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Abstract. Secure lottery is a cryptographic protocol that allows mul-
tiple players to determine a winner from them uniformly at random,
without any trusted third party. Bitcoin enables us to construct a se-
cure lottery to guarantee further that the winner receives reward money
from the other losers. Many existing works for Bitcoin-based lottery use
deposits to ensure that honest players never be disadvantaged in the
presence of adversaries. Bartoletti and Zunino (FC 2017) proposed a
Bitcoin-based lottery protocol with a constant deposit, i.e., the deposit
amount is independent of the number of players. However, their scheme
is limited to work only when the number of participants is a power of
two. We tackle this problem and propose a lottery protocol applicable
to an arbitrary number of players based on their work. Furthermore, we
generalize the number of winners; namely, we propose a secure (k, n)-
lottery protocol. To the best of our knowledge, this is the first work
to address Bitcoin-based (k, n)-lottery protocol. Notably, our protocols
maintain the constant deposit property.
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1 Introduction

1.1 Backgrounds

Consider a bet in which each of the n players gambles one dollar. The champion
is randomly chosen from them and he/she receives the sum of the bets, n dollars,
as a reward. Secure lottery is a cryptographic protocol that allows us to play such
games fairly [12–14,18]. That is, it ensures that no honest player is disadvantaged
in the presence of adversarial players who do not follow procedures.

One of the crucial issues in constructing a secure lottery is how to deal with
the abort attack, which terminates in the middle of a protocol to avoid losing.
To counter the attack, we must enforce an adversary to tell the lottery result to
all honest parties. Such a property is typically defined as fairness, which ensures
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that at the end of a protocol, either all parties learn the output or none of them
learn it. Unfortunately, it is known that fairness cannot be achieved without any
additional assumption such as the honest majority or trusted third parties [11].

Another fundamental challenge is how to force losers to pay winners. Since
a typical cryptographic protocol treats no monetary entity, we cannot require a
protocol to guarantee such a property. To enforce the payoff, we need to introduce
a setup for handling monetary operations, e.g., a trusted bank [19, 22], e-cash
[6, 9, 17], or decentralized cryptocurrency.

Secure lottery based on cryptocurrency. Using cryptocurrency, e.g., Bit-
coin [23] and Ethereum [24], we can construct a secure lottery protocol that
forces losers to pay winners without relying upon any trusted third party even
in the dishonest majority. Informally, in cryptocurrency-based protocols, parties
cooperate to create some transactions at the beginning of the protocol and de-
posit or bet money. One of the transactions is corresponding to n dollars, the
prize money. If a protocol guarantees that only the winner can learn the witness
to redeem it, it implies that only the winner can receive the prize.

There is a line of work on achieving a variant of fairness using monetary
penalties. The monetary penalty enforces adversaries to follow procedures to
avoid losing money, and it allows us to achieve fairness. In secure multi-party
computation, many works adopt such a definition, e.g., [5, 7, 8, 15,16,21].

Similarly, it is known that monetary penalties enable us to construct a secure
lottery protocol even in the dishonest majority. Back and Bentov [2] showed a
secure lottery based on Bitcoin in the two-party setting. Their protocol can en-
force a payment from the loser to the winner. Moreover, it guarantees that an
aborting party loses money and then another party obtains money as compensa-
tion. Afterward, Andrychowicz, Dziembowski, Malinowski, and Mazurek [1] and
Bentov and Kumaresan [2], respectively, proposed Bitcoins-based secure lottery
protocols that can be applied to an arbitrary number of parties.

In many works of Bitcoin-based secure lotteries, parties must input deposit
to achieve fairness in addition to the bet. Indeed, the existing protocol made of
Marcin [1] requires parties to input O(n2) deposits, where n is the number of
parties. The deposit is guaranteed to be returned to every honest party at the
end of the protocol. On the other hand, for adversarial parties, the deposit is not
returned to them but is instead distributed to honest parties as compensation.
Even though the protocol promises to refund deposits to honest parties, it is
undesirable to require money other than bets. That is to say, too expensive
deposits make it difficult for parties to participate in the protocol. Based on
the backgrounds, Bartoletti and Zunino [4] proposed a secure lottery protocol
with a constant deposit. Independently, Miller and Bentov [20] proposed a secure
lottery without any deposit money. However, as pointed out by Bartoletti and
Zunino [4], their scheme has an issue of depending on a Bitcoin specific opcode,
MULTIINPUT. To be a generic scheme, it should not rely on a custom scripting
language supported by a particular blockchain.
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In this paper, we focus on Bartoletti-Zunino work [4]. Informally they realize
a constant-deposit protocol based on a single-eliminate tournament, i.e., they use
multiple matches between two players to determine one winner of the lottery.
However, their protocol assumes that the tournament has a complete binary tree
structure. In other words, it has an issue to be applicable only if the number of
participants can be expressed in 2L, where L is a positive integer that refers to
the tree depth.

1.2 Our Contribution

This paper presents two contributions. The first one is to solve the issue of the
restriction of the number of participants in the Bartolotti and Zunino scheme.
That is, we propose (1, n)-lottery protocol for an arbitrary positive integer n.
Our construction idea is we bias the winning percentage for each match to ensure
that all participants are equal even if the tournament is not a complete binary
tree.

The second contribution is to generalize the number of winners, namely, we
propose a (k, n)-lottery protocol for arbitrary k and n. To realize the protocol,
we first construct (k, k+1)-lottery protocol. Our (k, n)-lottery protocol is derived
from a composition of (k, k+1)-lottery protocols. More precisely, in our protocol
parties first run (n− 1, n)-lottery protocol and determine one loser. Afterward,
n − 1 winners run (n − 2, n − 1)-lottery protocol and further determine one
loser. Players repeat such a process until deciding n − k losers. To the best of
our knowledge, this is the first work to realize (k, n)-lottery protocol based on
Bitcoin with a constant deposit.

1.3 Basic Notations

For any positive integer i, let [i] := {0, 1, . . . , i − 1}. We denote by η a secu-
rity parameter. We suppose that all players are probabilistic polynomial-time
algorithms (PPTA) in a security parameter η.

We construct lottery protocols based on a tournament structure represented
as a binary tree, as in [4]. Hereafter, we call a champion to distinguish it from
the winners of matches in the tournament. In a binary tree, its leaf nodes refer
to players, and the other nodes represent a match (or the winner) of two child
nodes. Each node at level l in the tree is identified as a (l + 1)-bit string. For a
node π, we denote its child nodes as πleft = π ∥ 0 and πright = π ∥ 1. Namely, π is
the prefix of its child nodes. We write π ⊏ π′ if π is a prefix of π′. We note that,
since we handle an arbitrary number of players, the tournaments may not be the
complete binary tree. Hence, the binary tree in our protocol is represented by
Π ⊆ {{0, 1}l | 1 ≤ l ≤ L}, where the tree has L levels. We denote by P the set
of players. Note that, since the players correspond to leaf nodes, it holds P ⊂ Π.
For a bit string π, |π| means the bit length of π. We denote by πr the root node
of a binary tree.

Organization. As a preparation for the introduction of our protocol, we first
describe a bitcoin overview in Section 2. Section 3 presents several notations and
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useful lemmas regarding tournament structures. In Section 4, we define secure
lottery protocol. We show our constructions for (1, n)-lottery and (k, n)-lottery
in Sections 5 and 6, respectively. In these sections, we prove security of the
protocols according to the security definitions, shown in Section 4.

2 A Brief Introduction to Bitcoin

In a blockchain protocol, parties maintain a global ledger that holds ordered
sets of records, i.e., blocks. To append a new block to the blockchain, parties
must race and win to solve a cryptographic puzzle, as known as the mining
process. The puzzle hardness is parameterized so that the intervals between the
growth of blocks are approximately constant at a particular time (about 10
minutes in Bitcoin). Since each block contains a cryptographic hash function of
the previous block, the state of each block is preserved by subsequent blocks.
Furthermore, when the blockchain diverges into multiple states, proper parties
accept the longest chain. Hence, if an adversary tries to rewrite data contained
in a block, it needs to reconstruct the subsequent blocks in addition to the
block. The adversary must further make the rewritten chain the longest to get
other parties to accept it. However, it is infeasible unless the adversary possesses
more than half the computing power of the entire network. That is, a blockchain
realizes a tamper-resistant public bulletin board based on the assumption about
the computing power of adversaries [3, 10].

Bitcoin is a decentralized cryptocurrency based on a blockchain. The Bit-
coin ledger manages transactions on its blocks. Roughly speaking, a transaction
Tx1 refers to a sender, the amount transferred coins, and the recipient, i.e., it
expresses information about “a sender S sends Q coins to a recipient R.” The
party R can send Q coins to the other party by making a new transaction Tx2
that refers to Tx1. Then, Tx1 becomes a spent transaction and thereafter R can-
not re-use it. We can check the balance of a party by referring to all unspent
transactions corresponding to the party on the blockchain.

Precisely, a transaction form has inputs and outputs. An input specifies a
transaction to be used for this remittance. In the above example, the input of
Tx2 is Tx1(’s output). An output (script) specifies the recipient by describing a
condition to use the transaction. Typically, the output script contains a signature
verification with a public key of the recipient. When a party uses a transaction,
he/she needs to write a witness on the transaction as an input script that satisfies
the output script of the input transaction. See Fig. 1 that shows the transaction
flow in the simplest case. Transaction Tx2 redeems the previous transaction Tx1
to use $v. Then, witness w1 written in the input script of Tx2 must satisfy the
condition ϕ1, which is the output script of Tx1. Similarly, to use $v with reference
to Tx2, it is necessary to create a transaction that holds w in its input script
such that ϕ2(w) = 1. Hereafter, in the graphical description, an arrow connects
the corresponding input and output.

In Bitcoin, by specifying some transactions as inputs, a party can create
a transaction to transfer the sum of the coins. Similarly, a single transaction
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Tx1

in: Tx0
inscript ∶ 𝑤0

outscript(𝑥): 𝜙1(𝑥)
value: $𝑣

Tx2

in: Tx1
inscript ∶ 𝑤1 s.t. 𝜙1 𝑤1 = 1

outscript(𝑥): 𝜙2(𝑥)
value: $𝑣

$𝑣

Fig. 1. Graphical description of a transaction flow.

can specify multiple recipients by holding multiple output scripts. Formally, we
denote a m-input and l-output transaction in Bitcoin by

(in[m], inscript[m], value[l], outscript[l], lockTime),

where in[i] is an identifier of the input transaction (i.e., the previous one),
inscript[i] is the corresponding input script (i.e., a witness), value[i] is the num-
ber of coins, outscript[i] refers to the corresponding output script, and lockTime
specifies the earliest time when the transaction appears on the ledger. Namely,
the miners do not approve the transaction until the time specified by lockTime.
Note that the sum of the input coins must match the sum of the output coins.

A transaction excluding the input script (in[m], value[l], outscript[l], lockTime)
is called the simplified form. Typically, as described above, the output script
contains a signature verification algorithm to specify the recipient. The input
script of the next transaction states a signature in its simplified form in order
to prove the creator is the specified recipient.

3 Tournaments with Uniform Winning Probability

3.1 Tournaments with a Single Champion

First, we discuss the case where the champion is only one. In cases of tournaments
based on complete binary trees, it is obvious that every party has an equivalent
chance to be champion by equating win probabilities of all matches by 1/2. On
the other hand, if it is not a complete binary tree, i.e., the number of matches
differs from player to player, then it is necessary to bias the winning probabilities
to make the tournament equal for all players. We here present several useful
lemmas to make fair tournaments even in such cases. (We show the proofs in
Appendix A.)

Let us consider a tournament that may not be a complete binary tree and
consider the biased probabilities of each match to make it fair. Suppose a match
π of which child nodes are πleft and πright. We consider two subtrees such that
its root nodes are πleft and πright, and let vπleft and vπright be the number of leaf
nodes in these subtrees, respectively. (Note that, if the entire tournament form
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is the complete binary tree, then vπleft = vπright always holds.) Based on the above
notations, for a node π, we define BiasedPr(π) := vπleft/(v

π
left + vπright). We can

construct a fair tournament based on any binary tree using this function from
the following lemma.

Lemma 1 For any tournament consisting of a binary tree, if the winning prob-
abilities of each match π is set with (BiasedPr(π), 1 − BiasedPr(π)), then the
tournament is equal for every player.

3.2 Tournaments with Multiple Champions

Next, we discuss the case of multiple champions. In this case, we must pay
attention to the joint winning probabilities of each set of players not only to
the winning probability of individual players. For instance, in order to choose
two champions, consider the case of dividing the players half into two groups
and running a single champion tournament in each group. In this case, although
each player has the same probability of being champion, the problem arises that
players in the same group can never win simultaneously. To tackle this issue
and deal with an arbitrary number of winners, we construct (k, k + 1)-lottery
protocol. Thus, we first discuss a single eliminate tournament that determines k
champions from k + 1 players, (k, k + 1)-tournament. Afterward, we show that
tournaments applicable to an arbitrary number of champions can be constructed
by combining multiple (k, k + 1)-tournaments.

To construct a (k, k + 1)-tournament, we adopt the single-elimination tour-
nament proceeding as follows: First two players p1 and p2 play a match πb. The
winning player is determined to be a champion, and the loser l1 ∈ {p1, p2} plays
the next match π2 with p2. In a similar way, for i = 1 . . . k − 1, player pi+1 and
the previous match loser li−1 plays a match πi. The loser of (k − 1)-th match
πk−1 becomes the only loser of the tournament.

Lemma 2 If the winning probabilities of match πi between li−1 and pi+1 is set
with (i/(i+1), 1− i/(i+1)) for i = 1 . . . k− 1, then the tournament is equal for
every player. Moreover, for any subset S ⊂ P such that |S| = k, the probability
of winning the parties in S simultaneously is also equivalent.

We can construct a (k, n)-tournaments for arbitrary k and n by running
(n − j, n − j + 1)-tournament for j = 1 . . . n − k. Concretely, the winners of
(n− j′, n− j′ +1)-tournament continue the next (n− j′ − 1, n− j′)-tournament
to further determine one loser, and the players continue such process until the
remaining winners are k players.

Lemma 3 For any positive integers k and n with k < n, if a (k, n)-tournament
is composed of sequential executions of (n − j, n − j + 1)-tournament for j =
1 . . . n − k, then the probability of being the winner of a tournament is equiva-
lent for every player. Moreover, for any subset S ⊂ P such that |S| = k, the
probability of winning the parties in S simultaneously is also equivalent.
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4 Definition of Secure Lottery Protocol

Suppose a game in which each of n player bets $α. A secure (k, n)-lottery protocol
is a cryptographic protocol to k champions who obtain $(nα/k) from them fairly.
This section presents the security model of this protocol.

Hereafter, we say that player p can freely redeem transaction Tx if p holds a
witness that satisfies the output script of Tx. Let wealth of player p at round t
mean the total amount of coins in transactions such that p can freely redeem at
round t. Note that we ignore coins not involved in the protocol. Also, payoff of
player p refers to the difference between wealth at the beginning of the protocol
and at the end.

Before presenting formal descriptions, we discuss an intuitive understanding
of security requirements. First, we focus on the case of k = 1, i.e., the cham-
pion is only one. As a premise, if all players behave honestly, it is necessary to
determine the champion uniformly at random. Of course, it is ideal to achieve
this property even in the presence of an adversary. However, such a requirement
is somewhat too strong to achieve. For instance, an adversary may abort early
after the start of a protocol. In this case, since the protocol terminates without
determining the champion, it does not fulfill the condition of determining the
champion uniformly at random. Thus, in the case where corrupted players ex-
ist, we relax the requirement. More concretely, a secure protocol ensures that
the expected value of honest parties’ payoffs is never negative for the arbitrary
strategy of the adversary.

In the case of k ≥ 2, the requirements are almost similar to the above, how-
ever, there is one additional condition that comes from having multiple champi-
ons. We require that, if all players are honest, for any set of players W ⊂ P such
that |W | = k, the probability that W becomes champions is the same. In other
words, it ensures that not only the tournament is fair for individual players, but
also is equal for each set of players. It is also necessary that, if an adversary
violates this property, its expected payoff becomes negative. This requirement
means that adversaries cannot prevent a certain set of players from becoming
champions simultaneously without loss.

To capture the above requirements formally, we introduce several notations.
Let σA denote a strategy set of a PPTA adversary A, and let st0 denote the
ledger state at the beginning of the protocol. We denote by Ω(p, st0, t, σA) a
random variable of wealth of player p at round t. In the case where there is no
corrupted party, we describe σA = ⊥. Let β and ϵ denote the round number at
the beginning and at the end of the protocol, respectively. We define a random
variable with respect to payoff as follows.

Φ(p, st0, σA) = Ω(p, st0, ϵ, σA)−Ω(p, st0, β, σA) (1)

We denote by E(Φ(p, st0, σA)) the expected value of the payoff.

Definition 1 We say a (1, n)-lottery protocol Π is secure if Π fulfills the fol-
lowings except a negligible probability in η:
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– If all players are honest, E(Φ(p, st0,⊥)) = 0 and Ω(p, st0, ϵ,⊥) ∈ {−α, α(n−
1)} for all p ∈ P .

– For all PPTA adversaries A, i.e., if there exist corrupted players, E(Φ(p, st0, σA)) ≥
0 holds for all p ∈ H.

Definition 2 We say a (k, n)-lottery protocol Π is secure if Π fulfills the fol-
lowings except a negligible probability in η:

– If all players are honest, E(Φ(p, st0,⊥)) = 0 and Ω(p, st0, ϵ,⊥) ∈ {−α, (α/k)(n−
k)} for all p ∈ P . Furthermore, Pr(

∑
s∈S Ω(s, st0, β,⊥) = k(n−k)) =

(
n
k

)−1

for all S = {s1, . . . , sk} ⊂ P .
– For any PPTA adversary A, E(Φ(p, st0, σA)) ≥ 0 holds for all p ∈ H.
– For any PPTA adversary A, if there exists S ⊆ H such that |S| ≤ k and

Pr(
∑

s∈S Φ(s, st0, σA) = |S|(n − k)) ̸=
(
n−|S|
k−|S|

)−1
, the protocol guarantees

that
∑

p∈C E(Φ(p, st0, σA)) < 0.

To achieve a secure protocol, we require players to input deposit in addition
to the bets. The deposits play a roll of compensation for honest players when an
adversary behaves maliciously. We say that a protocol is constant-deposit if the
deposit amount of every player is a constant value independent from the number
of players.

5 (1, n)-Lottery Protocol with Constant Deposits

This section presents a (1, n)-lottery protocol for an arbitrary positive integer
n. We suppose that a bet amount of each party is α = 1. Our protocol is based
on single-elimination tournaments with binary tree structure. The tournament
consists of n− 1 two-player matches: the winners of the matches at level l ∈ [L]
play at the next level l−1, where L is the tree depth. The winner of the match at
level 0 obtains $n as a reward. Bartoletti and Zunino’s protocol set the winning
probability to 1/2 in each match. To construct a protocol for an arbitrary number
of players, it is necessary to modify it so that all players are fair to win even if
the tournament is not the complete binary tree. The main idea of our protocol
is to bias the probability of winning in each match.

5.1 Building Block: Biased Coin-Tossing Protocol

We denote with τLedger the sufficient time to write a transaction on the ledger
and confirm it. (It is about 60 minutes in Bitcoin.) We denote by Kp(Tx, π,P)
a key pair of player p for transaction Tx, which corresponds to a match π. P
refers to players’ identifiers corresponding to the match. We suppose that the
private part of key pairs is kept secret by p. (Note that we write signing and ver-
ification keys without distinguishing between them.) We define K(Tx, π,P) :=
{Kp(Tx, π,P) | p ∈ P}.

Let (ver, sig) be a signature scheme. Following Bartoletti and Zunino’s work,
we allow the partial signature that enables to exclude of the input field from
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the signature subjects. It allows to generate a signature on a transaction before
determining the input field of the transaction. Namely, we use the malleability of
input fields. Hereafter, a signature written in the input field of transaction Tx =
(in[m], inscript[m], value[l], outscript[l], lockTime) is for (value[l], outscript[l], lockTime).
Below, we omit the inputs of signatures and refer to it as sigKp(Tx,π,P). Also,
sigK(Tx,π,P) means the multi-signature with K(Tx, π,P).

As described the previous section, we construct a protocol based on a tourna-
ment structure. Thus, before presenting our lottery protocol, we show a protocol
to realize a match between two parties. Since we deal with tournaments not the
complete binary tree, it is necessary to bias some matches to ensure all players
to have the same probability of winning the tournament. Hence, we construct a
match protocol, called a biased coin tossing protocol, that can parameterize the
winning probability.

To handle biased probabilities, we introduce a winner function to determine
the winner in a match. Let a and b be players that hold secrets sa and sb,
respectively. We consider a match such that the winner depends on sa and sb,
and define the function to determine the winner as follows.

Winner(sa, sb, va, vb) =

{
a if sa + sb (mod va + vb) < va,
b otherwise.

(2)

where va and vb are positive integers. Hereafter, we suppose that sa and sb are
sampled from [va + vb] uniformly at random.4 The output x ∈ {a, b} means the
winner of the match.

See Protocol 1 and Fig. 2 that shows a protocol of realizing a match πi in
a tournament. (Suppose πa and πb be the child nodes of πi.) A match consists
of three types of transactions, Win, Turn1, and Turn2. At the beginning of the
protocol, suppose Win(πa, a) and Win(πb, b) being on the ledger, which implies
that player a and b won the previous matches πa and πb, respectively. Now,
they play a match πi. Turn1 is used to aggregate the coins of Win(πa, a) for
the preparation of the match. Turn2 is a transaction of which input is Turn1.
See the output script of Turn1. To redeem Turn1, a player must write sa on the
input script of Turn2. Thus, putting Turn2 on the ledger implies to reveal a’s
secret sπi

a . Win(πi, a) and Win(πi, b) are transactions of which input is Turn2.
See the output script of Turn2. To redeem Turn2, a player must write sπi

a and
sπi

b on the input script of the next transaction. Thus, to redeem Turn2, player
b must reveal his/her secret sπi

b . Furthermore, since sπi
a and sπi

b satisfy either
a = Winner(sπi

a , sπi

b , va, vb) or b = Winner(sπi
a , sπi

b , va, vb), players can put only
one of Win(πi, a) and Win(πi, b) on the ledger. The transaction put on the ledger
refers to the winner of this match and is used as the input of Turn1 in the next
match.

4 In our protocol, players commit the secrets at the beginning of the protocol by
using a cryptographic hash function. Thus, more precisely, we need to extend the
bit lengths of secrets to an appropriate length by adding multiples of va + vb.
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Win(𝜋𝑎 , 𝑎)

in ∶ Turn2

inscript ∶ 𝑠𝑎
𝜋𝑎 , 𝑠𝑐

𝜋𝑎 , sig𝐊(Turn2,𝜋𝑎,𝑎)

outscript T, 𝜎 : ver𝐊 Win,𝜋𝑎,𝑎 T, 𝜎

∨ ver𝐊 WinTO,𝜋𝑎,𝑎 T, 𝜎

value: $ 1 + 𝑑 𝑣𝑎
𝜋𝑎

Win(𝜋𝑏 , 𝑏)

in: Turn2

inscript ∶ 𝑠𝑏
𝜋𝑏 , 𝑠𝑑

𝜋𝑏 , sig𝐊(Turn2,𝜋𝑏,𝑏)

outscript T, 𝜎 : ver𝐊 Win,𝜋𝑏,𝑏 T, 𝜎

∨ ver𝐊 WinTO,𝜋𝑏,𝑏 T, 𝜎

value: $ 1 + 𝑑 𝑣𝑏
𝜋𝑏

Turn1(𝜋𝑖 , 𝑎, 𝑏)

in:Win(𝑎)
inscript ∶ sig𝐊(Win,𝜋𝑎,𝑎)

in:Win(𝑏)
inscript ∶ sig𝐊(Win,𝜋𝑏,𝑏)

outscript T, 𝑠𝑎 , 𝜎 ∶

( 𝐻 𝑠𝑎 = ℎ𝑎
𝜋𝑖 ∧ ver𝐊 Turn1,𝜋𝑖,𝑎,𝑏 T, 𝜎 )

∨ ver𝐊 Turn1TO, 𝜋𝑖,𝑎,𝑏 T, 𝜎

value: $ 1 + 𝑑 (𝑣𝑎
𝜋𝑎+𝑣𝑏

𝜋𝑏)

Turn2(𝜋𝑖 , 𝑎, 𝑏)

in: Turn1

inscript: 𝑠𝑎
𝜋𝑖 , sig𝐊(Turn1,𝜋𝑖,𝑎, 𝑏)

outscript T, 𝑠𝑎 , 𝑠𝑏 , 𝜎 ∶

( 𝐻 𝑠𝑎 = ℎ𝑎
𝜋𝑖 ∧ 𝐻 𝑠𝑏 = ℎ𝑏

𝜋𝑖

∧ ver𝐊 Turn2,𝜋, winner(𝑠𝑎,𝑠𝑏,𝑣𝑎,𝑣𝑏 ) T, 𝜎 )

∨ ver𝐊 Turn2TO,𝜋𝑖,𝑎,𝑏 T, 𝜎

value: $ 1 + 𝑑 (𝑣𝑎
𝜋𝑎+𝑣𝑏

𝜋𝑏)

Win(𝜋𝑖 , 𝑎)

in ∶ Turn2

inscript ∶ 𝑠𝑎
𝜋𝑖 , 𝑠𝑏

𝜋𝑖 , sig𝐊(Turn2,𝜋𝑖,𝑎)

outscript T, 𝜎 : ver𝐊 Win,𝜋𝑖,𝑎 T, 𝜎

∨ ver𝐊 WinTO,𝜋𝑖,𝑎 T, 𝜎

value: $ 1 + 𝑑 𝑣𝑎
𝜋𝑖

Win(𝜋𝑖 , 𝑏)

in: Turn2

inscript ∶ 𝑠𝑎
𝜋𝑖 , 𝑠𝑏

𝜋𝑖 , sig𝐊(Turn2,𝜋𝑖,𝑎)

outscript T, 𝜎 : ver𝐊 Win,𝜋𝑖,𝑏 T, 𝜎

∨ ver𝐊 WinTO,𝜋𝑖,𝑏 T, 𝜎

value: $ 1 + 𝑑 𝑣𝑏
𝜋𝑖

$ 1 + 𝑑 𝑣𝑎
𝜋𝑎

$ 1 + 𝑑 𝑣𝑏
𝜋𝑏

$ 1 + 𝑑 (𝑣𝑎
𝜋𝑎 + 𝑣𝑏

𝜋𝑏)

$ 1 + 𝑑 (𝑣𝑎
𝜋𝑎 + 𝑣𝑏

𝜋𝑏)

Fig. 2. Graphical description of biased coin-tossing (for match πi).

5.2 Our Construction of (1, n)-lottery

The biased probability of each match in (1, n)-Lottery. First, we present
the biased probability of each match. Let us consider a match π of which child
nodes πa and πb. As in Section 3.1, we consider two subtrees such that its root
nodes are πa and πb, and let vπa and vπb be the number of leaf nodes in these
subtrees, respectively. From Lemma 1, we set the winner function in each match
π of our (1, n)-lottery protocol as Winner(sπa , s

π
b , v

π
a , v

π
b ).

Our protocol is applicable to an arbitrary binary tree. Let Π ⊆ {{0, 1}n | 1 ≤
n ≤ L} be a binary tree applied to our protocol, and it has L levels. Based on
the binary tree and the biased probability, our protocol proceeds as follows.

Precondition: For all p ∈ P , the ledger contains a transaction Betp with value
$(1 + d), and redeemable with key Kp(Betp).

Initialization phase:
1. For all player p ∈ P , p generates the following secret keys locally. Each

player p generates all the following key pairs.
– For all π such that π is leaf and every p ∈ P :

Kp(Betp),Kp(CollectW),Kp(Init, a)
– For all π and every p ∈ P :

Kp(Win, π, a),Kp(WinTo, π, a)
– For all π such that π is neither leaf nor root and every a, b ∈ P such

that a, b ⊏ π:
Kp(Turn1To, π, a, b),Kp(Turn1, π, a),Kp(Turn2To, π, a, b),Kp(Turn2, π, a),
Kp(Timeout1, π, a, b),Kp(Timeout2, π, a, b)
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Protocol 1 Biased Coin-Tossing ΠW
a,b(sa, sb, va, vb)

Setup:
1: The initialization phase was completed, and Win(π, a) and Win(π, b) have been put

already on the ledger. Players a and b hold secrets sa and sb, respectively. Let τ
be the round of the beginning of the protocol.

Procedure:
2: One of the players puts Turn1(π, a, b) on the ledger.
3: a writes sa on the input script of Turn2(π, a, b), and put the transaction on the

ledger.
4: if Turn2(π, a, b) does not appear within τ + 2τLedger then
5: One of the players puts Timeout1(π, a, b) on the ledger.
6: One of the players puts Win(π, b) on the ledger.
7: b computes w = Winner(sa, sb, va, vb)
8: if w = a then
9: b puts Win(π, a) on the ledger.
10: if w = b then
11: b puts Win(π, b) on the ledger.
12: if Win(π, x ∈ {a, b}) does not appear within τ + 4τLedger then
13: One of the players puts Timeout2(π, a, b) into the ledger.
14: One of the players puts Win(π, a) on the ledger.

2. For all player p ∈ P , p generates secrets s
πp
p for each πp, such that

(|πp| < L), and broadcasts to the other players his/her public keys and
hashes h

πp
p = H(s

πp
p ).

3. If h
πp
p = h

πp
′

p′ for some (p, πp) ̸= (p′, πp
′), the players abort.

4. Parties agree the time τInit large enough to fall after the initialization
phase.

5. Each player signs all transaction templates in Fig. 3 except for Init, and
broadcasts the signatures.

6. Each player verifies the signatures received by the others. some signature
is not valid or missing, the player aborts the protocol.

7. Each player signs Init, and sends the signature to the first player.
8. The first player puts the (signed) transaction Init on the ledger.
9. If Init does not appear within one τLedger , then each p redeems Betp and

aborts.
10. The players put the signed transactions Win(p, p) on the ledger, for all

p ∈ P .
Tournament execution phase: For all levels l = L . . . 1, players proceed as

follows: Run ΠW
a,b(s

πa
a , sπb

b , vπa
a , vπb

b ) for each π, such that |π| = l− 1, in par-
allel. Then, vπa

a , vπb

b denote the biased probability determined in the manner
shown in the above.5

Garbage collection phase: If there is some unredeemed Win(π, p) such that
π is not the root on the ledger, players put CollectOrphanWin(π, p) on the

5 Only the Win transaction corresponding to the winner of the final match uses the
template for the root node. See Fig. 3, and Win(πr, a) is the corresponding template.
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ledger. (If all players behave honestly, this step is not carried out. It is a
countermeasure for the transaction insertion attack, shown in Section 5.3.)

At step 2, players prepare all transactions that may be used in the protocol.
Note that they then signs the transactions using signing keys of all players.
Thus, after this step, it is not possible for some players to collude and forge
transactions, except for input and input script fields. The number of transactions
created in this step is O(n2), which is derived from the number of possible match
combinations. See Win(πr, a) in Fig. 3 that is a transaction for the champion.
At the end of the tournament execution phase, only the champion is freely
redeemable a Win(πr, a) and can obtain $(n+d), which is the reward and deposit
for the champion. Furthermore, Win(πr, a) holds outputs to return deposits for
each player.

5.3 Transaction Insertion Attack

In our scheme, as in the Bartoletti-Zunino scheme, an adversary can turn an
honest player who should be the winner into the loser in a match. The details
of the attack are described below.

Settings. Consider a match π with honest player a and malicious player b, where
they are winners of the previous matches π0 and π1, respectively. Let player c
be the loser of π0, and let π′ be the parent node of π. Player b has a freely
redeemable transaction Tb with $(vπa +vπb )(1+d) in the external to the protocol.

Procedures. Suppose when honest player a puts Turn2(π, a, b) on the ledger in the
biased coin tossing protocol for π, player b realizes that he has lost the match.
Then, b redeems Tb through a transaction Win(π, b) by malleating its input and
input script fields. (Note that in our scheme, we assume the input malleabil-
ity.) Player b can now redeem both his transaction and Win(π′, c) by putting
Turn1(π1, b, c) on the ledger. Player a can redeem the pending Turn2(π, a, b) (af-
ter its timeout has expired) using Timeout2(π, a, b), and then redeem that with
Win(π, a). This transaction is now orphan, i.e. it can no longer be used in the next
rounds because its Win(π′, c) was already redeemed by b. However, the orphan
transaction can be redeemed in the garbage collection phase by CollectW(π, a).
Thus, player a can collect $(vπa + vπb )(1 + d) at the garbage collection phase.

As shown above, in order to realize this attack in match π, an adversary
needs to invest additional coins $(vπa + vπb )(1+d) into the protocol. The affected
honest player can collect $d by the root Win(πr, a) and $(vπa + vπb )(1 + d) by
the garbage collection. Informally, this adversarial scenario does not affect the
security since the honest player who is applied this attack would rather gain due
to the deposit. We present security proof of our protocol in the next subsection.

5.4 Security Proof

This section shows security proof of our (1, n)-lottery protocol. Our proof is
based on the fact that the possible attack strategies for adversaries is only the
transaction insertion attack or the rejection of revealing their secrets.
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Win 𝜋, 𝑎 (𝜋 ∈ Π′, 𝜋 ⊏ 𝑎)

in: Timeout1(𝜋, 𝑏, 𝑎)
inscript ∶ sig𝐊 Timeout1, 𝜋,𝑏,𝑎

outscript T, 𝜎 ∶ ver𝐊(Win,𝜋,𝑎) T, 𝜎

∨ ver𝐊 WinTO,𝜋,𝑎 T, 𝜎

value: $ 1 + 𝑑 (𝑣𝑎 + 𝑣𝑏)

in: Timeout2(𝜋, 𝑎, 𝑏)
inscript ∶ sig𝐊(Timeout2,𝜋,𝑎,𝑏)

in: Turn2(𝜋, 𝑎, 𝑏)
inscript ∶ 𝑠𝑎

𝜋, 𝑠𝑏 , sig𝐊(Turn2,𝜋,𝑎)

in: Turn2(𝜋, 𝑏, 𝑎)
inscript ∶ 𝑠𝑎

𝜋, 𝑠𝑏 , sig𝐊(Turn2,𝜋,𝑎)

Win(𝑎, 𝑎) (𝑎 ∈ 𝑃) (leaf)

in: Init(𝑎)
inscript ∶ sig𝐊(Init,𝑎)

outscript(T, 𝜎): ver𝐊 Win,𝑎,𝑎 (T, 𝜎)

value 𝑝 : $ 1 + 𝑑

Turn1 𝜋, 𝑎, 𝑏 (𝜋 ∈ Π′, 𝜋 ⊏ 𝑎, 𝑏)

in:Win(𝑎)
inscript ∶ sig𝐊(Win,𝜋0,𝑎) (𝜋0 is a child of 𝜋)

in:Win(𝑏)
inscript ∶ sig𝐊(Win,𝜋1,𝑏) (𝜋1 is a child of 𝜋)

outscript T, 𝑠𝑎 , 𝜎 ∶
( 𝐻 𝑠𝑎 = ℎ𝑎

𝜋 ∧ ver𝐊 Turn1,𝜋,𝑎,𝑏 T, 𝜎 )

∨ verK Turn1TO,,𝜋,𝑎,𝑏 T, 𝜎

value: $ 1 + 𝑑 (𝑣𝑎+𝑣𝑏)

Turn2(𝜋, 𝑎, 𝑏) (𝜋 ∈ Π′, 𝜋 ⊏ 𝑎, 𝑏)

in: Turn1
inscript: 𝑠𝑎

𝜋, sig𝐊(Turn1,𝜋,𝑎,𝑏)

outscript T, 𝑠𝑎 , 𝑠𝑏 , 𝜎 ∶
( 𝐻 𝑠𝑎 = ℎ𝑎

𝜋 ∧ 𝐻 𝑠𝑏 = ℎ𝑏
𝜋

∧ ver𝐊 Turn2,𝜋, winner(𝑠𝑎,𝑠𝑏,𝑣𝑎,𝑣𝑏 ) T, 𝜎 )

∨ ver𝐊 Turn2TO,𝜋,𝑎,𝑏 T, 𝜎

value: $ 1 + 𝑑 (𝑣𝑎+𝑣𝑏)

Init  

in[𝑝]: Bet𝑝
inscript[𝑝] ∶ sigK𝑝(Bet𝑝)

outscript[𝑝](T, 𝜎): verK Init,𝑝 (T, 𝜎)

value 𝑝 : $ 1 + 𝑑

Win 𝜋𝑟 , 𝑎 (𝑎 ∈ 𝑃)(root)

in and inscript are variants as for Win(𝜋, 𝑎)

outscript[𝑎](T, 𝜎): ver𝐊 Collect (T, 𝜎)

value 𝑎 : $ 𝑛 + 𝑑

outscript[∀𝑝 ≠ 𝑎](T, 𝜎): ver𝐊 Collect (T, 𝜎)

value 𝑝 : $𝑑

Timeout1 𝜋, 𝑎, 𝑏 (𝜋 ∈ Π′, 𝜋 ⊏ 𝑎, 𝑏)

in: Turn1(𝜋, 𝑎, 𝑏)
inscript ∶⊥, sig𝐊(Turn1TO,𝜋,𝑎,𝑏)

outscript T, 𝜎 : ver𝐊(Timeout1,𝜋,𝑎,𝑏) T, 𝜎

value: $ 1 + 𝑑 (𝑣𝑎+𝑣𝑏)
lockTime:𝜏𝐼𝑛𝑖𝑡 + 𝐿 − 𝜋 − 1 𝜏𝑅𝑜𝑢𝑛𝑑 + 2𝜏𝐿𝑒𝑑𝑔𝑒𝑟

Timeout2 𝜋, 𝑎, 𝑏 (𝜋 ∈ Π′, 𝜋 ⊏ 𝑎, 𝑏)

in: Turn2(𝜋, 𝑎, 𝑏)
inscript ∶⊥, ⊥, sig𝐊(Turn2TO,𝜋,𝑎,𝑏)

outscript T, 𝜎 : ver𝐊(Timeout2,𝜋,𝑎,𝑏) T, 𝜎

value: $ 1 + 𝑑 (𝑣𝑎+𝑣𝑏)
lockTime:𝜏𝐼𝑛𝑖𝑡 + 𝐿 − 𝜋 − 1 𝜏𝑅𝑜𝑢𝑛𝑑 + 4𝜏𝐿𝑒𝑑𝑔𝑒𝑟

CollectOrphanWin 𝜋, 𝑎 (𝜋 ∈ Π′, 𝜋 ⊏ 𝑎)

in:Win(𝜋, 𝑎)
Inscript:sig𝐊(WinTO,𝜋,𝑎)

outscript[𝑎](T, 𝜎): ver𝐾𝑝 Collect (T, 𝜎)

value 𝑎 : $(𝑣𝑎 + 𝑑)
lockTime:𝜏𝐼𝑛𝑖𝑡 + 𝐿 − 𝜋 𝜏𝑅𝑜𝑢𝑛𝑑 + 𝜏𝐿𝑒𝑑𝑔𝑒𝑟

outscript[∀𝑝 ≠ 𝑎](T, 𝜎): ver𝐾𝑝 Collect (T, 𝜎)

value 𝑝 : $𝑑
lockTime:𝜏𝐼𝑛𝑖𝑡 + 𝐿 − 𝜋 𝜏𝑅𝑜𝑢𝑛𝑑 + 𝜏𝐿𝑒𝑑𝑔𝑒𝑟

Fig. 3. Transaction templates used in our protocols. Let Π′ be the set of nodes exclud-
ing leafs and the root. (Part I) Transaction templates for our (1, n)-lottery protocol.
The dashed line in the inscript field indicates that both inscripts are redeemed at the
same time. On the other hand, a solid line indicates that only one of the inscriptions
is redeemed.
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Lose 𝜋, 𝑎 = 𝑙𝑖−1 (𝜋 ∈ Π′, 𝜋 ⊏ 𝑎)

in: Timeout1(𝜋, 𝑏, 𝑎)
inscript ∶ sig𝐊 Timeout1Lose,𝜋,𝑏,𝑎

outscript T, 𝜎 ∶ ver𝐊(Lose,𝜋,𝑎) T, 𝜎

∨ ver𝐊 LoseTO,𝜋,𝑎 T, 𝜎

value: $(𝑘 + 1 − 𝑖 + 𝑑(1 + 𝑖))

in: Timeout2Lose(𝜋, 𝑎, 𝑏)
inscript ∶ sig𝐊(Timeout2Lose,𝜋,𝑎,𝑏)

in: Turn2(𝜋, 𝑎, 𝑏)
inscript ∶ 𝑠𝑎 , 𝑠𝑏 , sig𝐊(Turn2,𝜋,𝑎)

in: Turn2(𝜋, 𝑏, 𝑎)
inscript ∶ 𝑠𝑎 , 𝑠𝑏 , sig𝐊(Turn2,𝜋,𝑎)

Turn1 𝜋, 𝑎, 𝑏 (𝜋 ∈ Π′, 𝜋 ⊏ 𝑎, 𝑏)

in: Lose(𝑎)
inscript ∶ sig𝐊(Lose,𝜋0,𝑎)
in:Win(𝑏)
inscript ∶ sig𝐊(Win,𝜋1,𝑏)

outscript T, 𝑠𝑎 , 𝜎 ∶
( 𝐻 𝑠𝑎 = ℎ𝑎

𝜋 ∧ ver𝐊 Turn1,𝜋,𝑎 T, 𝜎 )

∨ ver𝐊 Turn1TO,𝜋,𝑎 T, 𝜎

value: $(2𝑘 − 𝑖 + 𝑑 2 + 𝑖 )

Turn2(𝜋, 𝑎, 𝑏) (𝜋𝑟 ≠ 𝜋 ∈ Π′, 𝜋 ⊏ 𝑎, 𝑏)

in: Turn1
inscript: 𝑠𝑎 , sig𝐊(Turn1,𝜋,𝑎,𝑏)

outscript T, 𝑠𝑎 , 𝑠𝑏 , 𝜎 ∶
( 𝐻 𝑠𝑎 = ℎ𝑎

𝜋 ∧ 𝐻 𝑠𝑏 = ℎ𝑏
𝜋

∧ ver𝐊 Turn2,𝜋, winner(𝑠𝑎,𝑠𝑏,𝑣𝑎,𝑣𝑏 ) T, 𝜎 )

∨ ver𝐊 Turn2TOWin,𝜋, 𝑎, 𝑏 T, 𝜎

value: $(𝑘 + 1)

Win(𝜋, 𝑎)(𝜋 ∈ Π′, 𝜋 ⊏ 𝑎)
winner of 𝑘, 𝑘 + 1 -lottery

outscript[𝑎](T, 𝜎): ver𝐊 CollectW (T, 𝜎)

value 𝑎 : $ 𝑘 + 1

outscript T, 𝑠𝑎 , 𝑠𝑏 , 𝜎 ∶
( 𝐻 𝑠𝑎 = ℎ𝑎

𝜋 ∧ 𝐻 𝑠𝑏 = ℎ𝑏
𝜋

∧ ver𝐊 Turn2,𝜋, Loser(𝑠𝑎,𝑠𝑏,𝑣𝑎,𝑣𝑏 ) T, 𝜎 )

∨ ver𝐊 Turn2TOLose,𝜋,𝑎,𝑏 T, 𝜎

value: $(𝑘 − 1 − 𝑖 + 𝑑 2 + 𝑖 )

CollectOrphanLose 𝜋, 𝑎 (𝜋 ∈ Π′, 𝜋 ⊏ 𝑎)

in: Lose(𝜋, 𝑎)
Inscript:sig𝐊(LoseTO,𝜋,𝑎)

outscript[𝑎](T, 𝜎): ver𝐾𝑝 CollectL (T, 𝜎)

value 𝑎 : $ (𝑘 + 1 − 𝑖 + 𝑑)
lockTime:𝜏𝐼𝑛𝑖𝑡 + 𝐿 − 𝜋 𝜏𝑅𝑜𝑢𝑛𝑑 + 𝜏𝐿𝑒𝑑𝑔𝑒𝑟

Timeout1 𝜋𝑟 , 𝑎, 𝑏 (𝜋𝑟 ⊏ 𝑎, 𝑏)

in: Turn1(𝜋, 𝑎, 𝑏)
inscript ∶⊥, sig𝐊(Turn1TO,𝜋,𝑎,𝑏)

outscript T, 𝜎 : ver𝐊(Timeout1Win,𝜋,𝑎,𝑏) T, 𝜎

value: $(𝑘 + 1)(𝑑 + 1)
lockTime:𝜏𝐼𝑛𝑖𝑡 + 𝐿 − 𝜋 − 1 𝜏𝑅𝑜𝑢𝑛𝑑 + 2𝜏𝐿𝑒𝑑𝑔𝑒𝑟

Timeout2Win 𝜋, 𝑎, 𝑏 (𝜋 ∈ Π′, 𝜋 ⊏ 𝑎, 𝑏)

in: Turn2(𝜋, 𝑎, 𝑏)
inscript ∶⊥, ⊥, sig𝐊(Turn2TOWin,𝜋,𝑎,𝑏)

outscript T, 𝜎 : ver𝐊(Timeout2Win,𝜋,𝑎,𝑏) T, 𝜎

value: $(𝑘 + 1)
lockTime:𝜏𝐼𝑛𝑖𝑡 + 𝐿 − 𝜋 − 1 𝜏𝑅𝑜𝑢𝑛𝑑 + 4𝜏𝐿𝑒𝑑𝑔𝑒𝑟

Timeout2Lose 𝜋, 𝑎, 𝑏 (𝜋𝑟 ≠ 𝜋 ∈ Π′, 𝜋 ⊏ 𝑎, 𝑏)

in: Turn2(𝜋, 𝑎, 𝑏)
inscript ∶⊥, ⊥, sig𝐊(Turn2TOLose,𝜋,𝑎,𝑏)

outscript T, 𝜎 : ver𝐊(Timeout2Lose,𝜋,𝑎,𝑏) T, 𝜎

value: $(𝑘 − 1 − 𝑖 + 𝑑 2 + 𝑖 )
lockTime:𝜏𝐼𝑛𝑖𝑡 + 𝐿 − 𝜋 − 1 𝜏𝑅𝑜𝑢𝑛𝑑 + 4𝜏𝐿𝑒𝑑𝑔𝑒𝑟

in: Timeout1(𝜋, 𝑏, 𝑎)
inscript ∶ sig𝐊 Timeout1Win,𝜋,𝑏,𝑎

in: Timeout2Win(𝜋, 𝑎, 𝑏)
inscript ∶ sig𝐊(Timeout2Win,𝜋,𝑎,𝑏)

in: Turn2(𝜋, 𝑎, 𝑏)
inscript ∶ 𝑠𝑎 , 𝑠𝑏 , sig𝐊(Turn2,𝜋,𝑎)

in: Turn2(𝜋, 𝑏, 𝑎)
inscript ∶ 𝑠𝑎 , 𝑠𝑏 , sig𝐊(Turn2,𝜋,𝑎)

Turn2(𝜋𝑟 , 𝑎, 𝑏) (𝜋𝑟 ⊏ 𝑎, 𝑏)

in: Turn1
inscript: 𝑠𝑎 , sig𝐊(Turn1,𝜋,𝑎,𝑏)

outscript T, 𝑠𝑎 , 𝑠𝑏 , 𝜎 ∶
( 𝐻 𝑠𝑎 = ℎ𝑎

𝜋 ∧ 𝐻 𝑠𝑏 = ℎ𝑏
𝜋

∧ ver𝐊 Turn2,𝜋, winner(𝑠𝑎,𝑠𝑏,𝑣𝑎,𝑣𝑏 ) T, 𝜎 )

∨ ver𝐊 Turn2TOWin,𝜋,𝑎,𝑏 T, 𝜎

value: $(𝑘 + 1)(𝑑 + 1)

Win 𝜋𝑟 , 𝑎 (𝑎 ∈ 𝑃)
𝑘-th winner of 𝑘, 𝑘 + 1 -lottery)

in and inscript are variants as for Win(𝜋, 𝑎)

outscript[𝑎](T, 𝜎): ver𝐊 CollectW (T, 𝜎)

value 𝑎 : $ 𝑘 + 1 + 𝑑

outscript[∀𝑝 ≠ 𝑎](T, 𝜎): verKb CollectW (T, 𝜎)

value 𝑝 : $𝑑

Timeout1 𝜋, 𝑎, 𝑏 (𝜋𝑟 ≠ 𝜋 ∈ Π′, 𝜋 ⊏ 𝑎, 𝑏)

in: Turn1(𝜋, 𝑎, 𝑏)
inscript ∶⊥, sig𝐊(Turn1TO,𝜋,𝑎,𝑏)

outscript T, 𝜎 : ver𝐊(Timeout1Win,𝜋,𝑎,𝑏) T, 𝜎

value: $(𝑘 + 1)
lockTime:𝜏𝐼𝑛𝑖𝑡 + 𝐿 − 𝜋 − 1 𝜏𝑅𝑜𝑢𝑛𝑑 + 2𝜏𝐿𝑒𝑑𝑔𝑒𝑟

outscript T, 𝜎 : ver𝐊(Timeout1Lose,𝜋,𝑎,𝑏) T, 𝜎

value: $(𝑘 − 1 − 𝑖 + 𝑑 2 + 𝑖 )
lockTime:𝜏𝐼𝑛𝑖𝑡 + 𝐿 − 𝜋 − 1 𝜏𝑅𝑜𝑢𝑛𝑑 + 2𝜏𝐿𝑒𝑑𝑔𝑒𝑟

outscript[∀𝑝 ≠ 𝑎](T, 𝜎): ver𝐾𝑝 CollectL (T, 𝜎)

value 𝑝 : $𝑑
lockTime:𝜏𝐼𝑛𝑖𝑡 + 𝐿 − 𝜋 𝜏𝑅𝑜𝑢𝑛𝑑 + 𝜏𝐿𝑒𝑑𝑔𝑒𝑟

Fig. 4. Transaction templates for our (k, k + 1)-lottery protocol. Let πi denote i-th
match of the protocol. We omit Win and Init descriptions since they are almost the
same in Fig. 3. The differences from Fig. 3 are just changes of the values $(1 + d) to
$(k + d).
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Theorem 1 Our (1, n)-lottery protocol is secure and constant deposit.

Proof (Sketch). We prove that our protocol fulfills the definition 1. In the case of
C = ∅, it is obvious from Lemma 1. If an adversary deviates from the procedure
or aborts at some step in the initialization phase, players terminate the protocol.
In this case, all honest players do not lose money since no money transfers occur.
Thus, we suppose that the initialization phase completes correctly. Below, we
discuss two cases in the tournament execution phase, (i) an adversary rejects to
reveal its secrets and (ii) an adversary applies the transaction insertion attack,
described in Section 5.3.

In the case of (i), the biased coin-tossing protocol guarantees that the player
who did not reveal the secret is treated as a loser. Thus, no honest player is lost
nevertheless an adversary refuses to disclose its secret in any matches.

In the case of (ii), let us consider the case where an adversary applies the
transaction insertion attack to a player p at match π. The player p obtains
payoff $(vπp +d−1) by CollectOrphanWin at the end of the protocol, as described
Section 5.3. Note that, in this case, the player p does not reveal his/her secret
corresponding to match π. Furthermore, at the beginning of the match, we can
express the expected payoff of p as follows

vπp
vπr
p

× $(n− 1) + (1−
vπp
vπr
p

)× $(−1) = $(vπp − 1) (3)

The inequality vπp + d − 1 > vπp − 1 implies that E(Φ(p, st0, σA)) > 0 if d > 0.
Also, this property holds for an arbitrary positive integer d, our protocol satisfies
constant-deposit. From the above, (1, n)-lottery protocol is secure. ⊓⊔

6 (k, n)-Lottery Protocol with Constant Deposits

This section shows our (k, n)-lottery protocol for arbitrary k and n and (k, k+1)-
lottery protocol for arbitrary k and k + 1. We compose a (k, n)-lottery protocol
from a composition of (k, k + 1)-lottery protocols as follows:

First n parties run (n − 1, n)-lottery and determine one loser. Thereafter,
the remaining n − 1 winners run (n − 2, n − 1)-lottery and further determine
one loser. Parties repeat the similar process until removing n − k players, i.e.,
resulting in k winners.

6.1 Building Block: Modified Biased Coin-Tossing Protocol

We adopt the single-elimination tournament as described in Lemma 2 to con-
struct a (k, k+1)-lottery protocol. That is, it is a tournament where the winner
of each match becomes the champion of (k, k + 1)-lottery, and the loser moves
on to the next match. Protocol 1 is insufficient to implement such a tournament
since it does not enable the loser to proceed to the next match. Hence, we here
modify the protocol to resolve this problem.
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Protocol 2 Modified Biased Coin-Tossing ΠWL
a,b (sa, sb, va, vb)

Setup:
1: The initialization phase was successfully completed, and Lose(π, a) and Win(π, b)

have been put already on the ledger. Players a and b hold secrets sπa and sπb ,
respectively. Let τ be the round of the beginning of the protocol.

Procedure:
2: One of the players puts Turn1(π, a, b) on the ledger.
3: a writes sπa on the input script of Turn2(π, a, b), and put the transaction on the

ledger.
4: if Turn2(π, a, b) does not appear within τ + 2τLedger then
5: One of the players puts Timeout1(π, a, b) on the ledger.
6: One of the players puts Win(π, b) and Lose(π, a) on the ledger.
7: b computes w = Winner(sa, sb, va, vb)
8: if w = a then
9: b puts Win(π, a) and Lose(π, b) on the ledger.
10: if w = b then
11: b puts Win(π, b) and Lose(π, a) on the ledger.
12: if Win(π, x ∈ {a, b}) does not appear within τ + 4τLedger then
13: One of the players puts Timeout2Win(π, a, b) into the ledger.
14: One of the players puts Win(π, a) on the ledger.
15: if Lose(π, x ∈ {a, b}) does not appear within τ + 4τLedger then
16: One of the players puts Timeout2Lose(π, a, b) into the ledger.
17: One of the players puts Lose(π, a) on the ledger.

Turn2(𝜋𝑖 , 𝑎, 𝑏)

in: Turn1

inscript: 𝑠𝑎
𝜋𝑖 , sig𝐊(Turn1,𝜋𝑖,𝑎, 𝑏)

outscript T, 𝑠𝑎 , 𝑠𝑏 , 𝜎 ∶
{𝐻 𝑠𝑎 = ℎ𝑎

𝜋𝑖 ∧ 𝐻 𝑠𝑏 = ℎ𝑏
𝜋𝑖

∧
(𝑎 = Winner 𝑠𝑎, 𝑠𝑏, 𝑣𝑎, 𝑣𝑏 ∧ ver𝐊 Turn2,𝜋𝑖,𝑎 T, 𝜎 )

∨ (𝑏 = Winner 𝑠𝑎, 𝑠𝑏, 𝑣𝑎, 𝑣𝑏 ∧ ver𝐊 Turn2,𝜋𝑖,𝑏 T, 𝜎 )

} ∨ ver𝐊 Turn2TOWin,𝜋𝑖,𝑎,𝑏 T, 𝜎

value: $(𝑘 + 1)

outscript T, 𝑠𝑎 , 𝑠𝑏 , 𝜎 ∶
{𝐻 𝑠𝑎 = ℎ𝑎

𝜋𝑖 ∧ 𝐻 𝑠𝑏 = ℎ𝑏
𝜋𝑖

∧
(𝑎 = Loser 𝑠𝑎, 𝑠𝑏, 𝑣𝑎, 𝑣𝑏 ∧ ver𝐊 Turn2,𝜋𝑖,𝑎 T, 𝜎 )

∨ (𝑏 = Loser 𝑠𝑎, 𝑠𝑏, 𝑣𝑎, 𝑣𝑏 ∧ ver𝐊 Turn2,𝜋𝑖,𝑏 T, 𝜎 )

} ∨ ver𝐊 Turn2TOLose,𝜋𝑖,𝑎,𝑏 T, 𝜎

value: $(𝑘 − 1 − 𝑖 + 𝑑 2 + 𝑖 )

Turn1(𝜋𝑖 , 𝑎 = 𝑙𝑖−1, 𝑏 = 𝑝𝑖+1)

in: Lose(𝑎)
inscript ∶ sig𝐊(Lose,𝜋𝑎,𝑎)
in:Win(𝑏)
inscript ∶ sig𝐊(Win,𝜋𝑏,𝑏)

outscript T, 𝑠𝑎 , 𝜎 ∶

( 𝐻 𝑠𝑎 = ℎ𝑎
𝜋𝑖 ∧ ver𝐊 Turn1,𝜋𝑖,𝑎 T, 𝜎 )

∨ ver𝐊 Turn1TO,𝜋𝑖,𝑎 T, 𝜎

value: $(2𝑘 − 𝑖 + 𝑑(2 + 𝑖))

Lose(𝜋𝑖 , 𝑎)

in ∶ Turn2

inscript ∶ 𝑠𝑎
𝜋𝑖 , 𝑠𝑏

𝜋𝑖 , sig𝐊(Turn2,𝜋𝑖,𝑎)

outscript T, 𝜎 : ver𝐊 Lose,𝜋𝑖,𝑎 T, 𝜎

∨ ver𝐊 LoseTO,𝜋𝑖,𝑎 T, 𝜎

value: $(𝑘 − 1 − 𝑖 + 𝑑(2 + 𝑖))

Win(𝜋𝑖 , 𝑎)

in: Turn2

inscript ∶ 𝑠𝑎
𝜋𝑖 , 𝑠𝑏

𝜋𝑖 , sig𝐊(Turn2,𝜋𝑖,𝑎)

outscript T, 𝜎 : verK𝑎 CollectW T, 𝜎

value: $(𝑘 + 1)

Lose(𝜋𝑖 , 𝑏)

in ∶ Turn2

inscript ∶ 𝑠𝑎
𝜋𝑖 , 𝑠𝑏

𝜋𝑖 , sig𝐊(Turn2,𝜋𝑖,𝑏)

outscript T, 𝜎 : ver𝐊 Lose,𝜋𝑖,𝑏 T, 𝜎

∨ ver𝐊 LoseTO,𝜋𝑖,𝑏 T, 𝜎

value: $(𝑘 − 1 − 𝑖 + 𝑑(2 + 𝑖))

Win(𝜋𝑖 , 𝑏)

in: Turn2

inscript ∶ 𝑠𝑎
𝜋𝑖 , 𝑠𝑏

𝜋𝑖 , sig𝐊(Turn2,𝜋𝑖,𝑏)

outscript T, 𝜎 : verK𝑎 CollectW T, 𝜎

value: $(𝑘 + 1)

$(𝑘 − 1 − 𝑖 + 𝑑(2 + 𝑖))

$(2𝑘 − 𝑖 + 𝑑(2 + 𝑖))

$(𝑘 + 1)

Fig. 5. Graphical description of modified biased coin-tossing (for match πi). We denote
with πa and πb child nodes of πi. Note that Win and Lose redeemed by Turn1 are
omitted.
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Lose(𝜋𝑎 , 𝑎 = 𝑙𝑘−2)

in ∶ Turn2

inscript ∶ 𝑠𝑎
𝜋𝑎 , 𝑠𝑐

𝜋𝑎 , sig𝐊(Turn2,𝜋𝑎,𝑎)

outscript T, 𝜎 : verK Lose,𝜋𝑎,𝑎 T, 𝜎

∨ ver𝐊 LoseTO,𝜋𝑎,𝑎 T, 𝜎

value: $(1 + 𝑘𝑑)

Win(𝜋𝑏 , 𝑏 = 𝑝𝑘)

in: Init(𝑏)
inscript ∶ sig𝐊(Init,𝑏)

outscript T, 𝜎 : ver𝐊 Win,𝜋𝑏,𝑏 T, 𝜎

value: $(𝑘 + 𝑑)

Turn1(𝜋𝑟 , 𝑎, 𝑏)

in: Lose(𝑎)
inscript ∶ sig𝐊(Lose,𝜋𝑎,𝑎)
in:Win(𝑏)
inscript ∶ sig𝐊(Win,𝜋𝑏,𝑏)

outscript T, 𝑠𝑎 , 𝜎 ∶
( 𝐻 𝑠𝑎 = ℎ𝑎

𝜋 ∧ ver𝐊 Turn1,𝜋𝑟,𝑎 T, 𝜎 )

∨ verK Turn1TO,𝜋𝑟,𝑎 T, 𝜎

value: $(𝑘 + 1)(𝑑 + 1)

Turn2(𝜋𝑟 , 𝑎, 𝑏)

in: Turn1

inscript: 𝑠𝑎
𝜋𝑟 , sig𝐊(Turn1,𝜋𝑟,𝑎,𝑏)

outscript T, 𝑠𝑎 , 𝑠𝑏 , 𝜎 ∶

( 𝐻 𝑠𝑎 = ℎ𝑎
𝜋𝑟 ∧ 𝐻 𝑠𝑏 = ℎ𝑏

𝜋𝑟

∧ ver𝐊 Turn2,𝜋𝑟,winner(𝑠𝑎,𝑠𝑏,𝑣𝑎,𝑣𝑏 ) T, 𝜎 )

∨ ver𝐊 Turn2TO,𝜋𝑟,𝑎,𝑏 T, 𝜎

value: $(𝑘 + 1)(𝑑 + 1)

Win(𝜋𝑟 , 𝑎)

in ∶ Turn2

inscript ∶ 𝑠𝑎
𝜋𝑟 , 𝑠𝑏

𝜋𝑟 , sig𝐊(Turn2,𝜋𝑟,𝑎)

outscript T, 𝜎 : verK𝑎 CollectW T, 𝜎

value: $(𝑘 + 1 + 𝑑)

$(1 + 𝑘𝑑)

$ (𝑘 + 𝑑)

$ (𝑘 + 1)(𝑑 + 1)

$(𝑘 + 1)(𝑑 + 1)

Win(𝜋𝑟 , 𝑏)

in ∶ Turn2

inscript ∶ 𝑠𝑎
𝜋𝑟 , 𝑠𝑏

𝜋𝑟 , sig𝐊(Turn2,𝜋𝑟, 𝑏)

outscript T, 𝜎 : verK𝑏 CollectW T, 𝜎

value: $(𝑘 + 1 + 𝑑)

outscript[∀𝑝 ≠ 𝑎](T, 𝜎): verK𝑏 CollectW (T, 𝜎)

value: $𝑑

outscript[∀𝑝 ≠ 𝑎](T, 𝜎): verK𝑎 CollectW (T, 𝜎)

value: $𝑑

Fig. 6. Graphical description of biased coin-tossing (for match πr) for the final match
of (k, k + 1)-lottery.

See Protocol 2 and Fig. 5 that show the modified protocol. The Loser func-
tion described in the Lose transaction returns the inverse of Winner function,
i.e., it specifies the loser. That is, unlike Protocol 5.1, the loser also puts Lose
transaction of which input is Turn2, and receives coins used in the next match.
Moreover, since Turn2 has two output scripts, we set the timeouts for each of
Win and Lose by preparing Timeout2Win and Timeout2Lose transactions. If Win
or Lose is not published within the time limit, it is dealt with by publishing
Timeout2Win or Timeout2Lose respectively. Fig. 7 shows flows of procedures
when a timeout occurs.

6.2 Our Construction of (k, k + 1)-Lottery Protocol

Let the bet mount be $k for each player in this section.

The biased probability of each match in (k, k + 1)-Lottery. Suppose a
match between pi+1 and li−1 in i-th match πi, where li−1 is the loser of (i− 1)-
th match. From Lemma 2, for i = 1 . . . k − 1, the winning probability of pi+1 in
πi is set as i/(i+ 1).

Based on the biased probability, our protocol proceeds as follows.

Precondition: for all players, the ledger contains a transaction Betp with value
$(1 + d), and redeemable with key Kp(Betp).

Initialization phase:
1. For all player p ∈ P , p generates the following secret keys locally.
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– For all π such that |π| = L:
Kp(Betp),Kp(CollectW),Kp(CollectL),Kp(Init, a)

– For all π such that 1 ≤ |π| ≤ L:
Kp(Win, π, a),Kp(WinTo, π, a),Kp(Lose, π, a),Kp(LoseTo, π, a)

– For all π such that 1 ≤ |π| < L:
Kp(Turn1To, π, a, b),Kp(Turn1, π, a, b),
Kp(Turn2ToWin, π, a, b),Kp(Turn2ToLose, π, a, b),Kp(Turn2, π, a),
Kp(Timeout1Win, π, a, b),Kp(Timeout1Lose, π, a, b),
Kp(Timeout2Win, π, a, b),Kp(Timeout2Lose, π, a, b)

2. For all player p ∈ P , p generates secrets s
πp
p for each πp, such that

(|πp| < L), and broadcasts to the other players his/her public keys and
hashes h

πp
p = H(s

πp
p ).

3. If h
πp
p = h

πp
′

p′ for some (p, πp) ̸= (p′, πp
′), the players abort.

4. Parties agree the time τInit large enough to fall after the initialization
phase. (This step is necessary to determine lockTime values built in the
subsequent steps.)

5. Each player signs all the transaction templates in Fig. 3 and 4 except
for Init and broadcasts the signatures.

6. Each player verifies the signatures received by the others. some signature
is not valid or missing, the player aborts the protocol.

7. Each player signs Init, and sends the signature to the first player.
8. The first player puts the (signed) transaction Init on the ledger.
9. If Init does not appear within one τLedger , then each p redeems Betp and

aborts.
10. The players put the signed transactions Win(p, p) on the ledger, for all

p ∈ P .
Tournament execution phase: For levels i = k − 1 . . . 2, players proceed as

follows: Run ΠWL
a,b (s

πi
a , sπi

b , vπi
a , vπi

b ) for each π, such that |π| = i− 1.

For level i = 1, players proceed as follows: Run ΠW
a,b(s

πi
a , sπi

b , vπi
a , vπi

b ). Then,
vπa , v

π
b denote the biased probability determined in the manner shown in the

previous subsection.
Garbage collection phase: If there is some unredeemed Win(π, p) such that

π is a leaf on the ledger, players put CollectOrphanWin(π, p) on the ledger.
Similarly, if there is some unredeemed Lose(π, p) on the ledger, players put
CollectOrphanLose(π, p) on the ledger.

At the end of the tournament execution phases, all champions can freely redeem
Win(π, a) orWin(πr, a) as rewards. Also,Win(πr, a) guarantees that every honest
party can collect their deposits. As in Protocol 5.1, the number of transactions
prepared at step 5 is O(n2).

Theorem 2 Our (k, k + 1)-lottery protocol is secure and constant deposit.

Proof (Sketch). We prove that our protocol fulfills Definition 2. In the case of
C = ∅, it is obvious from Theorem 2. As in the proof of Theorem 1, we suppose
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0 1𝜏𝐿𝑒𝑑𝑔𝑒𝑟 2𝜏𝐿𝑒𝑑𝑔𝑒𝑟 3𝜏𝐿𝑒𝑑𝑔𝑒𝑟 4𝜏𝐿𝑒𝑑𝑔𝑒𝑟 5𝜏𝐿𝑒𝑑𝑔𝑒𝑟 6𝜏𝐿𝑒𝑑𝑔𝑒𝑟

Lose(𝜋𝑖−1, 𝑙𝑖−1)

Win(𝜋𝑖−1, 𝑝𝑖+1)
Turn1(𝜋𝑖 ,

𝑙𝑖−1, 𝑝𝑖+1)
Turn2(𝜋𝑖 ,

𝑙𝑖−1, 𝑝𝑖+1)
Win 𝜋𝑖 , 𝑝𝑖−1

Win 𝜋𝑖 , 𝑝𝑖+1
Lose 𝜋𝑖 , 𝑙𝑖−1

Timeout1(
)

𝜋𝑖 ,
𝑝𝑖+1, 𝑙𝑖−1

Win 𝜋𝑖 , 𝑙𝑖−1
Timeout2Win(

)
𝜋𝑖 ,

𝑝𝑖+1, 𝑙𝑖−1

Timeout2Lose(
)
𝜋𝑖 ,

𝑝𝑖+1, 𝑙𝑖−1

Lose 𝜋𝑖 , 𝑝𝑖+1

Lose 𝜋𝑖 , 𝑙𝑖−1

Fig. 7. Graph of the transactions in a tournament round. An arrow from transaction
T to T ′ means that T redeems T ′. Thick arrows mean any player can redeem; dashed
edges mean any player can redeem, but only after a timeout. Thin arrows mean that
only the player who knows the secret on the label can redeem it. τRound := 6τLedger

refers to the number of rounds in each match.

that the initialization phase completes correctly and focuses on the tournament
execution phase.

Below, we discuss two cases in the tournament execution phase: (i) an ad-
versary rejects to reveal its secrets, and (ii) an adversary applies the transaction
insertion attack, described in Section 5.3. The proof of case (i) is omitted since
the same argument holds for Theorem 1. For case (ii), we consider further di-
viding it into the following two cases: (a) an adversary applies the transaction
insertion attack to player pi+1 at match πi, where πi is the first match for pi+1,
(b) an adversary applies the attack to player li+1 at match πi, where li+1 is the
loser of the previous match.

Then, the player pi+1 obtains payoff $(k+d) at the end of the protocol. Also,
player li−1 at match πi obtains payoff $(1 − i + d) by CollectOrphanWin at the
end of the protocol. Thus, to confirm that the honest party does not lose by the
attack, it requires that the obtained payoff is more than the expected payoff at
match πi. In the case of (a), for any πi, the expected payoff of player pi is 0
because pi because it is fair to the players from Theorem 2.

In the case of (b), The expected payoff of honest li−1 is as follows.

k + 1− i

k + 1
× $1 + (

i

k + 1
)× $(−k) = $(1− i) (4)

From this Eq.(4), we can see E(Φ(p, st0, σA))−E(Φ(p, st0,⊥)) > 0 since 1− i+
d > 1− i for i ∈ [k] if d > 0. It implies that the li−1’s expected payoff when the
adversary applies the transaction insertion attack is larger than their expected
payoff when all parties behave honestly.

Next, we confirm that every subset has the same winning probability for
all S = {s1, . . . , sk} ⊂ P . It is obvious if all honest parties behave honestly
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since one loser is determined uniformly at random. To change the probability,
adversaries can make two attacks: rejections of their secret or the transaction
insertion attack. In both cases, since the expected payoff of the adversary is
negative, the protocol fulfills the requirement. This (k, k+1)-lottery protocol is
secure from the above. ⊓⊔

6.3 Construction of (k, n)-Lottery from (k, k + 1)-Lottery

Let a bet amount of each party be α = n!/k!. There are two technical challenges
to realizing a secure (k, n)-lottery based on this strategy. The first one is to con-
nect each (k′, k′ + 1)-lottery protocol such that malicious parties cannot escape
the protocol in the middle. This issue is derived from the fact that if parties
run several lottery protocols sequentially, corrupted players can abort without
losing at the initialization process of the next lottery. To circumvent this issue,
we aggregate the initialization processes of all protocols in the first (n − 1, n)-
lottery protocol. That is, players prepare all of the secrets, signing (verification)
keys, and transactions used in the entire (k, n)-lottery in the initialization of
(n − 1, n)-lottery protocol. By this modification, parties can skip all initializa-
tion phases after the completion of (n − 1, n)-lottery protocol. Note that the
number of transactions created in the initialization phase is O(n3), which can
be derived from the number of possible match combinations.

Further, we also slightly change the tournament execution phase, except for
the last (k, k+ 1) lottery protocol. More concretely, we modify each match pro-
tocol, i.e., Fig. 5 and 6, such that Win transactions connect two tournament
execution phases. See Appendix B for the modification details.

As the second challenge, it is necessary to ensure that (k, n)-lottery composed
of sequential executions of (n− j, n− j +1)-lottery for j ∈ [n− k] is indeed fair.
We present the security proof of our (k, n)-lottery protocol below.

Theorem 3 Our (k, n)-lottery protocol is secure and constant deposit.

Proof (Sketch). We prove that our (k, n)-lottery protocol fulfills Definition 2.

As in the proof of our (k, k + 1)-lottery protocol, we focus on the payoff
obtained by a player who is affected by the transaction insertion attack at πj

i ,

where πj
i is i-th match of j-th (n − j, n − j + 1)-lottery protocol. We denote

by wj
i and lji the winner and loser of match πj

i , respectively. As in the proof of
Theorem 2, we consider further dividing case (ii) into the following two cases:
(a) an adversary applies the transaction insertion attack to player lji−1 at match

πi, (b) the attack to player wj−1
i+1 at match πj

i . In the case of (b), the player lji−1

obtains payoff $((n− 1)!/{(k− 1)!(n− j+1)(n− j)}× (nj−ni− j2 + j)+ d) at
the end of the protocol. Thus, to confirm that the honest party does not lose by
the attack, it requires that the obtained payoff is more than the expected payoff
at match πj

i . The expected payoff of honest lji−1 is as follows.
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(n− j + 1− i)k

(n− j + 1)(n− j)
× $

(n− 1)!(n− k)

k!
+ (1− (n− j + 1− i)k

(n− j + 1)(n− j)
)× $(− (n− 1)!

k!
)

= $
(n− 1)!

(k − 1)!(n− j + 1)(n− j)
(nj − ni− j2 + j).

Note that ((n− j+1− i)k)/((n− j+1)(n− j)) is the winning probability of
lji−1. From then on, we could prove similar to the proof of our (k, k + 1)-lottery
protocol. A similar calculation in the case of (a) shows no loss. Hence, our (k, n)-
lottery is secure. ⊓⊔
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A Proofs of Lemmas

Proof of Lemma 1: Let πl∈[L] such that |πl| = l be the l-th match for player

p. Suppose vlp/v
l−1
p be the probability that p wins at πl. Then, the probability

that p wins the tournament holds:

1

vlp
×

vlp

vl−1
p

× · · · ×
v1p
v0p

=
1

n0
p

=
1

N
.
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This is also true for any player. ⊓⊔

Proof of Lemma 2: Let πi such that |πi| = i ∈ [k] be the i-th match for player
pi+1 and li−1, where li−1 is the loser of (i− 1)-th match The probability that p
wins the tournament holds:

1− i

i+ 1
× i+ 1

i+ 2
× · · · × k

k + 1
=

k

k + 1
.

This is also true for any player. Moreover, the probability of winning the parties
in S simultaneously equals the probability of losing p /∈ S. Thus, the probability
of winning the parties in S simultaneously is equivalent for any S ⊂ P such that
|S| = k. ⊓⊔

Proof of Lemma 3: For any j ∈ [k], the winning probability in (n−j, n−j+1)-
lottery can be expressed by (n − j − 1)/(n − j), as shown in Lemma 2. Since
the probability of each (k′, k′ + 1)-lottery is independent, the probability that a
player wins the entire (k, n)-lottery can be written as:

n− 1

n
× n− 2

n− 1
× · · · × k

k + 1
=

k

n
.

Moreover, since the losers are chosen uniformly at random in each (k′, k′ + 1)-
lottery, it is obvious that the winning probability of any set of k players is
equivalent.

B Transaction Templates for Constructing (k, n)-Lottery

To combine multiple (k, k + 1)-lottery protocols, we modify Win transactions.
See Fig. 8 that shows the point of connection between j-th lottery and (j + 1)-
th lottery protocols. The output scripts of Win(πj , a) in j-th lottery are used
as input of Win(πj+1, a) in (j + 1)-th lottery protocol. Furthermore, Win(πj

r , a)
redistributes $d to Win(π, a) for deposits of the next lottery. With this modifica-
tion, Kp(WinInit, π, a) and Kp(Return, π, a) are added to the key pairs prepared
in the initialization phase.
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Win(𝜋𝑗 , 𝑎)
winner of 𝑗-th 𝑘, 𝑘 + 1 -lottery

outscript[𝑎](T, 𝜎): ver𝐊 WinInit (T, 𝜎)

value 𝑎 : $ 𝑘 − 𝑗 + 1

in: Timeout1(𝜋𝑗 , 𝑏, 𝑎)
inscript ∶ sig𝐊 Timeout1Win,𝜋,𝑏,𝑎

in: Timeout2Win(𝜋𝑗 , 𝑎, 𝑏)
inscript ∶ sig𝐊(Timeout2Win,𝜋,𝑎,𝑏)

in: Turn2(𝜋𝑗 , 𝑎, 𝑏)
inscript ∶ 𝑠𝑎 , 𝑠𝑏 , sig𝐊(Turn2,𝜋,𝑎)

in: Turn2(𝜋𝑗 , 𝑏, 𝑎)
inscript ∶ 𝑠𝑎 , 𝑠𝑏 , sig𝐊(Turn2,𝜋,𝑎)

Win 𝜋𝑟
𝑗
, 𝑐

𝑘-th winner of 𝑗-th 𝑘, 𝑘 + 1 -lottery and
the player of (𝑗 + 1)-th 𝑘, 𝑘 + 1 -lottery 

in and inscript are variants as for Win(𝜋𝑟
𝑗
, 𝑐)

outscript T, 𝜎 ∶ ver
𝐊(Win,𝜋𝑟

𝑗
,𝑐)

T, 𝜎

∨ ver
𝐊 WinTO,𝜋𝑟

𝑗
,𝑐

T, 𝜎

value: $(𝑘 − 𝑗 + 1 + 𝑑)

outscript[∀𝑝 ≠ 𝑐](T, 𝜎): ver𝐊 Return (T, 𝜎)

value 𝑝 : $𝑑

Win(𝜋𝑗+1, 𝑎)
The player of (𝑗 + 1)-th 𝑘, 𝑘 + 1 -lottery  

outscript T, 𝜎 ∶ ver𝐊(Win,𝜋𝑗+1,𝑎) T, 𝜎

∨ ver𝐊 WinTO,𝜋𝑗+1,𝑎 T, 𝜎

value: $(𝑘 − 𝑗 + 1 + 𝑑)

in:Win 𝜋, 𝑎
inscript ∶ sig𝐊(WinInit,𝜋𝑗+1,𝑎)

in:Win 𝜋𝑟 , 𝑐
inscript ∶ sig𝐊(Return,𝜋𝑗+1,𝑐)

$(𝑘 − 𝑗 + 1)

$𝑑

Fig. 8. Graphical description of the connection between j-th lottery and (j + 1)-th
lottery protocols


