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Abstract. Card-based cryptography refers to a secure computation with
physical cards, and the number of cards and shuffles measures the ef-
ficiency of card-based protocols. This paper proposes new card-based
protocols for any Boolean circuits with only a single shuffle. Although
our protocols rely on Yao’s garbled circuit as in previous single-shuffle
card-based protocols, our core construction idea is to encode truth tables
of each Boolean gate with fewer cards than previous works while being
compatible with Yao’s garbled circuit. As a result, we show single-shuffle
card-based protocols with six cards per gate, which are more efficient
than previous single-shuffle card-based protocols.

Keywords: Card-based cryptography · Secure computation · Garbled
circuit.

1 Introduction

1.1 Background and Motivation

Secure computation protocols allow parties to collaboratively compute a func-
tion while keeping each party’s input hidden from the other party. Although
secure computation protocols are usually implemented on computers, card-based
cryptography [3, 4], which is an area focusing on secure computation using phys-
ical cards (without computers), has also been eagerly investigated. Let us give
an example of a secure card-based AND protocol called the five-card trick [3].

Suppose that each of Alice and Bob has two cards, ♣ and ♡ , and a ♡ is placed
face-down on a table. Alice (resp., Bob) puts their cards face-down on the left

side (resp., the right side) of ♡ , following the encoding rule: the order of the

cards is ♣ ♡ if the input is zero; it is ♡ ♣ if the input is one. After shuffling
the five face-down cards without changing the order of the sequence, they face
up the cards. The output of the AND protocol is one if the consecutive three
heart cards appear; it is zero otherwise.
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The major efficiency measures of card-based cryptography are the number of
cards and shuffles. The fewer cards and shuffles card-based protocols are realized,
the easier it is to execute them. In this work, we focus on the implementability
of shuffles; it is unclear how to implement shuffles that yield desired probability
distributions, though various attempts have been made thus far [7, 11, 17, 18, 22,
23, 28, 29]. For this reason, we devote effort to constructing card-based protocols
with the minimum number of shuffles and as few cards as possible.

A well-known approach to constructing card-based protocols for any function
is to realize card-based protocols for a Boolean gate such as AND and XOR since
any function can be realized by combining Boolean gates [4, 12, 15]. Hence, im-
proving card-based protocols for Boolean gates is one of the mainstream research
topics [1, 2, 4–6, 8, 9, 12–14, 19–21, 25, 26]. However, this approach increases the
number of shuffles required for the resulting card-based protocols for any func-
tion (or Boolean circuit) since the number of shuffles depends on the number
of gates consisting of the Boolean circuit. Therefore, we aim to directly propose
card-based protocols for any Boolean circuit consisting of various Boolean gates,
not any Boolean gate, with a single shuffle. Note that, as stated in [24], it is
impossible to realize card-based protocol for any non-trivial function without
shuffles; The lower bound of shuffles required for secure card-based protocols is
one.

1.2 Prior Works

Shinagawa and Nuida [24] showed a single-shuffle card-based protocol for any
n-variable Boolean circuit f : {0, 1}n → {0, 1}m with 24q + 2n cards, where
q is number of gates in the Boolean circuit. Tozawa et al. [27] improved the
Shinagawa–Nuida protocol and reduced the number of cards to 8q+2n without
additional shuffles. Kuzuma et al. [10] focused on a restricted class of Boolean
circuits and showed single-shuffle card-based protocols for an n-variable AND
function with 4n− 2 cards and an n-variable XOR function with 2n cards. Note
that, allowing multiple shuffles, Nishida et al. [16] showed a card-based protocol
with 2n+ 6 cards for any n-variable Boolean circuit f : {0, 1}n → {0, 1}, which
is the most efficient protocol in terms of the number of cards.

1.3 Our Contribution

This paper proposes new single-shuffle card-based protocols based on Yao’s gar-
bled circuits [30]. The core construction idea is to encode truth tables of each
Boolean gate with fewer cards than previous protocols while being compatible
with Yao’s garbled circuit. Unlike previous single-shuffle card-based protocols
such as Shinagawa–Nuida [24] and Tozawa et al. [27], each output of the truth
table is represented by a single card, and we add two more extra cards to make
the truth tables encoded with single cards compatible with Yao’s technique. As
a result, we show two single-shuffle card-based protocols for any Boolean circuit
f : {0, 1}n → {0, 1}m with six cards per gate: One is a non-committed-format
protocol with 2n+6q cards, and the other is a committed-format protocol with
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Table 1. A comparison among protocols with one shuffle for any Boolean circuit. q, n,
and m are the number of gates, bit-length of the input, and bits-length of the output,
respectively.

Format Number of cards Shuffle type

Shinagawa–Nuida [24] committed 24q + 2n uniform closed
Tozawa et al. [27] committed 8q + 2n uniform closed

Our protocol (Section 3.6) non-committed 6q + 2n uniform
Our protocol (Section 3.7) committed 6q + 2(n+m) uniform

2(n+m) + 6q cards, where q is the number of gates in f , and a protocol is said
to be committed if it outputs cards face-down and the output follows the same
encoding rule as the input.

Table 1 shows a comparison among the existing protocols and our protocols.
Since the number of gates q is greater than or equal to the number of the output
gates m, our protocol is more efficient than those of Shinagawa–Nuida [24] and
Tozawa et al. [27] in terms of the number of cards. It should be noted that
our protocols use a uniform shuffle, which is not closed (see Section 2.2 for the
definition), although Shinagawa–Nuida [24] and Tozawa et al. [27] used a uniform
closed shuffle.

1.4 Organization

In Section 2, we introduce basic definitions. In Section 3, we construct our single-
shuffle protocols both in the non-committed-format setting and the committed-
format setting. In Section 4, we conclude our paper.

2 Preliminaries

For an integer k ≥ 1, we denote the k-th symmetric group by Sk. For two per-
mutations π1, π2 ∈ Sk, the composition of them is denoted by π2 ◦ π1. Here,
permutations are applied from right to left, i.e., π2 ◦ π1 ∈ Sk means that per-
mutation π1 is applied and then π2 is applied. For two subsets A,B ⊆ Sk, we
define AB := {πA ◦ πB | πA ∈ A, πB ∈ B}.

2.1 Syntax of Boolean Circuits

A Boolean circuit C is defined by a 6-tuple (n,m, q, L,R,G) where n ≥ 1 is the
number of input wires, m ≥ 1 is the number of output wires, q ≥ 1 is the number
of gates, L and R are functions that specify the left and right wires in each gate,
respectively, and G is a function that specifies the truth table of each gate. The
detailed specification is given in the following.

– The number of wires in C is n + q, where n wires are the input wires
and q wires are the output wires of gates. Each input wire corresponds to
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1, 2, . . . , n, and each output wire of gates corresponds to n+1, n+2, . . . , n+q.
The last m wires n+ q −m+ 1, n+ q −m+ 2, . . . , n+ q correspond to the
output wires of C. A gate g is identified with the output wire of g, i.e., each
gate also corresponds to n+ 1, n+ 2, . . . , n+ q.

– Each gate g has two input wires: the left input wire of g is L(g) and the
right input wire of g is R(g). We assume that L(g) ≤ R(g) < g, i.e., the
input wires L(g), R(g) are smaller than g, and the left wire is smaller than
or equal to the right wire. This restriction prevents the loop of the circuit.

– A wire w, which is not an output wire of C is called the inner wire, i.e., each
inner wire corresponds to 1, 2, . . . , n+ q−m. An inner wire is an input wire
or an input wire of some gate. An inner wire w can be branched, i.e., there
might exist two or more gates having w as its input wire, or some gate can
be taken w as the left and right input wires.

– For an inner wire w, L−1(w) is defined by the set of all gates whose left
input wire is w, i.e., L−1(w) = {g ∈ {n + 1, n + 2, . . . , n + q} | L(g) = w}.
We define R−1(w) in the same way.

– For a gate g, G(g) represent the truth table of g. When g computes a function
f : {0, 1}2 → {0, 1}, G(g) represents a 4-bit binary string defined by

G(g) = (f(0, 0), f(0, 1), f(1, 0), f(1, 1)).

In this paper, for simplicity, we assume that all gates are the NAND gates,
i.e., G(g) = (1, 1, 1, 0) for all gates g. This is based on the fact that any Boolean
function f : {0, 1}n → {0, 1}m can be constructed by only NAND gates. We
note that our protocol can also be applied to a circuit with other gates.

Example of Boolean Circuit. A Boolean circuit C = (3, 1, 3, L,R,G) is given
in Figure 1, where the number of the input wires is n = 3, the number of the
output wires is m = 1, and the number of the gates is q = 3. Each input wire
corresponds to 1, 2, 3 and each gate corresponds to 4, 5, 6. The functions L and
R are defined by L(4) = 1, R(4) = 2, L(5) = 3, R(5) = 4, L(6) = 4 and R(6) = 5.
Then we have L−1(1) = {4}, R−1(1) = ∅, L−1(2) = ∅, R−1(2) = {4}, L−1(3) =
{5}, R−1(3) = ∅, L−1(4) = {6}, R−1(4) = {5}, L−1(5) = ∅ and R−1(5) = {6}.
Since all gates are the NAND gates, G(g) = (1, 1, 1, 0) for all 4 ≤ g ≤ 6.

2.2 Card-based Protocols

In this paper, we use two-colored cards: the front side of a card is either ♣ or

♡ , and the back side is ? . All cards with the same suit are indistinguishable,
and the backs of all cards are also indistinguishable.

In card-based protocols, three operations are used: permutation, shuffle, and
turn. Let k be the number of cards. A permutation operation (perm, π) for π ∈ Sk

is a deterministic operation that rearranges the order of the cards according to
π. A shuffle operation (shuffle, Π,F) for a subset Π ⊆ Sk and a probability
distribution F over Π is a probabilistic operation that randomly rearranges the
order of the cards according to a permutation π ∈ Π drawn from F . It is assumed
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Fig. 1. An example of Boolean circuits

that no player can know which permutation π is actually drawn from F . A turn
operation (turn, T ) for T ⊆ {1, 2, . . . , k} is a deterministic operation that turns
over cards in T from face-down to face-up or from face-up to face-down.

Let S be a shuffle (shuffle, Π,F). If F is a uniform distribution, S is called
a uniform shuffle. If Π is a subgroup of Sk, S is called a closed shuffle. If S is
uniform and closed, it is called a uniform closed shuffle.

2.3 Card-based Garbled Circuits

Shinagawa–Nuida [24] developed a card-based garbled circuit, which is a card-
based protocol based on garbled circuits. Tozawa et al. [27] improved the card-
based garbled circuit in terms of the number of cards. A card-based garbled
circuit consists of three phases: initialization phase, garbling phase, and evalua-
tion phase as follows:

Initialization phase: Given a Boolean circuit f : {0, 1}n → {0, 1}m and a
sequence of input commitments to x1, x2, . . . , xn, it outputs a sequence of
face-down cards I, which we call an initial state. The objective of this phase
is to encode the circuit and its input into a sequence of face-down cards.

Garbling phase: Given an initial state I, it outputs two sequences of face-
down cards C̃ and X̃, which we call a garbled circuit and a garbled input,
respectively. The objective of this phase is to randomize the inputs and the
intermediate values of the circuit without changing the functionality of the
circuit.

Evaluation phase: Given a garbled circuit C̃ and a garbled input X̃, it outputs
the output value or a commitment of the output value. The purpose of this
phase is to obtain the output value by evaluating each gate of the garbled
circuit C̃ with the garbled input X̃.
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3 Our Single-Shuffle Protocols

3.1 Idea of Our Protocol

In many card-based protocols , 0 and 1 are represented by ♡ ♣ and ♣ ♡ ,
respectively, and [27] succeeded in realizing garbled circuits with eight cards
that by encoding every 2× 2 truth table with eight cards.

Here, we briefly describe our idea for realizing the garbled circuits with six
cards that consist of three hearts and three clubs. For instance, we represent
the truth table of the NAND and AND gates as follows, where 0 and 1 are
represented by ♣ and ♡ , respectively.

NAND 0 1

0 ♡ ♡

1 ♡ ♣

AND 0 1

0 ♣ ♣

1 ♣ ♡

Facing down cards in the above truth table conceals all values in the truth
table, but the negation of them is not possible due to the encoding rule with
one card that prevents us from converting the NAND gate to the AND gate 5.
To overcome this obstacle, we append two ♣ to the NAND truth table as the
third column and permute it. Then we have the following and by deleting the
third column, we obtain the truth table of AND in a committed format.

♡ ♡ ♣

♡ ♣ ♣
permutation−−−−−−−−−−→

♣ ♣ ♡

♣ ♡ ♡

3.2 Preliminaries for Our Protocol

In our protocol, each input wire is represented by two cards ♣ ♡ and each gate

is represented by six cards ♣ ♣ ♣ ♡ ♡ ♡ . Since we have n input wires and q
gates, we use 2n+ 6q cards in total.

To clarify the position of the cards, we define 2n + 6q indices: Pi[a] (1 ≤
i ≤ n and a ∈ {0, 1}) and Pg[b][c] (n + 1 ≤ g ≤ n + q, b ∈ {0, 1}, and c ∈
{0, 1, 2}). Two indices Pi[0], Pi[1] correspond to the input wire i and six indices
Pg[0][0], Pg[1][0], Pg[0][1], Pg[1][1], Pg[0][2], Pg[1][2] correspond to the gate g. We
assume that all indices are distinct. We give an example of distinct 2n + 6q
indices in the following:

– Pi[a] = 2i− 1 + a for 1 ≤ i ≤ n and a ∈ {0, 1};
– Pg[b][c] = 2n+ 1 + 6(g − (n+ 1)) + 3b+ c for n+ 1 ≤ g ≤ n+ q, b ∈ {0, 1},

and c ∈ {0, 1, 2}.

The above indices are consecutive from 1 to 2n+ 6q.

5 The reason utilizing eight cards in [27] comes from this point.
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3.3 Initialization Phase

Given a Boolean circuit f : {0, 1}n → {0, 1}m and a sequence of input commit-
ments to x1, x2, . . . , xn, the initialization phase makes a sequence of face-down
cards on the indices of the position Pi[a] and Pg[b][c].

First, the sequence of input commitments is arranged as follows:

P1[0]

?
P1[1]

?︸ ︷︷ ︸
x1

P2[0]

?
P2[1]

?︸ ︷︷ ︸
x2

· · ·
Pn[0]

?
Pn[1]

?︸ ︷︷ ︸
xn

.

For each gate g ∈ {n + 1, n + 2, . . . , n + q}, we identify the indices Pg[a][b]
(a ∈ {0, 1} and b ∈ {0, 1, 2}) with the cells of a 2× 3 matrix as follows:

Pg[0][0] Pg[0][1] Pg[0][2]

Pg[1][0] Pg[1][1] Pg[1][2]

Then, we place six cards ♣ ♣ ♣ ♡ ♡ ♡ as follows:

♡ ♡ ♣

♡ ♣ ♣

We note that the above matrix represents the NAND gate: for two inputs a, b ∈
{0, 1}, the card on Pg[a][b] is ♣ if a = b = 1 and ♡ otherwise. It can be regarded

as the NAND gate by ♣ = 0,♡ = 1. We also note that two additional ♣ s on
Pg[0][2], Pg[1][2] are needed to garble the gate as explained in Section 3.1.

Then, we apply a turn operation so that all cards are face-down. Now we
have a sequence of 2n + 6q face-down cards on the indices of the position Pi[a]
and Pg[b][c]. This is the output of this phase.

3.4 Garbling Phase

Next, the protocol proceeds to the garbling phase. This phase just applies a
uniform shuffle (shuffle, Π,F) to the sequence of 2n+6q cards outputted by the
initialization phase. In the following, we will define Π ⊆ S2n+6q by three steps:
(1) defining four permutations, (2) defining a shuffle for randomizing a wire, and
(3) composing all shuffles.

Defining Four Permutations. For an input wire i ∈ {1, 2, . . . , n}, a permu-
tation πi is defined by

πi := (Pi[0], Pi[1]).

It represents the bit flip of the i-th input commitment. For a gate g ∈ {n+1, n+
2, . . . , n+ q}, a permutation πg is defined by

πg := (Pg[0][0], Pg[0][2]) ◦ (Pg[1][0], Pg[1][2]) ◦ (Pg[0][1], Pg[1][1]).
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It represents the bit flip of the truth table of g as follows:

♡ ♡ ♣
♡ ♣ ♣

πg−→ ♣ ♣ ♡
♣ ♡ ♡ .

For a gate g, a permutation τg is defined by

τg := (Pg[0][0], Pg[1][0]) ◦ (Pg[0][1], Pg[1][1]).

It represents a swap of the rows of the truth table of g as follows:

1 3 5

2 4 6

τg−→ 2 4 5

1 3 6
.

A permutation σg is defined by

σg := (Pg[0][0], Pg[0][1]) ◦ (Pg[1][0], Pg[1][1]).

It represents a swap of the columns of the truth table of g as follows:

1 3 5

2 4 6

σg−→ 3 1 5

4 2 6
.

Defining a Shuffle for Randomizing a Wire. For a wire w ∈ {1, 2, . . . , n+
q}, a permutation π̂w is defined by

π̂w := πw ◦
∏

g∈L−1(w)

τg ◦
∏

g′∈R−1(w)

σg′ .

By applying it, the value of the wire w is flipped and for each gate g, the rows
of g are swapped if w is the left input wire of g and the columns of g are
swapped if w is the right input wire of g. Define Πw := {id, π̂w}. A uniform
shuffle (shuffle, Πw,Fw) is a shuffle that randomizes the value of the wire w and
all gates having w as input.

Composing All Shuffles. The subset Π ⊆ Sn+q is defined by

Π := Π1Π2 · · ·Πn+q−m = {π′
1 ◦ π′

2 ◦ · · ·π′
n+q−m | π′

i ∈ Πi}.

The uniform shuffle (shuffle, Π,F) is now obtained. We note that it is a shuffle
by composing n+ q uniform shuffles (shuffle, Πw,Fw).

3.5 Evaluation Phase

Finally, the protocol proceeds to the evaluation phase. In this phase, the players
evaluate the circuit by opening cards as follows. Let vw (1 ≤ i ≤ n + q) be an
indeterminate on {0, 1}. The protocol proceeds by determining these values and
finally outputs vn+q−m+1, vn+q−m+2, . . . , vn+q as the output values.
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First, the players open all cards corresponding to the input wires: the value
of vi (1 ≤ i ≤ n) is set to the value of the i-th commitment according to the

encoding rule ♣ ♡ = 0 and ♡ ♣ = 1. Next, each gate g = n + 1, . . . , n + q is
evaluated (in this order) by opening the card on the position Pg[vL(g)][vR(g)]: the

value of vg is set to the value of the card according to the encoding rule ♣ = 0

and ♡ = 1. Note that the values of vL(g) and vR(g) are determined before g is
executed since L(g) ≤ R(g) < g. By repeating this process, we finally obtain the
output values vn+q−m+1, vn+q−m+2, . . . , vn+q.

3.6 Description of Our Protocol in the Non-committed Format

We summarize our protocol in the following.

1. First, we enter the initialization phase. Given a Boolean circuit f and the
input commitments to x1, . . . , xn, this phase outputs a sequence of 6q + 2n
face-down cards as an initial state.

2. Next, we enter the garbling phase. Given an initial state, this phase applies a
shuffle (shuffle, Π,F) defined in Section 3.4. We regard the resulting sequence
of 2n cards corresponding to the input commitments as the garbling input
and the remaining sequence of 6q cards as the garbled circuit.

3. Finally, we enter the evaluation phase. This phase opens the garbled input
and some cards of the garbled circuit. We output a m-bit string correspond-
ing to the cards of the output gates.

In the following, we prove the correctness and security of our protocol.

Correctness: Recall that for each wire 1 ≤ w ≤ n+ q−m, the permutation π̂w

is defined as follows:

π̂w := πw ◦
∏

g∈L−1(w)

τg ◦
∏

g′∈R−1(w)

σg′ .

Let w be a wire and g be a gate such that L(g) = w (resp., R(g) = w). From
the definition of π̂w, we can observe that the bit flip introduced by π̂w and the
swap of columns (resp., rows) introduced by τg (resp., σg′) is synchronized, which
guarantees that the functionality of the circuit remains the same. Therefore, this
protocol is correct.

Security: In order to prove the security, it is sufficient to show that the opened
values vi (1 ≤ i ≤ n + q −m) except the output values are independently and
uniformly random bits. (We note that once this fact is proven, a simulator can
be constructed in the same way as Shinagawa–Nuida [24].) In the following, we
prove this fact by reverse induction from n+ q −m to 1.

Let Aw be the shuffle for randomizing a wire w, i.e., Aw := (shuffle, Πw,Fw).
First, vn+q−m is a uniformly random bit due to the effect of uniform shuf-
fles An+q−m and {Aw | w ∈ L−1(n + q − m) ∪ R−1(n + q − m)}. Next, sup-
pose that vi+1, vi+2, . . . , vn+q−m are independently and uniformly random bits.
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The uniform property of vi is obvious due to the effect of uniform shuffles
Ai and {Aw | w ∈ L−1(i) ∪ R−1(i)}. Since Ai does not appear in the wires
greater than i, the randomness introduced by the shuffle Ai is independent
from vi+1, vi+2, . . . , vn+q−m. Thus vi, vi+1, . . . , vn+q−m are also independently
and uniformly random bits.

Therefore, vi (1 ≤ i ≤ n+ q −m) are independently and uniformly random
bits. This proves the security.

3.7 Our Protocol in the Committed Format

Although our protocol in Section 3.6 is a non-committed-format protocol, we can
convert it to a committed-format protocol by appending 2m additional cards,
where m is the number of the output wires. The committed-format protocol is
the same as our -committed-format protocol except that for each output gate
g ∈ {n+ q−m+1, . . . , n+ q}, we use the eight-card truth table as in Tozawa et
al. [27] instead of our six-card truth table. More concretely, we use a truth table
of an output gate g as follows:

♡ ♣ ♡ ♣

♡ ♣ ♣ ♡
.

The shuffle in the committed-format protocol can be defined in the same way as
in Section 3.4. By applying it, we obtain a committed-format protocol. Since each
output gate requires two additional cards, the number of cards in this protocol
is 6q + 2n+ 2m.

4 Conclusion

This paper proposed new single-shuffle card-based protocols for any Boolean
circuit. Our protocols are based on Yao’s garbled circuit as in previous single-
shuffle protocols [24, 27]. Namely, the truth tables of gates in the Boolean circuit
are garbled (or randomized) while keeping the output of the circuit consistent.
Our core technique to reduce the number of cards is to propose a new encoding of
the truth table: each value of the truth table is represented by one card, whereas
the previous works used two cards per value. We also used two additional cards
to apply Yao’s technique to our protocol. Therefore, our protocols require only
six cards per gate. Specifically, we proposed a non-committed single-shuffle card-
based protocol with 6q + 2n cards and then modified it to make it a committed
protocol with 2m additional cards. Since our protocols require uniform shuffles,
it would be interesting to construct a committed card-based protocol with single
uniform closed shuffles and a comparable number of cards to ours.
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