiving ppsgn = (p,E0, Dc, D,H1, ΦDc) and pk = E

(1)
A

from C, B sets ppibs = (p,E0, Dc, D,H1, ΦDc , E
(1)
A ) and sends it to A. It also

initializes the lists Klist, Clist, Mlist to ∅.
Query Phase: The adversary B responds to polynomially many adaptive

queries made by A to the oracles OExtract and OSign as follows:
– Oracle OExtract(·): On receiving a query on a user identity id from A, B
checks whether (id, uskid) ∈ Kist. If there exists such a pair in Klist, it returns
uskid to A and appends id to CList. If (id, uskid) /∈ Kist, B picks a random
isogeny τ2 : E0 → E

(2)
A and queries its signing oracle OSign(sk = τ1, ·) sim-

ulated by C on the message bin(j(E(2)
A ))||id. Upon receiving the signature

certid = (E(1)
1 , η1) from C, the adversary B sets uskid = (τ2, certid) and re-

turns it to A. The adversary B also appends (id, uskid) to Klist and id to Clist.
The challenger C appends bin(j(E(2)

A ))||id in Slist.
– Oracle OSign(·): On receiving a query on a message m ∈ {0, 1}∗ and a user
identity id from A, B retrieves the pair (id, uskid) from Klist where uskid =
(τ2, certid) is the user secret key corresponding to id. If (id, uskid) /∈ Kist,
B picks a random isogeny τ2 : E0 → E

(2)
A and queries its signing oracle

OS(sk = τ1, ·) on the message bin(j(E(2)
A ))||id. Upon receiving the signature

certid = (E(1)
1 , η1) under sk = τ1 from C, B sets uskid = (τ2, certid). It then

executes σ = (E(2)
1 , η2) ← SQISign.Sign(ppsgn, τ2,m), sets the signature σ =

(σ,E(2)
A , certid) and sends it to A. It also appends (m, id, σ) to Mlist.

Forgery: The adversary A eventually outputs a message m∗, user identity
id∗ and a forge signature σ∗ where σ∗ = (σ∗, (E(2)

A )∗, certid∗). If A wins the
UF-IBS-CMA game with non-negligible probability then (m∗, id∗, σ∗) must be
a valid forgery. Thus, IBS.Verify(ppibs, id∗,m∗, σ∗)→ Valid where id∗ /∈ Clist
and (m∗, id∗, ·) /∈ Mlist. The adversary B submits bin(j((E(2)

A )∗))||id∗, certid∗

as a forgery to its own challenger C.
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The event ¬REUSE means (id∗, uskid∗) /∈ Klist where uskid∗ = (τ∗2 , certid∗).
This implies that (bin(j((E(2)

A )∗))||id∗) /∈ Slist . Hence, the adversary B has out-
put the valid forgery (bin(j((E(2)

A )∗))||id∗, cert∗id) such that SQISign.Veriy(ppsgn,
E

(1)
A , bin(j((E(2)

A )∗))||id∗, cert∗id)→ Valid. From the security of SQISign, it follows
that Pr[Success|¬REUSE] is negligible.

Case 2 Pr[Success|REUSE]: In this case the adversary A reuses the components
certid∗ and (E(2)

A )∗ of the answer of the signing oracle query on identity id∗ and
message m ̸= m∗ for its forgery.

Setup: The UF-CMA challenger C generates the public parameter ppsgn =
(p,E0, Dc, D,H1, ΦDc

) by executing the algorithm SQISign.Setup(1λ) as in
Case 1 and computes a secret-public key pair (sk, pk)← SQISign.KeyGen(ppsgn)
where sk = τ2 and pk = E

(2)
A and forwards ppsgn and pk to the adversary

B. It keeps sk secret to itself. The challenger C maintains a list SList and
initializes SList to ∅. Upon receiving ppsgn = (p,E0, Dc, D,H1, ΦDc

) and
pk = E

(2)
A from the challenger C, the adversary B picks a random isogeny

τ1 : E0 → E
(1)
A , sets ppibs = (p,E0, Dc, D,H1, ΦDc , E

(1)
A ), msk = τ1 and

sends ppibs to A. It initializes the lists Klist, Clist, Mlist to ∅ and chooses
r ← {1, 2, . . . , q(λ)} where q(λ) is the maximum number of queries by A.

Query Phase: The adversary B responds to polynomially many adaptive
queries to the oracles OExtract and OSign made by A. Let id′ be the iden-
tity for which the rth signing query of A was made.
– Oracle OExtract(·): If A ever makes an extract query for the identity id′, the
experiment is aborted. On receiving a query on a user identity id ̸= id′ from
A, B checks whether (id, uskid) ∈ Kist. If there exists such a pair in Klist, it
returns uskid and appends id to CList. If (id, uskid) /∈ Kist, it picks a random
isogeny τ2 : E0 → E

(2)
A and uses msk = τ1 to compute certid = (E

(1)
1 ,η1)

← SQISign.Sign(ppsgn, τ1, bin(j(E
(2)
A ))||id). It then sets uskid = (τ2,certid) and

returns it to A. It appends (id,uskid) to Klist and id to Clist.
– Oracle OSign(·): The adversary B receives signing queries on pairs (m, id)
from the adversary A. For the rth signing query on (id′,m) by A, B first
checks whether (m, id′, σ) ∈ Mlist. If there exists such a tuple, the adversary
B aborts the experiment. Otherwise, B computes certid′ = ((E(1)

1 )′, η′1) ←
SQISign.Sign(ppsgn, τ1, bin(j(E(2)

A ))||id′) using msk = τ1 and queries its sign-
ing oracle OS(sk = τ2, ·) on m. Upon receiving the signature σ = (E(2)

1 , η2)
on m from C under secret key sk = τ2, B sets σ′ = (σ,E(2)

A , certid′) and sends
it to A. The adversary B updates the Mlist with (m, id′, σ′) and the chal-
lenger C updates Slist with m. For the ith query where i ∈ {r + 1, . . . , q(λ)},
on identity id′ and a message m′ by A, the adversary B checks whether
(m′, id′, σ′) ∈ Mlist. If such a tuple exists, B answers the query from the
Mlist, otherwise it proceeds as in the rth signing query.
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Upon receiving a query on a message m and identity id ̸= id′, B retrieves
the pair (id,uskid) from Klist where uskid = (τ2,certid) is the user secret key
corresponding to id. If (id, uskid) /∈ Kist, it picks a random isogeny τ2 : E0 →
E

(2)
A and uses its master secret key msk = τ1 to compute certid = (E

(1)
1 ,η1)

← SQISign.Sign(ppsgn, τ1, bin(j(E
(2)
A ))||id) and sets uskid = (τ2,certid). It then

computes the signature σ= (E
(2)
1 ,η2)← SQISign.Sign(ppibs, τ̄2,m) on m and

sets σ = (σ,E
(2)
A ,certid) and sends it to A. It appends (m, id, σ) to Mlist.

Forgery: If A eventually outputs a message m∗, user identity id∗ and a forge
signature σ∗ where σ∗ = (σ∗, (E(2)

A )∗, certid∗) and the experiment was never
aborted, B submits (m∗, σ∗) as a forgery to its own challenger C. IfA wins the
UF-IBS-CMA game with non-negligible probability then (m∗, id∗, σ∗) must
be a valid forgery. Thus, we have IBS.Verify(ppibs, id∗,m∗, σ∗) = Valid, id∗ /∈
Clist and (m∗, id∗, ·) /∈ Mlist. Note that the condition (m∗, id∗, ·) /∈ Mlist
means that the adversary B never queried its signing oracle OS(τ2, ·) on m∗.

With probability at least 1/q(λ), the experiment is not aborted and id′ =
id∗. The success probability of B in forging a signature for SQISign is thus
at least Pr[Success|REUSE]/q(λ). From the security of SQISign, it follows that
this quantity must be negligible. Since q is polynomial in λ, we must have
Pr[Success|REUSE] is negligible as well.

5 Puncturable Signature : Concrete Construction

We now describe our Short Quaternion and Isogeny Puncturable Signature
(SQIPS) leveraging our scheme SQIIBS described in Section 4. Let M = {0, 1}∗
denotes the message space and P = {0, 1}l ⊆M be the prefix space of our PS.

SQIPS.Setup(1λ) → (ppps, sk0): On input 1λ, the signer executes this algorithm
to generate the public parameter pkps and initial secret key sk as follows:

i. Invokes the algorithm SQIIBS.Setup(1λ) to compute the key pair (ppibs,msk)
as follows:

– Chooses a prime p and fixes the supersingular curve E0 : y2 = x3 + x
over Fp2 with special extremal endomorphism ring O0 = ⟨1, i, i+j2 , 1+k

2 ⟩.
– Picks a smooth number D = 2e where 2e > p3.
– Picks an odd smooth number Dc = ℓe where ℓ is a prime and computes
µ(Dc) = (ℓ+ 1) · ℓe−1.

– Samples a cryptographic hash function H1 : Fp2 × {0, 1}∗ → [1, µ(Dc)].
– Samples an arbitrary function ΦDc(E, s) that maps a pair (E, s) of an

elliptic curve E and an integer s ∈ [1, µ(Dc)] to a non-backtracking
isogeny of degree Dc from E [3].

– Picks a random isogeny τ1 : E0 → E
(1)
A .

– Sets ppibs = (p,E0, Dc, D,H1, ΦDc
, E

(1)
A ) and msk = τ1.

ii. For each prefix x′ ∈ {0, 1}l, executes the algorithm SQIIBS.Extract(ppibs,msk =
τ1, x

′) to compute the key uskx′ and stores it in an array T of size 2l.
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– Picks a random isogeny τ2 : E0 → E
(2)
A .

– Selects a random commitment isogeny ψ1 : E0 → E
(1)
1 .

– Computes s1 = H1(j(E(1)
1 ), bin(j(E(2)

A ))||x′) and sets the challenge isogeny
ΦDc

(E(1)
1 , s1) = φ1 where φ1 : E(1)

1 → E
(1)
2 is a non-backtracking isogeny

of degree Dc.
– Computes the ideals Īτ1 , Iτ1 , Iψ1 and Iφ1 corresponding to the isogenies
τ̂1, τ1, ψ1 and φ1 respectively.

– The signer having the knowledge of O(1) = End(E(1)
A ) through τ1 and

O(1)
2 = End(E(1)

2 ) through φ1 ◦ ψ1, runs the SigningKLPT2e(Iτ1 , I1) algo-
rithm (Section 2.3) on input the (O0,O(1))-ideal Iτ1 and a left O(1)-ideal
I1 = Iφ1Iψ1 Īτ1 to obtain a (O(1),O(1)

2 )-ideal J1 ∼ I1 of norm D = 2e.
– Constructs the isogeny η1 : E(1)

A → E
(1)
2 of degree D corresponding to

the ideal J1 such that φ̂1 ◦ η1 is cyclic and certx′ = (E(1)
1 , η1).

– Issues the user secret key uskx′ = (τ2, certx′ = (E(1)
1 , η1)).

iii. Sets T [indx′ ] = uskx′ where indx′ = (x′)10 ∈ {0, 1, . . . , 2l − 1} is the decimal
representation of the binary string x′.

iv. Sets the public parameter ppps = ppibs and secret key sk = T .

SQIPS.Puncture(sk, x′) → sk′: The signer on input the secret key sk = T and
a prefix x′ ∈ {0, 1}l, computes indx′ = (x′)10 and sets T [ind] = 0. It returns
the updated punctured secret key sk′ = T where the value corresponding to the
index ind of the array T is made 0.
SQIPS.Sign(ppps, sk,m)→ Σ/ ⊥: Taking input ppps = (p,E0, Dc, D,H1, ΦDc , E

(1)
A ),

secret key sk = T and a message m ∈ {0, 1}∗, the signer either generates a sig-
nature Σ if the prefix x′ of m has not been punctured or it returns ⊥.

i. Returns ⊥ if T [indx′ ] = 0.
ii. If T [indx′ ] ̸= 0, it retrieves the value uskx′ = (τ2, certx′ = (E(1)

1 , η1)) =
T [indx′ ] from the array and executes the algorithm SQIIBS.Sign(ppibs, uskx′ ,m)
as follows to generate a signature on m.

– Picks a random commitment isogeny ψ2 : E0 → E
(2)
1 .

– Computes s2 = H1(j(E(2)
1 ),m) and ΦDc(E(2)

1 , s2) = φ2 where φ2 :
E

(2)
1 → E

(2)
2 is a non-backtracking challenge isogeny of degree Dc.

– Computes the ideal Īτ2 , Iτ2 , Iψ2 and Iφ2 corresponding to the isogenies
τ̂2, τ2, ψ2 and φ2 respectively.

– The signer having the knowledge of O(2) = End(E(2)
A ) through τ2 and

O(2)
2 = End(E(2)

2 ) through φ2 ◦ ψ2, runs the SigningKLPT2e(Iτ2 , I2) algo-
rithm (Section 2.3) on input the (O0,O(2))-ideal Iτ2 and a left O(2)-ideal
I2 = Iφ2Iψ2 Īτ2 to obtain a (O(2),O(2)

2 )-ideal J2 ∼ I2 of norm D = 2e.
– Constructs the isogeny η2 : E(2)

A → E
(2)
2 of degree D corresponding to

the ideal J2 such that φ̂2◦η2 : E(2)
A → E

(2)
1 is cyclic. It setsσ= (E(2)

1 , η2).
– Extract certx′ from uskx′ and sets the signature σ = (σ,E(2)

A , certx′).
iii. Returns the puncturable signature Σ = σ.
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SQIPS.Verify(ppps,m,Σ) → Valid/Invalid: This algorithm takes as input ppps =
(p,E0, Dc, D,H1, ΦDc

, E
(1)
A ), a message m ∈ {0, 1}∗ and a signature Σ = σ =

(σ,E(2)
A , certx′) where x′ ∈ {0, 1}l is the prefix of the message m ∈ {0, 1}∗. It

outputs Valid if Σ is a valid signature on m and Invalid otherwise.
i. Executes the algorithm SQIIBS.Verify as follows to check the validity of the

signature Σ = σ = (σ,E(2)
A , certx′) on m.

– Parses σ = (σ= (E(2)
1 , η2), E(2)

A , certx′ = (E(1)
1 , η1)).

– Computes s1 = H1(j(E(1)
1 ), bin(j(E(2)

A ))||x′) and s2 = H1(j(E(2)
1 ),m).

– Recovers the isogenies ΦDc(E(1)
1 , s1) = φ1 and ΦDc(E(2)

1 , s2) = φ2.
– Checks if η1 is an isogeny of degree D from E

(1)
A to E(1)

2 and that φ̂1◦η1 :
E

(1)
A → E

(1)
1 is cyclic.

– Checks if η2 is an isogeny of degree D from E
(2)
A to E(2)

2 and that φ̂2◦η2 :
E

(2)
A → E

(2)
1 is cyclic.

– If all the checks succeed returns Valid, otherwise returns Invalid.
Correctness. The correctness of our puncturable signature scheme SQIPS from
isogenies follows from the correctness of our identity-based signature SQIIBS.

Theorem 5.01. Our proposed puncturable signature SQIPS is UF-CMA-AP se-
cure as the underlying identity-based signature SQIIBS is UF-IBS-CMA secure.

Proof. Let us assume that there exists a PPT adversary A that wins the experi-
ment ExpUF-CMA-AP

SQIPS,A (λ) depicted in Fig 4 with a non-negligible advantage. We de-
sign an adversary B who simulates the PS security experiment ExpUF-CMA-AP

SQIPS,A (λ),
exploits A as a subroutine and wins the IBS security experiment ExpUF-IBS-CMA

SQIIBS,B (λ)
with the same advantage. Let C denotes the challenger for the security experi-
ment ExpUF-IBS-CMA

SQIIBS,B (λ).

Setup: The challenger C on input the security parameter 1λ, computes (ppibs,msk)
← SQIIBS.Setup(1λ) and sends ppibs to B. Additionally, C executes the algo-
rithm SQIIBS.Extract(ppibs,msk, x′) to compute the key uskx′ for each prefix
x′ ∈ {0, 1}l and forms the array T [indx′ ] = uskx′ . Also it initiates three lists
Klist, Clist and Mlist to ∅. Upon receiving the public parameter ppibs from
its own challenger C, the adversary B sets ppps = ppibs and forwards it to A.
It also initializes the sets Qsig for signed messages and Qpun for punctured
prefixes to ϕ.

Query Phase: The adversary A issues polynomially many adaptive queries to
the following oracles OPuncture(sk, ·) and OSgn(sk, ·).
− OPuncture(sk = T, ·) : Upon receiving a query on prefix x′, the challenger
C updates Qpun ← Qpun ∪{x′}.

− OSgn(sk = T, ·) : On receiving a signature query on a message m ∈
{0, 1}∗, the adversary B checks if x′ ∈ Qpun where x′ is the prefix of m.
If the check succeeds, it returns ⊥. Otherwise, it issues a signature query
on (m,x′) for a with message m and identity x′ to C. The challenger
C extracts T [indx′ ] = uskx′ from sk = T , computes the signature Σ ←
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SQIIBS.Sign(ppibs, uskx′ ,m) and sends it to B who forwards it to A. The
adversary B updates Qsig ← Qsig ∪ {m}.

Challenge: The adversary A sends a target prefix x∗ ∈ {0, 1}l to the adversary
B which B forwards to C as the target identity. The adversary A can issue
additional puncture and signature queries as described in the Query phase.

Corruption Query: Upon receiving a corruption query on x∗ ∈ {0, 1}l, the
adversary B returns ⊥ if x∗ /∈ Qpun. Otherwise, B queries its extract oracle
OExtract(·) for each prefix x′ ∈ {0, 1}l\{x∗} and updates the array T with the
response uskx′ ← SQIIBS.Extract(ppibs,msk, x′) from C by setting T [indx′ ] =
uskx′ . For each x′ ∈ Qpun, the adversary B deletes the related key by setting
T [indx′ ] = 0 and returns the current secret key sk = T to A.

Forgery: A eventually submits a forgery (m∗, Σ∗, x∗) where x∗ is the prefix of
m∗. B uses the forgery of A to frame its own forgery (m∗, x∗, Σ∗).

If the adversary A wins the game then we have m∗ /∈ Qsig, x∗ ∈ Qpun
and Valid ← SQIPS.Verify(ppps, m∗, Σ∗). The condition m∗ /∈ Qsig means that
(m∗, x∗, ·) /∈ Mlist. Also note that the adversary B has not made any extraction
query on x∗, thus x∗ /∈ Clist. Moreover, Valid ← SQIPS.Verify(ppps, m∗, Σ∗)
implies that Valid ← SQIIBS.Verify(ppibs, m∗, Σ∗).
5.1 Comparison of our scheme SQIPS with the existing puncturable signatures

In Table 3, we compare our scheme with the existing schemes on PS. The PS
scheme by Li et al. [13] is based on the τ -Strong Diffie-Hellman assumption
(τ -SDH) in bilinear map setting and is proven secure in the random oracle
model (ROM). Their scheme employs the probabilistic bloom filter data struc-
ture and suffers from non-negligible false-positive errors. Jiang et al. [12] de-
signed a pairing-based PS which is free from false positive errors and is secure
under the hardness of the Computational Diffie-Hellman (CDH) assumption in
the standard model (SDM). However, none of these schemes are resistant to
quantum attacks. The PS schemes from lattices and MPKC proposed by Jiang
et al. [12] enjoy post-quantum security and are based on the hardness of Short
Integer Solution (SIS) and Multivariate Quadratic polynomial (MQ) assump-
tions respectively. Our isogeny-based PS is post-quantum secure as it is based
on SQISign cryptosystem and is also free from false-positive errors.

Table 3. Comparison of the existing puncturable signature schemes

Instantiation Assumption Security Model Post-quantum False-positive errors
Li et al. [13] τ -SDH ROM ✗ ✓

Pairing Inst. [12] CDH SDM ✗ ✗

Lattice Inst. [12] SIS ROM ✓ ✗

Multivariate Inst. [12] MQ ✓ ✗

Our Isogeny Inst. SQISign ROM ✓ ✗
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