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Abstract. 1-out-of-n oblivious signature by Chen (ESORIC 1994) is
a protocol between the user and the signer. In this scheme, the user
makes a list of n messages and chooses the message that the user wants
to obtain a signature from the list. The user interacts with the signer
by providing this message list and obtains the signature for only the
chosen message without letting the signer identify which messages the
user chooses. Tso et al. (ISPEC 2008) presented a formal treatment of 1-
out-of-n oblivious signatures. They defined unforgeability and ambiguity
for 1-out-of-n oblivious signatures as a security requirement.
In this work, first, we revisit the unforgeability security definition by
Tso et al. and point out that their security definition has problems. In
particular, we point out that a trivial attack exists in their unforgeability
security model and address this problem by modifying their security
model and redefining unforgeable security.
Second, we improve the generic construction of a 1-out-of-n oblivious
signature scheme by Zhou et al. (IEICE Trans 2022). The bottleneck of
their construction is the size of the communication cost. We reduce the
communication cost by modifying their scheme with a Merkle tree. Then
we prove the security of our modified scheme.

Keywords: 1-out-of-n oblivious signatures · Generic construction · Round-
optimal · Merkle tree · Efficient communication cost

1 Introduction

1.1 Background

Oblivious Signatures. The notion of 1-out-of-n oblivious signatures by Chen
[6] is an interactive protocol between a signer and a user. In an oblivious signature
scheme, first, the user makes a list of n messages M = (mi)i∈{1,...,n} and chooses
one of message mj in M that the user wants to obtain a signature. Then the
user interacts with the signer by sending the list M with a first message µ at the
beginning of the interaction. The signer can see the candidate messages M that
⋆ This work was supported by JST CREST Grant Number JPMJCR2113 and JSPS
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the user wants to get signed, but cannot identify which one of the messages in
M is chosen by the user. After completing the interaction with the signer, the
user can obtain a signature σ for only the chosen message mj .

1-out-of-n oblivious signatures should satisfy ambiguity and unforgeability.
Ambiguity prevents the signer from identifying which one of the messages the
signer wants to obtain the signature in the interaction. Unforgeability requires
that for each interaction, the user cannot obtain a signature of a message m /∈M
and can obtain a signature for only one message m ∈ M where M is a list of
message that the user sends to the signer at the beginning of the interaction.

Oblivious signatures can be used to protect the privacy of users. Chen [6]
explained an application of oblivious signatures as follows. The user will buy
software from the seller and the signature from the seller is needed to use the
software. However, information about which software the user is interested in
may be sensitive at some stage. In this situation, by using oblivious signatures,
the user can make a list of n software and obtain a signature only for the one
software that the user honestly wants to obtain without revealing it to the seller
(signer). The oblivious signature can be used for e-voting systems [7,18].

Oblivious Signatures and Blind Signatures. Signatures with a similar fla-
vor to oblivious signatures are blind signatures proposed by Chaum [5]. In a blind
signature scheme, similar to an oblivious signature scheme, a user chooses a mes-
sage and obtains a corresponding signature by interacting with the signer. Typ-
ically, blind signatures satisfy blindness and one-more unforgeability (OMUF).
Blindness prevents the signer from linking a message/signature pair to the run
of the protocol where it was created. OMUF security prevents the user from
forging a new signature.

From the point of view of hiding the contents of the message, it may seem
that blind signatures are superior than oblivious signatures. But compared to
blind signatures, oblivious signature has merits listed as follows.

– Avoid Signing Disapprove Messages: In blind signatures, since the
signer has no information about the message that the user wants to obtain
the signature, the signer cannot prevent users from obtaining a signature on
the message that the signer does not want to approve.
Partially blind signatures proposed by Abe and Fujisaki [1] mitigate this
problem. This scheme allows the user and the signer to agree on a prede-
termined piece of common information info which must be included in the
signed message. However, similar to blind signatures, the signer has no in-
formation for the blinded part of a message, partially blind signatures do
not provide a full solution for the above problem.
By contrast, oblivious signatures allow the signer to view a list of messages.
If the message that the signer does not want to approve is included in the
message list, the signer can refuse to sign. Thus, the ambiguity of oblivious
signatures provides a better solution for the above problem.

– Based on Weaker Assumptions: Recent works on blind signatures are
dedicated to constructing efficient round-optimal (i.e., 2-move signing inter-
action) blind signature schemes [2,4,8,9,10,11,12,13,14,15,16]. However, these
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schemes either rely on at least one of strong primitives, models, or assump-
tions such as pairing groups [4,9,10,11,13,14], non-interactive zero-knowledge
(NIZK) [2,8,15,16], the random oracle model (ROM) [8,14], the generic group
model (GGM) [9], interactive assumptions [4,10,11,13], q-type assumptions
[12], one-more assumptions [2], or knowledge assumptions [12].
By contrast, a generic construction of a round-optimal oblivious signature
scheme without the ROM was proposed in the recent work by Zhou, Liu,
and Han [21]. This construction uses a digital signature scheme and a com-
mitment scheme. This leads to instantiations in various standard assump-
tions (e.g., DDH, DCR, Factoring, RSA, LWE) without the ROM. Thus, the
round-optimal oblivious signature schemes can be constructed with weaker
assumptions than round-optimal blind signature schemes.

Previous Works on Oblivious Signatures. The notion of oblivious signa-
tures was introduced by Chen [6] and proposed 1-out-of-n oblivious signature
schemes in the ROM. Following this seminal work, several 1-out-of-n oblivious
signature schemes have been proposed.

Tso, Okamoto, and Okamoto [19] formalized the syntax and security defini-
tion of the 1-out-of-n oblivious signature scheme. They gave the efficient round-
optimal (i.e., 2-move) 1-out-of-n oblivious signature scheme based on the Schnorr
signature scheme. The security of this scheme can be proven under the DL as-
sumption in the ROM.

Chiou and Chen [7] proposed a t-out-of-n oblivious signature scheme. This
scheme needs 3 rounds for a signing interaction and the security of this scheme
can be proven under the RSA assumption in the ROM.

You, Liu, Tso, Tseng, and Mambo [20] proposed the lattice-based 1-out-of-n
oblivious signature scheme. This scheme is round-optimal and the security can
be proven under the short integer solution (SIS) problem in the ROM.

In recent work by Zhou, Liu, and Han [21], a generic construction of a round-
optimal 1-out-of-n oblivious signature scheme was proposed. Their scheme is
constructed from a commitment scheme and a digital signature scheme without
the ROM. By instantiating a signature scheme and commitment scheme from
standard assumptions without the ROM, this generic construction leads 1-out-
of-n oblivious signature schemes from standard assumptions without the ROM.
As far as we know, their scheme is the first generic construction of a 1-out-of-n
oblivious signature scheme without the ROM.

1.2 Motivation

The security model for a 1-out-of-n oblivious signature scheme is formalized
by Tso [19]. Their security model is fundamental for subsequent works [21,20].
However, this security model has several problems. Here, we briefly review the
unforgeability security model in [19] and explain the problems of their model.
The formal description of this security game is given in Section 3.2
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Definition of Unforgeability in [19]. Informally, the unforgeability for a
1-out-of-n oblivious signature scheme in [19] is defined by the following game.

Let A be an adversary that executes a user part and tries to forge a new
signature. A engages in the signing interaction with the signer. A can make any
message list Mi and any one message mi,ji ∈ Mi. Then, A engages the i-th
signing interaction with Mi at the beginning of the interaction. By interacting
with the signer, A can obtain a signature σi on a message mi,ji . Let t be the
number of signing interaction with the signer and A. Let LSign = {mi,ji}i∈{1,...,t}
be all messages that A obtained signatures. A wins this game if A outputs a valid
signature σ∗ on a message m∗ /∈ LSign. A 1-out-of-n oblivious signature scheme
satisfies unforgeability if for all PPT adversaries A cannot win the above game
in non-negligible probability.

However, the above security game has several problems listed below.

– Problem 1: How to Store Messages in LSign: In the above security game,
we need to store corresponding messages that the signer obtains signatures.
However, by ambiguity property, we cannot identify the chosen message mi,ji

that the signer wants to obtain a signature from a transcription of the i-
th interaction with Mi. This problem can be addressed by forcing A to
output (mi,ji , σi) at the end of each interaction. However, the next problem
is serious.

– Problem 2: Trivial Attack: One flaw is the existence of a trivial attack
on the security game. Let us consider the following adversary A that runs
signing protocol execution twice. A chooses M = (m0,m1) where m0 and m1

are distinct, and sets lists as M1 = M2 = M . In the 1st interaction, A chooses
m0 ∈M1, obtains a signature σ0 on a message m0, and outputs (m0, σ0) at
the end of interaction. In the 2nd interaction, A chooses m1 ∈M2, obtains a
signature σ1 on a message m1, and outputs (m0, σ0) at the end of interaction.
Then, A outputs a trivial forgery (m∗, σ∗) = (m1, σ1). This attack is caused
by the reuse of a signature (m0, σ0) at the end of the signing interaction.
The unforgeability security models in previous works [20,21] are based on
the model by Tso et al. [19]. This trivial attack also works for these models
as well. This fact invalidates unforgeability security proofs in [6,19,20,21] for
1-out-of-n oblivious signature scheme.
Note that we only claim that the security model in [19] has a flaw. We do
not intend to claim that existing schemes in [6,19,20,21] are insecure.

– Problem 3: Missing Adversary Strategy: The security game does not
capture an adversary with the following strategy. Let us consider an adver-
sary A that executes the signing protocol only once. A interacts with the
signer with a message list M and intends to a signature σ∗ on a message
m∗ /∈ M , but give up outputting (m,σ) where m ∈ M at the end of sign-
ing interaction. Since the security game only considers the adversary that
outputting (m,σ) where m ∈M at the end of the signing execution, the se-
curity game cannot capture the adversary A give up outputting (m,σ) where
m ∈M .
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1.3 Our Contribution

The first contribution is providing a new security definition of the unforgeability
security for a 1-out-of-n oblivious signature scheme. We address the problems
described in the previous section. We refer the reader to Section 3.3 for more
detail on our definition of unforgeability security.

The second contribution is an improvement of a generic construction of 1-
out-of-n oblivious signature schemes by [20]. This round-optimal construction is
obtained by a simple combination of a digital signature scheme and a commit-
ment scheme. However, a bottleneck of this scheme is the communication cost
(See Fig. 1).

Scheme |vkOS| |µ| |ρ| |σOS|
OSZLH

[21] |vkDS| |cCOM| n|σDS| |σDS|+ |cCOM|+ |rCOM|

OSOurs

§4.2 |vkDS| |cCOM| |σDS| |σDS|+ |cCOM|+ |rCOM|+ (⌈log2 n⌉+ 1)λ+ ⌈log2 n⌉

Fig. 1. Comparison with generic construction of 1-out-of-n oblivious signature schemes.
|vkOS| represents the bit length of the verification key, |µ| represents the bit length of
the first communication, |ρ| represents the bit length of the second communication,
and |σOS| represents the bit length of the 1-out-of-n oblivious signature scheme. In
columns, λ denotes a security parameter. |cCOM| (resp. |rCOM|) denotes the bit length
of a commitment (resp. randomness) and |σDS| (resp. |vkDS|) denotes the bit length of
a digital signature (resp. verification key) used to instantiate the 1-out-of-n oblivious
signature scheme.

Particular, if the user interacts with the signer with a message list M =
(mi)i∈{1,...,n} and the first communication message µ, then the signer sends
n digital signatures (σDS

i )i∈{1,...,n} to the user as the second communication
message where σDS

i is a signature on a message (mi, µ). This means that the
second communication message cost (size) is proportional to n.

We improve the second communication cost by using a Merkle tree. Con-
cretely, instead of signing each (mi, µ) where mi ∈ M , we modify it to sign a
message (root, µ) where root is a root of the Merkle tree computed from M . By
this modification, we reduce the communication cost of the second round from
n digital signatures to only one digital signature. As a side effect of our modifi-
cation, the size of the obtained 1-out-of-n oblivious signature is increasing, but
it is proportional to log n. Our modification has the merit that the sum of a
second communication message size and a signature size is improved from O(n)
to O(log n).
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1.4 Road Map

In Section 2, we introduce notations and review commitments, digital signatures,
and Merkle tree. In Section 3, we review 1-out-of-n oblivious signatures, revisit
the definition of unforgeability by Tuo et al. [19], and redefine unforgeability.
In Section 4, we give a generic construction of 1-out-of-n oblivious signature
schemes with efficient communication cost by improving the construction by
Zhou et al. [21] and prove security for our scheme. In Section 5, we conclude our
result and discuss open problems.

2 Preliminaries

In this section, we introduce notations and review fundamental cryptographic
primitives for constructing our 1-out-of-n oblivious signature scheme.

2.1 Notations

Let 1λ be the security parameter. A function f is negligible in k if f(k) ≤
2−ω(log k). For a positive integer n, we define [n] := {1, . . . , n}. For a finite set S,
s

$←− S represents that an element s is chosen from S uniformly at random.
For an algorithm A, y ← A(x) denotes that the algorithm A outputs y on

input x. When we explicitly show that A uses randomness r, we denote y ←
A(x; r). We abbreviate probabilistic polynomial time as PPT.

We use a code-based security game [3]. The game Game is a probabilistic
experiment in which adversary A interacts with an implied challenger C that
answers oracle queries issued by A. The Game has an arbitrary amount of addi-
tional oracle procedures which describe how these oracle queries are answered.
When the game Game between the challenger C and the adversary A outputs b,
we write GameA ⇒ b. We say that A wins the game Game if GameA ⇒ 1. We
implicitly assume that the randomness in the probability term Pr[GameA ⇒ 1]
is over all the random coins in the game.

2.2 Commitment Scheme

We review a commitment scheme and its security notion.

Definition 1 (Commitment Scheme). A commitment scheme COM consists
of a following tuple of algorithms (KeyGen,Commit).

– KeyGen(1λ) : A key-generation algorithm takes as an input a security pa-
rameter 1λ. It returns a commitment key ck. In this work, we assume that
ck defines a message space, randomness space, and commitment space. We
represent these space by Mck, Ωck, and Cck, respectively.

– Commit(ck,m; r) : A commit algorithm takes as an input a commitment
key ck, a message m, and a randomness r. It returns a commitment c. In
this work, we use the randomness r as the decommitment (i.e., opening)
information for c.



(1, n)-Oblivious Signatures: Security Revisited and a Generic Construction 7

Definition 2 (Computational Hiding). Let COM = (KeyGen,Commit) a
commitment scheme and A a PPT algorithm. We say that the COM satisfies
computational hiding if for all A, the following advantage of the hiding game

AdvHideCOM,A :=∣∣∣∣∣Pr
[
b = b∗

∣∣∣∣∣ck← COM.KeyGen(1λ), (m0,m1, st)← A(ck),

b
$←− {0, 1}, c∗ ← COM.Commit(ck,mb), b

∗ ← A(c∗, st)

]
− 1

2

∣∣∣∣∣
is negligible in λ.

Definition 3 (Strong Computational Binding). Let COM = (KeyGen,Commit)
a commitment scheme and A a PPT algorithm. We say that the COM satisfies
strong computational binding if the following advantage

AdvsBindCOM,A :=

Pr

[
Commit(ck,m; r) = Commit(ck,m′; r′)

∧ (m, r) ̸= (m′, r′)

∣∣∣∣∣ck← KeyGen(1λ),

((m, r), (m′, r′))← A(ck)

]

is negligible in λ.

A commitment scheme with computational hiding and strong computational
binding property can be constructed from a public key encryption (PKE) scheme
with indistinguishable under chosen plaintext attack (IND-CPA) security. We
refer the reader to [21] for a commitment scheme construction from a PKE
scheme.

2.3 Digital Signature Scheme

We review a digital signature scheme and its security notion.

Definition 4 (Digital Signature Scheme). A digital signature scheme DS
consists of following four algorithms (Setup,KeyGen, Sign,Verify).

– Setup(1λ) : A setup algorithm takes as an input a security parameter 1λ. It
returns the public parameter pp. In this work, we assume that pp defines a
message space and represents this space byMpp. We omit a public parameter
pp in the input of all algorithms except for KeyGen.

– KeyGen(pp) : A key-generation algorithm takes as an input a public param-
eter pp. It returns a verification key vk and a signing key sk.

– Sign(sk,m) : A signing algorithm takes as an input a signing key sk and a
message m. It returns a signature σ.

– Verify(vk,m, σ) : A verification algorithm takes as an input a verification key
vk, a message m, and a signature σ. It returns a bit b ∈ {0, 1}.
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Correctness. DS satisfies correctness if for all λ ∈ N, pp ← Setup(1λ) for all
m ∈ Mpp, (vk, sk) ← KeyGen(pp), and σ ← Sign(sk,m), Verify(vk,m, σ) = 1
holds.

We review a security notion called the strong existentially unforgeable under
chosen message attacks (sEUF-CMA) security for digital signature.

Definition 5 (sEUF-CMA Security). Let DS = (Setup,KeyGen, Sign,Verify)
be a signature scheme and A a PPT algorithm. The strong existentially unforge-
ability under chosen message attacks (sEUF-CMA) security for DS is defined by
the sEUF-CMA security game GamesEUFCMA

DS,A between the challenger C and A in
Fig. 2.

GAME GamesEUFCMA
DS,A (1λ) :

LSign ← {}, pp← Setup(1λ), (vk, sk)← KeyGen(pp), (m∗, σ∗)← AOSign(·)(pp, vk)
If Verify(vk,m∗, σ∗) = 1 ∧ (m∗, σ∗) /∈ LSign, return 1. Otherwise return 0.

Oracle OSign(m) :

σ ← Sign(sk,m), LSign ← LSign ∪ {(m,σ)}, return σ.

Fig. 2. The sEUF-CMA security game GamesEUFCMA
DS,A .

The advantage of an adversary A for the sEUF-CMA security game is defined
by AdvsEUFCMA

DS,A := Pr[GamesEUFCMA
DS,A ⇒ 1]. DS satisfies sEUF-CMA security if for

all PPT adversaries A, AdvsEUFCMA
DS,A (1λ) is negligible in λ.

2.4 Merkle Tree Technique

We review the collision resistance hash function family and the Merkle tree
technique.

Definition 6 (Collision Resistance Hash Function Family). Let H =
{Hλ} be a family of hash functions where Hλ = {Hλ,i : {0, 1}∗ → {0, 1}λ}i∈Iλ

.
H is a family of collision-resistant hash functions if for all PPT adversaries A,
the following advantage

AdvCollH,A(1
λ) := Pr[H(x) = H(x′)|H $←− Hλ, (x, x

′)← A(H)]

is negligible in λ.

Definition 7 (Merkle Tree Technique [17]). The Merkle tree technique MT
consists of following three algorithms (MerkleTree,MerklePath,RootReconstruct)
with access to a common hash function H : {0, 1}∗ → {0, 1}λ.
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– MerkleTreeH(M = (m0, . . . ,m2k−1)) : A Merkle tree generation algorithm
takes as an input a list of 2k elements M = (m0, . . . ,m2k−1). It constructs
a complete binary tree whose height is k + 1 (i.e., maximum level is k).
We represent a root node as wϵ and a node in level ℓ as wb1,...bℓ where bj ∈
{0, 1} for j ∈ [ℓ]. The leaf node with an index i ∈ {0, . . . , 2k − 1} represents
wI2B(i) where I2B is a conversion function from an integer i to the k-bit
binary representation.
Each leaf node with an index i ∈ {0, . . . , 2k − 1} (i.e., wI2B(i)) is assigned
a value hI2B(i) = H(mi). Each level j internal (non-leaf) node wb1,...bj

is assigned a value hb1,...bj = H(hb1,...bj ,0||hb1,...bj ,1) where hb1,...bj ,0 and
hb1,...bj ,1 are values assigned to the left-children node wb1,...bj ,0 and the right-
children node wb1,...bj ,1, respectively. The root node wϵ is assigned a hash
value hϵ = H(h0||h1) and denote this value as root. This algorithm outputs
a value root and the description tree which describes the entire tree.

– MerklePathH(tree, i) : A Merkle path generation algorithm takes as an in-
put a description of a tree tree and a leaf node index i ∈ {0, . . . , 2k − 1}.
Then, this algorithm computes (b1, . . . bk) = I2B(i) and outputs a list path =
(hb1

, hb1,b2
, . . . , hb1,...,bk

) where bj = 1− bj for j ∈ [k].
– RootReconstructH(path,mi, i) : A root reconstruction algorithm takes as an

input a list path = (hb1
, hb1,b2

, . . . , hb1,...,bk
), an element mi, and a leaf node

index i ∈ {0, . . . , 2k − 1}. This algorithm computes (b1, . . . bk) = I2B(i) and
assigns hb1,...bk . For i = k−1 to 1, computes hb1,...bj = H(hb1,...bj ,0||hb1,...bj ,1)
and outputs root = H(h0||h1).

Lemma 1 (Collision Extractor for Merkle Tree). There exists the follow-
ing efficient collision extractor algorithms Ext1 and Ext2.

– Ext1 takes as an input a description of Merkle tree tree whose root node
is assigned value root and (m′

i, path, i). If tree is constructed from a list
M = (m0, . . . ,m2k−1), mi ̸= m′

i, and root = RootReconstructH(path,mi, i)
holds, it outputs a collision of the hash function H.

– Ext2 takes as an input a tuple (m, j, path, path′). If RootReconstructH(path,
m, j) = RootReconstructH(path′,m, j) and path ̸= path′ hold, it outputs a
collision of the hash function H.

3 Security of Oblivious Signatures Revisited

In this section, first, we review a definition of a 1-out-of-n signature scheme and
security notion called ambiguity. Next, we review the security definition of the
unforgeability in [19] and discuss the flaws of their security model. Then, we
redefine the unforgeability security for a 1-out-of-n signature scheme.

3.1 (1, n)-Oblivious Signature Scheme

We review a syntax of a 1-out-of-n oblivious signature scheme and the security
definition of ambiguity.
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Definition 8 (Oblivious Signature Scheme). a 1-out-of-n oblivious signa-
ture scheme (1, n)-OS consists of following algorithms (Setup,KeyGen,U1, S2,UDer,
Verify).

– Setup(1λ) : A setup algorithm takes as an input a security parameter 1λ. It
returns the public parameter pp. In this work, we assume that pp defines a
message space and represents this space byMpp. We omit a public parameter
pp in the input of all algorithms except for KeyGen.

– KeyGen(pp) : A key-generation algorithm takes as an input a public param-
eter pp. It returns a verification key vk and a signing key sk.

– U1(vk,M = (m0, . . . ,mn−1), j) : This is a first message generation algorithm
that is run by a user. It takes as input a verification key vk, a list of message
M = (m0, . . . ,mn−1), and a message index j ∈ {0, . . . , n − 1}. It returns a
pair of a first message and a state (µ, st) or ⊥.

– S2(vk, sk,M = (m0, . . . ,mn−1), µ) : This is a second message generation
algorithm that is run by a signer. It takes as input a verification key vk, a
signing key sk, a list of message M = (m0, . . . ,mn−1), and a first message µ.
It returns a second message ρ or ⊥.

– UDer(vk, st, ρ) : This is a signature derivation algorithm that is run by a user.
It takes as an input a verification key vk, a state st, and a second message
ρ. It returns a pair of a message and its signature (m,σ) or ⊥.

– Verify(vk,m, σ) : A verification algorithm takes as an input a verification key
vk, a message m, and a signature σ. It returns a bit b ∈ {0, 1}.

Correctness. (1, n)-OS satisfies correctness if for all λ ∈ N, n ← n(λ), pp ←
Setup(1λ), for all message set M = (m0, . . . ,mn−1) such that mi ∈ Mpp,
(vk, sk) ← KeyGen(pp), for all j ∈ {0, . . . n − 1}, (µ, st) ← U1(vk,M, j), ρ ←
S2(vk, sk,M, µ), and (mj , σ)← UDer(vk, st, ρ), Verify(vk,mj , σ) = 1 holds.

Definition 9 (Ambiguity). Let (1, n)-OS = (Setup,KeyGen,U1, S2,UDer,Verify)
be an oblivious signature scheme and A a PPT algorithm. The ambiguity for
(1, n)-OS is defined by the ambiguity security game GameAmb

(1,n)-OS,A between the
challenger C and A in Fig. 3.

GAME GameAmb
(1,n)-OS,A(1

λ) :

pp← Setup(1λ), (vk, sk)← KeyGen(pp),
(M = (m0, . . . ,mn−1), i0, i1, stA)← A(pp, vk, sk)

b
$←− {0, 1}, (µ, stS)← U1(vk,M, ib), b∗ ← A(µ, stA).

If b∗ = b return 1. Otherwise return 0.

Fig. 3. The ambiguity security game GameAmb
(1,n)-OS,A.

The advantage of an adversary A for the ambiguity security game is defined
by AdvAmb

(1,n)-OS,A := |Pr[GameAmb
(1,n)-OS,A ⇒ 1]− 1

2 |. (1, n)-OS satisfies ambiguity if
for all PPT adversaries A, AdvAmb

(1,n)-OS,A(1
λ) is negligible in λ.
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3.2 Definition of Unforgeability Revisited

We review the security definition of unforgeability for (1, n)-OS in previous works
in [19]. The unforgeability for a 1-out-of-n oblivious signature scheme in [19] is
formalized by the following game between a challenger C and a PPT adversary A.

– C runs pp← Setup(1λ) and (vk, sk)← KeyGen(pp), and gives (pp, vk) to A.
– A is allowed to engage polynomially many signing protocol executions.

In an i-th protocol execution,
• A makes a list Mi = (mi,0, . . . ,mi,n−1)) and chooses mi,ji .
• A sends (µi,Mi = (mi,0, . . . ,mi,n−1)) to C.
• C runs ρi ← S2(vk, sk,Mi, µi) and gives ρi to A.

– Let LSign be a list of messages that A obtained signatures. A outputs a forgery
(m∗, σ∗) which satisfies m∗ /∈ LSign. A must complete all singing executions
before it outputs a forgery.

If no PPT adversary A outputs a valid forgery in negligible probability in λ,
(1, n)-OS satisfies the unforgeability security.

We point out three problems for the above security definition.

– Problem 1: How to Store Messages in LSign: In the above security game,
we need to store corresponding messages that the signer obtains signatures.
However, by ambiguity property, we cannot identify the message mi,ji that
is chosen by the signer from a transcription of the i-th interaction with Mi.
This security model does not explain how to record an entry of LSign.

– Problem 2: Trivial Attack: Let us consider the following adversary A that
runs signing protocol execution twice. A chooses M = (m0,m1) where m0

and m1 are distinct, and sets lists as M1 = M2 = M . In the 1st interaction,
A chooses m0 ∈ M1, obtains a signature σ0 on a message m0, and outputs
(m0, σ0) at the end of interaction. In the 2nd interaction, A chooses m1 ∈M2,
obtains a signature σ1 on a message m1, and outputs (m0, σ0) at the end
of interaction. Then, A outputs a trivial forgery (m∗, σ∗) = (m1, σ1). This
attack is caused by the reuse of a signature (m0, σ0) at the end of the signing
interaction.

– Problem 3: Missing Adversary Strategy: The security game does not
capture an adversary with the following strategy. Let us consider an adver-
sary A that executes the signing protocol only once. A interacts with the
signer with a message list M and intends to forge a signature σ∗ on a mes-
sage m∗ /∈ M , but give up outputting (m,σ) where m ∈ M at the end
of signing interaction. Since the security game only considers the adversary
that outputting (m,σ) where m ∈ M at the end of the signing execution,
the security game cannot capture the adversary A give up outputting (m,σ)
where m ∈M and forge (m∗, σ∗) where m∗ /∈M .

3.3 New Unforgeability Definition

To address the problems of the unforgeability security model by Tso et al. [19],
we modify their security model and redefine the unforgeability security. Here,
we briefly explain how to address these problems.
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– Countermeasure for Problem 1: This problem is easy to fix by forcing
A to output (mi,ji , σi) at the end of each signing interaction.

– Countermeasure for Problem 2: This attack is caused by the reuse of a
signature at the end of signing interactions. That is A submits (m,σ) twice
or more at the end of signing interactions.
To address this problem, we introduce the signature reuse check. This pre-
vents resubmission of (m,σ) at the end of signing interactions. However,
this is not enough to prevent the reuse of a signature. If a signature has a
re-randomizable property (i.e., The property that a signature is refreshed
without the signing key), A can easily avoid resubmission and succeed in the
trivial attack.
For this reason, normal unforgeability security is not enough. We address this
issue by letting strong unforgeability security be a default for the security
requirement.

– Countermeasure for Problem 3: This problem is addressed by adding
another winning condition for A. When A submits (m∗, σ∗) at the end of
i-th signing interaction, if (m∗, σ∗) is valid and m∗ /∈ Mi, A wins the game
where Mi is a list of messages send by A at the beginning of i-th signing
interaction.

By reflecting the above countermeasures to the unforgeability security model
by Tso et al. [19], we redefine the unforgeability security model as the strong
unforgeability under chosen message attacks under the sequential signing inter-
action (Seq-sEUF-CMA) security.

Definition 10 (Seq-sEUF-CMA Security). Let (1, n)-OS = (Setup,KeyGen,
U1, S2,UDer,Verify) be a 1-out-of-n oblivious signature scheme and A a PPT al-
gorithm. The strong unforgeability under chosen message attacks under the se-
quential signing interaction (Seq-sEUF-CMA) security for (1, n)-OS is defined
by the Seq-sEUF-CMA security game GameSeq-sEUFCMA

(1,n)-OS,A between the challenger C

and A in Fig. 4.
The advantage of an adversary A for the Seq-sEUF-CMA security game is

defined by AdvSeq-sEUFCMA
(1,n)-OS,A (1λ) := Pr[GameSeq-sEUFCMA

(1,n)-OS,A (1λ) ⇒ 1]. (1, n)-OS satis-

fies Seq-sEUF-CMA security if for all PPT adversaries A, AdvSeq-sEUFCMA
(1,n)-OS,A (1λ) is

negligible in λ.

Our security model is the sequential signing interaction model. One may think
that it is natural to consider the concurrent signing interaction model. However,
by extending our model to the concurrent signing setting there is a trivial at-
tack. We discuss the security model that allows concurrent signing interaction
in Section 5.

4 Our Construction

In this section, first, we review the generic construction by Zhou et al. [21].
Second, we propose our new generic construction based on their construction.
Then, we prove the security of our proposed scheme.
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GAME GameSeq-sEUFCMA
(1,n)-OS,A (1λ) :

LSign ← {}, LListM ← {}, qSign ← 0, qFin ← 0

pp← Setup(1λ), (vk, sk)← KeyGen(pp), (m∗, σ∗)← AOSign(·,·),OFin(·,·)(pp, vk)
If qSign = qFin ∧ Verify(vk,m∗, σ∗) = 1 ∧ (m∗, σ∗) /∈ LSign, return 1.
Otherwise return 0.

Oracle OSign(MqSign , µ) :

If qSign ̸= qFin, return ⊥.
ρ← S2(vk, sk,M, µ), if ρ = ⊥, return ⊥.
If ρ ̸= ⊥, qSign ← qSign + 1, LListM ← LListM ∪ {(qSign,MqSign)}, return ρ.

Oracle OFin(m∗, σ∗) :

If qSign ̸= qFin + 1, return ⊥.
If Verify(vk,m∗, σ∗) = 0, return the game output 0 and abort.
(//Oblivious signature reuse check)

If (m∗, σ∗) ∈ LSign, return the game output 0 and abort.
Retrieve an entry (qSign,MqSign) ∈ LListM.
If m∗ ∈MqSign , LSign ← LSign ∪ {(m∗, σ∗)}, qFin ← qFin + 1, return “accept".
(//Capture adversaries that give up completing signing executions in the game.)

If m∗ /∈MqSign , return the game output 1 and abort.

Fig. 4. The Seq-sEUF-CMA security game GameSeq-sEUFCMA
(1,n)-OS,A . The main modifications

from previous works security game are highlighted in white box .

4.1 Generic Construction by Zhou et al. [21]

The generic construction of a 1-out-of-n signature scheme (1, n)-OSZLH by Zhou
et al. [21] is a combination of a commitment scheme COM and a digital signature
scheme DS. Their construction (1, n)-OSZLH[COM,DS] = (OS.Setup,OS.KeyGen,
OS.U1,OS.S2,OS.UDer,OS.Verify) is given in Fig. 5.

We briefly provide an overview of a signing interaction and an intuition for
the security of their construction. In the signing interaction, the user chooses
a message list M = (mi)i∈{0,...,n−1} and a specific message mji that the user
wants to obtain the corresponding signature. To hide this choice from the signer,
the signer computes the commitment c on mj with the randomness r. The user
sends (M,µ = c) to the signer.

Here, we provide an intuition for the security of their construction. From
the view of the signer, by the hiding property of the commitment scheme, the
signer does not identify mj from (M,µ = c). This guarantees the ambiguity of
their construction. The signer computes a signature σDS

i on a tuple (mi, c) for
i ∈ {0, . . . , n− 1} and sends ρ = (σDS

i )i∈{0,...,n−1}.
If the signer honestly computes c on mj ∈ M , we can verify that mji is

committed into c by decommitting with r. An oblivious signature on mj is
obtained as σOS = (c, r, σDS

j ). If a malicious user wants to obtain two signatures
for two distinct messages m,m′ ∈ M or obtain a signature on m∗ /∈ M from
the signing protocol execution output (M = (mi)i∈{0,...,n−1}, µ, ρ), the malicious
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OS.Setup(1λ) :
ck← COM.KeyGen(1λ), ppDS ← DS.Setup(1λ), return ppOS ← (ck, ppDS).

OS.KeyGen(ppOS = (ck, ppDS)) :

(vkDS, skDS)← DS.KeyGen(ppDS), return (vkOS, skOS)← (vkDS, skDS).
OS.U1(vk

OS,M = (m0, . . . ,mn−1), j ∈ {0, . . . , n− 1}) :
r

$←− Ωck, c← COM.Commit(ck,m; r), µ← c, st← (M, c, r, j), return (µ, st).
OS.S2(vk

OS, skOS = skDS,M = (m0, . . . ,mn−1), µ = c) :

For i = 0 to n− 1, σDS
i ← DS.Sign(skDS, (mi, c)).

Return ρ← (σDS
0 , . . . , σDS

n−1).
OS.UDer(vk

OS = vkDS, st = (M = (m0, . . . ,mn−1), c, r, j), ρ = (σDS
0 , . . . , σDS

n−1)) :

For i = 0 to n− 1, if DS.Verify(vkDS, (mi, c), σ
DS
i ) = 0, return ⊥.

σOS ← (c, r, σDS
j ), return (mj , σ

OS).
OS.Verify(vkOS = vkDS,m, σOS = (c, r, σDS) :

If c ̸= COM.Commit(ck,m; r), return 0.
If DS.Verify(vkDS, (m, c), σDS) = 0, return 0.
Otherwise return 1.

Fig. 5. The generic construction (1, n)-OSZLH[COM,DS].

user must break either the EUF-CMA security of DS or the binding property of
COM. This guarantees the unforgeability security of their construction.

A drawback of their construction is the second communication cost. A second
message ρ consists of n digital signatures. If n becomes large, it will cause heavy
communication traffic. It is desirable to reduce the number of signatures in ρ.

4.2 Our Generic Construction

As explained in the previous section, the drawback of the construction by Zhou
et al. [21] is the size of a second message ρ. To circumvent this bottleneck, we
improve their scheme by using a Merkle tree technique. Concretely, instead of
signing on (mi, c) for each mi ∈M , we modify it to sign on (root, c) where root
is a root of the Merkle tree computed from M . This modification allows us to
reduce the number of digital signatures included in ρ from n to 1.

Now, we describe our construction. Let COM be a commitment scheme,
DS a digital signature scheme, H = {Hλ} a hash function family, and MT =
(MerkleTree,MerklePath,RootReconstruct) a Merkle tree technique in Section 2.4.
To simplify the discussion, we assume that n > 1 is a power of 2. 1

Our generic construction (1, n)-OSOurs[H,COM,DS] = (OS.Setup,OS.KeyGen,
OS.U1,OS.S2,OS.UDer,OS.Verify) is given in Fig. 6.

1 With the following modification, our scheme also supports the case where n > 1 is
not a power of 2. Let k be an integer such that 2k−1 < n < 2k. We change a list
of message M = (m0, . . .mn−1) which is given to OS.U1 and OS.S2 as a part of
an input to an augmented message list M ′ = (m′

0, . . .m
′
2k−1) where m′

i = mi for
i ∈ {0, . . . , n − 1}, m′

n−1+i = ϕ||i for i ∈ {1, . . . 2k − n}, and ϕ is a special symbol
representing that a message is empty.
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OS.Setup(1λ) :

H
$←− Hλ, ck← COM.KeyGen(1λ), ppDS ← DS.Setup(1λ),

Return ppOS ← (H, ck, ppDS).
OS.KeyGen(ppOS = (ck, ppDS)) :

(vkDS, skDS)← DS.KeyGen(ppDS), return (vkOS, skOS)← (vkDS, skDS).
OS.U1(vk

OS,M = (m0, . . . ,mn−1), j ∈ {0, . . . , n− 1}) :
If there exists (t, t′) ∈ {0, . . . , n− 1}2 s.t. t ̸= t′ ∧mt = mt′ , return ⊥.
r

$←− Ωck, c← COM.Commit(ck,m; r), µ← c, st← (M, c, r, j), return (µ, st).
OS.S2(vk

OS, skOS = skDS,M = (m0, . . . ,mn−1), µ = c) :
If there exists (t, t′) ∈ {0, . . . , n− 1}2 s.t. t ̸= t′ ∧mt = mt′ , return ⊥.
(root, tree)← MerkleTreeH(M), σDS ← DS.Sign(skDS, (root, c)).
Return ρ← σDS.

OS.UDer(vk
OS = vkDS, st = (M = (m0, . . . ,mn−1), c, r, j), ρ = (σDS

1 , . . . , σDS
n )) :

(root, tree)← MerkleTreeH(M), path← MerklePathH(tree, j)
If DS.Verify(vkDS, (root, c), σDS) = 0, return ⊥.
σOS ← (root, c, σDS, path, j, r), return (mj , σ

OS).
OS.Verify(vkOS = vkDS,m, σOS = (root, c, σDS, path, j, r) :

If root ̸= RootReconstructH(path,m, j), return 0.
If c ̸= COM.Commit(ck,m; r), return 0.
If DS.Verify(vkDS, (root, c), σDS) = 0, return 0.
Otherwise return 1.

Fig. 6. Our generic construction (1, n)-OSOurs[H,COM,DS].

4.3 Analysis

We analyze our scheme (1, n)-OSOurs. It is easy to see that our scheme satisfies the
correctness. Now, we prove that our generic construction (1, n)-OSOurs satisfies
the ambiguity and the Seq-sEUF-CMA security.

Theorem 1. If COM is computational hiding commitment, (1, n)-OSOurs[H,COM,
DS] satisfies the ambiguity.

Proof. The ambiguity of our scheme can be proven in a similar way in [21].
Let A be an adversary for the ambiguity game of (1, n)-OSOurs. We give a re-
duction algorithm B that reduces the ambiguity security of our scheme to the
computational hiding property of COM in Fig. 7.

Now, we confirm that B simulates the ambiguity game of (1, n)-OSOurs. In
the case that b = 0, c∗ ← COM.Commit(ck,m∗

0 = mi0) holds. B simulates
µ on the choice of mi0 in this case. Similary, in the case that b = 1, c∗ ←
COM.Commit(ck,m∗

1 = mi1) holds. B simulates µ on the choice of mi1 in this
case. Since b is chosen uniformly at random from {0, 1}, B perfectly simu-
lates the ambiguity game of (1, n)-OSOurs. We can see that AdvHideCOM,B(1

λ) =

AdvAmb
(1,n)-OSOurs,A(1

λ) holds. Thus, we can conclude Theorem 1. ⊓⊔

Theorem 2. If H is a family of collision-resistant hash functions, DS satis-
fies the sEUF-CMA security, and COM is computational binding commitment,
(1, n)-OSOurs[H,COM,DS] satisfies the Seq-sEUF-CMA security.
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B(1λ, ck) :

H
$←− Hλ, ppDS ← DS.Setup(1λ), ppOS ← (H, ck, ppDS),

(vkDS, skDS)← DS.KeyGen(ppDS), (vkOS, skOS)← (vkDS, skDS),
(M = (m0, . . . ,mn−1), i0, i1, stA)← A(ppOS, vkOS, skOS)
m∗

0 ← mi0 , m
∗
1 ← mi1 , send (m∗

0,m
∗
1) to the challenger C and obtain

a commitment c∗ where c∗ ← COM.Commit(ck,m∗
b) and b

$←− {0, 1} is chosen C.
b′ ← A(µ = c∗, stA), return b∗ ← b′.

Fig. 7. The reduction algorithm B.

Proof. Let A be a PPT adversary for the Seq-sEUF-CMA game of (1, n)-OSOurs.
We introduce the base game GameBase(1,n)-OSOurs,A which simulates GameSeq-sEUFCMA

(1,n)-OSOurs,A
.

We provide GameBase(1,n)-OSOurs,A in Fig. 8.
GameBase(1,n)-OSOurs,A simulates the game GameSeq-sEUFCMA

(1,n)-OSOurs,A
by introducing flags

(e.g., Final, DSreuse) which are used for classifying forgery type and a table T
which stores the computation of the signing oracle OSign. More precisely, the
flag Final represents that a forgery (m∗, σ∗OS = (root∗, c∗, σ∗DS, path∗, j∗, r∗)) is
submitted in the final output (Final = true) or OFin (Final = false). The flag
DSreuse represents that there is a pair (m̃, σ̃OS) ̸= (m̃′, σ̃′OS) in LSign such that
the first three elements of σOS are the same. i.e., (r̃oot, c̃, σ̃DS) = (r̃oot

′
, c̃′, σ̃′DS)

holds. We represent that such a pair exists as DSreuse = true. The table T
stores a tuple (i,M, root, c, σDS) where (M, c) is an input for an i-th OSign query,
(root, tree)← MerkleTreeH(M), σDS ← DS.Sign(skDS, (root, c)). The counter qSign
represents the number of outputs that A received from the OSign oracle and qFin

represent the number of submitted signatures from A.
Now, we divide an adversary A into three types A1,A2,A3 according to states

of flags DSreuse, DSforge, and COMcoll when A wins the game GameBase.

– A1 wins the game with DSforge = true.
– A2 wins the game with COMcoll = true.
– A3 wins the game with DSforge = false ∧ COMcoll = false.

For adversaries A1, A2, and A3, we can construct a reduction for the security
of DS, COM, and H respectively. Now, we give reductions for these adversaries.

Reduction BDS: A reduction BDS to the sEUFCMA security game of DS is
obtained by modifying GameBase(1,n)-OSOurs,A as follows. Instead of running ppDS ←
DS.Setup(1λ) and (vkDS, skDS)← DS.KeyGen(ppDS), BDS uses (ppDS, vkDS) given
by the sEUFCMA security game of DS. For a signing query (M, c) from A, BDS

query (root, c) to the signing oracle of the sEUFCMA security game of DS, obtains
σDS ← DS.Sign(skDS, (root, c)), and returns σDS. To simplify the discussion, we
assume that A makes distinct (M, c) to BDS. (If A makes the same (M, c) more
than once, BDS simply outputs return σDS ← DS.Sign(skDS, (root, c)) which was
previously obtained by the signing oracle of the sEUFCMA security game where
root is computed from M .)
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GameBaseOSOurs,A
(1λ) :

LSign ← {}, LListM ← {}, T← {}, qSign ← 0, qFin ← 0, Final← false,
DSreuse ← false, COMcoll ← false, DSforge ← false, ck← COM.KeyGen(1λ),
ppDS ← DS.Setup(1λ), ppOS ← (H, ck, ppDS), (vkDS, skDS)← DS.KeyGen(ppDS),
(vkOS, skOS)← (vkDS, skDS), (m∗, σ∗OS)← AOSign(·,·),OFin(·,·)(ppOS, vkOS)

If qSign ̸= qFin ∨ OS.Verify(vkOS,m∗, σ∗) ̸= 1 ∨ (m∗, σ∗OS) ∈ LSign, return 0.
Final← true, LSign ← LSign ∪ {(m∗, σ∗OS)}, qFin ← qFin + 1

Search a pair (m̃, σ̃OS) ̸= (m̃′, σ̃′OS) in LSign such that the first three
elements of σOS are the same. i.e., (r̃oot, c̃, σ̃DS) = (r̃oot

′
, c̃′, σ̃′DS)

If there is no such a pair, DSforge ← true, return 1.
(Final = true ∧ DSreuse = false ∧ DSforge = true ∧ COMcoll = false)

DSreuse ← true.
Parse σ̃OS as (root∗, c∗, σ∗DS, p̃ath, j̃, r̃), σ̃′OS as (root∗, c∗, σ∗DS, p̃ath

′
, j̃′, r̃′).

If (m̃, r̃) ̸= (m̃′, r̃′), COMcoll ← true, return 1.
(Final = true ∧ DSreuse = true ∧ DSforge = false ∧ COMcoll = true)

Otherwise, return 1.
(Final = true ∧ DSreuse = true ∧ DSforge = false ∧ COMcoll = false)

Oracle OSign(M = (m0, . . . ,mn−1), µ = c) :

If qSign ̸= qFin, return ⊥.
If there exists a pair (t ̸= t′ ∈ {0, . . . , n− 1}) such that mt = mt′ , return ⊥.
(root, tree)← MerkleTreeH(M), σDS ← DS.Sign(skDS, (root, c)),
qSign ← qSign + 1, MqSign ←M , LListM ← LListM ∪ {(qSign,MqSign)},
T← T ∪ {(qSign,MqSign , root, c, σ

DS)},
return ρ← σDS to A.

Oracle OFin(m∗, σ∗OS) :

If qSign ̸= qFin + 1, return ⊥.
If OS.Verify(vkOS,m∗, σ∗OS) ̸= 1, return the game output 0 and abort.
If (m∗, σ∗OS) ∈ LSign, return the game output 0 and abort.
LSign ← LSign ∪ {(m∗, σ∗OS)}, qFin ← qFin + 1, retrieve (qSign,MqSign) ∈ LListM.
If m∗ ∈MqSign , return “accept" to A.
Parse σ∗OS as (root∗, c∗, σ∗DS, path∗, j∗, r∗).
If (qSign, ∗, root∗, c∗, σ∗DS) ∈ T return the game output 1.

(Final = false ∧ DSreuse = false ∧ DSforge = false ∧ COMcoll = false)

Search a pair (m̃, σ̃OS) ̸= (m̃′, σ̃′OS) in LSign such that the first three
elements of σOS are the same. i.e., (r̃oot, c̃, σ̃DS) = (r̃oot

′
, c̃′, σ̃′DS)

If there is no such a pair, DSforge ← true, return the game output 1.
(Final = false ∧ DSreuse = false ∧ DSforge = true ∧ COMcoll = false)

DSreuse ← true.
Parse σ̃OS as (root∗, c∗, σ∗DS, p̃ath, j̃, r̃), σ̃′OS as (root∗, c∗, σ∗DS, p̃ath

′
, j̃′, r̃′).

If (m̃, r̃) ̸= (m̃′, r̃′), COMcoll ← true, return the game output 1.
(Final = false ∧ DSreuse = true ∧ DSforge = false ∧ COMcoll = true)

Otherwise, return the game output 1.
(Final = false ∧ DSreuse = true ∧ DSforge = false ∧ COMcoll = false)

Fig. 8. The base game GameBase(1,n)-OSOurs,A
.
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If BDS outputs 1 with the condition where DSforge = true, there is the
forgery (r̃oot, c̃, σ̃DS). Since DSforge = true holds, DSreuse = false holds. This
fact implies that for (m,σOS) ∈ LSign, the first three elements (root, c, σDS) of
σOS are all distinct in LSign and valid signatures for DS (i.e., DS.Verify(vkDS,
(root, c), σDS) = 1). Moreover, BDS makes qSign signing queries to signing oracle,
qSign < qFin holds where qFin is the number of entry in LSign. Hence, there is
a forgery ((r̃oot, c̃), σ̃DS) of DS. By modifying GameBase(1,n)-OSOurs,A to output this
forgery ((r̃oot, c̃), σ̃DS), we can obtain BDS.

Reduction BCOM: A reduction BCOM to the computational binding property of
COM is obtained by modifying GameBase(1,n)-OSOurs,A as follows. BCOM uses ck given
by the strong computational binding security game of COM.

If GameOSOurs,A outputs 1 with the condition where COMcoll = true, there is a
collision (m̃, r̃) ̸= (m̃′, r̃′) such that COM.Commit(ck, m̃; r̃) = COM.Commit(ck,
m̃′; r̃′) holds. Since if COMcoll = true holds, DSreuse = true holds in GameBaseOSOurs,A.
This fact implies that there is a pair (m̃, σ̃OS = (root∗, c∗, σ∗DS, p̃ath, j̃, r̃)) ̸=
(m̃′, σ̃′OS = (root∗, c∗, σ∗DS, p̃ath

′
, j̃′, r̃′)). Since (m̃, σ̃OS) and (m̃′, σ̃′OS) are valid

signatures, (m̃, r̃) ̸= (m̃′, r̃′) and COM.Commit(ck, m̃; r̃) = COM.Commit(ck,
m̃′; r̃′) hold. By modifying GameBase(1,n)-OSOurs,A to output this collision ((m̃, σ̃OS), (m̃′,

σ̃′OS)), we can obtain BCOM.

Reduction BHash: We explain how to obtain a reduction BHash to the colli-
sion resistance property from GameBase(1,n)-OSOurs,A. If GameBase(1,n)-OSOurs,A outputs 1
with the condition where Final = false ∧ DSreuse = false ∧ DSforge = false,
a collision a hash function can be found. Since Final = false ∧ DSreuse =
false ∧ DSforge = false holds, then (qSign, ∗, root∗, c∗, σ∗DS) ∈ T holds. Let
(MqSign , cqSign) be an input for the qSign-th OSign query. Then, by the computa-
tion of OSign and table T, c∗ = cqSign , (root∗, tree∗) = MerkleTreeH(MqSign), and
DS.Verify(vkDS, (root∗, c∗), σ∗DS) = 1 holds. Since m∗ /∈ MqSign , a collision of a
hash function H can be computed by (x, x′) ← Ext1(tree

∗, (m∗, path∗, i∗)). We
modify GameBase(1,n)-OSOurs,A to output this collision (x, x′) in this case.

If BBase
(1,n)-OSOurs,A

outputs 1 with the condition where DSreuse = true∧DSforge =
false ∧ COMcoll = false (regardless of the bool value Final), a collision of a
hash function can be also found. Since DSreuse = false ∧ COMcoll = false

holds, then there is a pair (m̃, σ̃OS = (root∗, c∗, σ∗DS, p̃ath, j̃, r̃)) ̸= (m̃, σ̃′OS =

(root∗, c∗, σ∗DS, p̃ath
′
, j̃′, r̃)) holds. From this fact, we can see that (p̃ath, j̃) ̸=

(p̃ath
′
, j̃′) holds. If j∗ ̸= j̃ holds, we can obtain a collision of a hash function

H as (x, x′) ← Ext1(tree
∗, (m∗, path∗, i∗). If j∗ = j̃ holds, then p̃ath = p̃ath

′

holds and thus we can compute a collision of a hash function as (x, x′) ←
Ext2(m, j∗, p̃ath, p̃ath

′
). We modify GameBase(1,n)-OSOurs,A to output this collision (x, x′)

in these case.
By reduction algorithms BDS, BCOM, and BHash described above, we can bound

the advantage AdvSeq-sEUFCMA
(1,n)-OS,A (1λ) as
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AdvSeq-sEUFCMA
(1,n)-OS,A (1λ)

= Pr[GameSeq-sEUFCMA
(1,n)-OSOurs,A

(1λ)⇒ 1]

= Pr[GameBase(1,n)-OSOurs,A(1
λ)⇒ 1]

= Pr[GameBase(1,n)-OSOurs,A(1
λ)⇒ 1 ∧ DSforge = true]

+ Pr[GameBase(1,n)-OSOurs,A(1
λ)⇒ 1 ∧ COMcoll = true]

+ Pr[GameBase(1,n)-OSOurs,A(1
λ)⇒ 1 ∧ DSforge = false ∧ COMcoll = false]

≤ AdvsEUFCMA
DS,A1

(1λ) + AdvsBindCOM,A2
(1λ) + AdvCollH,A3

(1λ).

By this fact, we can conclude Theorem 2. ⊓⊔

5 Conclusion

Summary of Our Results. In this paper, we revisit the unforgeability se-
curity for a 1-out-of-n oblivious signature scheme and point out problems. By
reflecting on these problems, we define the Seq-sEUF-CMA security. We propose
the improved generic construction of a 1-out-of-n oblivious signature scheme
(1, n)-OSOurs. Compared to the construction by Zhou et al. [21], our construc-
tion offers a smaller second message size. The sum of a second message size and
a signature size is improved from O(n) to O(log n).

Discussion of Our Security Model and Open Problem. We introduce
the Seq-sEUF-CMA security in Definition 10. This security model restricts an
adversary A to execute signing interactions only in a sequential manner. It is
natural to consider a model that allows concurrent signing interactions. However,
if we straightforwardly extend our security model to a concurrent setting, there
is a trivial attack.

Let us consider the following adversary A that runs signing protocol ex-
ecutions twice concurrently. A chooses two list M1 = (m1,0, . . . ,m1,n−1) and
M2 = (m2,0, . . . ,m2,n−1) such that M1∩M2 = ∅ (i.e., there is no element m such
that m ∈ M1 ∧m ∈ M2). In the 1st interaction, A chooses m1,0 ∈ M1, obtains
a signature σ1 on a message m1,0. In the 2nd interaction A chooses m2,0 ∈ M2,
obtains a signature σ2 on a message m2,0. A finishs the 1st interaction by out-
putting (m2,0, σ2). Since m2,0 /∈M1, A trivially wins the unforgeability game.

Due to this trivial attack, we cannot straightforwardly extend our security
model to the concurrent signing interaction setting. We leave an open problem
to define the unforgeability security model for a 1-out-of-n oblivious signature
scheme that supports concurrent signing interactions.
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