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Abstract. Random number generators (RNGs) play a vital role in cryp-
tographic applications, and ensuring the quality of the generated random
numbers is crucial. At the same time, on-the-fly test plays an important
role in cryptography because it is used to assess the quality of the se-
quences generated by entropy sources and to raise an alert when fail-
ures are detected. Moreover, environmental noise, changes in physical
equipment, and other factors can introduce variations into the sequence,
leading to time-varying sequences. This phenomenon is quite common
in real-world scenarios, and it needs on-the-fly test. However, in terms
of speed and accuracy, current methods based on mathematical formu-
las or deep learning algorithms for evaluating min-entropy both fail to
meet the requirements of on-the-fly test. Therefore, this paper intro-
duces a new estimator specifically designed for on-the-fly min-entropy
estimation. To accurately evaluate time-varying data, we employ an ap-
propriate change detection technology. Additionally, we introduce a new
calculation method to replace the original global prediction probability
calculation approach for accuracy. We evaluate the performance of our
estimator using various kinds of simulated datasets, and compare our es-
timator with other estimators. The proposed estimator effectively meets
the requirements of on-the-fly test.

Keywords: On-the-fly test · Entropy estimation · Prediction estimator
· Change detection technology · Confidence interval.

1 Introduction

In today’s cryptographic engineering applications, random numbers have become
increasingly important. For instance, in key distribution and mutual authenti-
cation schemes, two communicating parties collaborate to exchange information
for key distribution and authentication purposes. These random numbers are
generated by random number generators that contains entropy sources, and en-
tropy sources are divided into two categories: stationary sources and time-varying
sources. Secure random numbers are often used as security primitives for many
⋆ Corresponding author: chentianyu@iie.ac.cn.
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cryptographic applications, so it is necessary to evaluate the quality of random
numbers.

Current methods for evaluation are mainly divided into two categories: white-
box test and black-box test. White-box test, also known as theoretical entropy
evaluation, requires an understanding of the internal structure and generation
principle of the entropy source. It establishes a mathematical model according
to appropriate assumptions to calculate the theoretical entropy of the output
sequence [8]. However, given the complex and varied structures of many entropy
sources, it becomes challenging to model them accurately, thereby limiting the
applicability of theoretical entropy evaluation. Black-box test includes statisti-
cal test and statistical entropy evaluation: statistical test uses hypothesis-testing
methods to conduct tests on the sequence for some properties, determining
whether the tested sequence meets the null hypothesis (indicating randomness)
or exhibits statistical defects [13]. Nevertheless, it is worth noting that certain
specifically constructed pseudo-random sequences may exhibit favorable statisti-
cal properties and successfully pass these tests, posing potential security threats.
Statistical entropy does not require the knowledge of the internal structure and
generation principle of entropy sources. It evaluates the safety of the random
numbers from the perspective of “entropy” [15]. In summary, to meet the re-
quirements of generality and security, statistical entropy evaluation has become
an indispensable approach.

Statistical entropy evaluation methods can be categorized into two main cat-
egories: those based on mathematical and statistical theories, and those based
on deep learning. However, some estimators in the former, represented by the
NIST SP800-90B standard, have been found to have overestimation and un-
derestimation problems when faced with some typical datasets during entropy
evaluation [21]. The latter has a problem of high time consumption. They both
don’t perform well in time-varying sequence which is common in reality. Thus,
in order to detect RNG failures quickly and reliably, we need an on-the-fly test
that is suitable for time-varying datasets.

To design a suitable estimator for on-the-fly test, we need solve two issues.
Firstly, as mentioned above, we should update the model in a timely manner,
especially for time-varying datasets. To address it, we utilize the change detec-
tion technique. Secondly, we introduce a new calculation method for global pre-
dictability of entropy estimation [15], specifically designed to handle situations
involving small samples or extreme probabilities (i.e., probabilities approaching
0 or 1), which is different from the SP800-90B Standard, because the raw method
is no longer suitable for on-the-fly test.

Our goal is to design an entropy estimator which meets the requirement of
speed and accuracy for on-the-fly test. We present several significant contribu-
tions in this paper:

1) We propose a modified version of the prediction estimators from SP800-
90B, enabling an on-the-fly test for evaluating the quality of entropy sources
timely. To support the new framework, we proposed two key technologies: change
detection technique and new calculation method for global predictability.



Enhancing Prediction Entropy Estimation of RNG for On-the-Fly Test 3

2) By leveraging the characteristics of the prediction estimator model and
drawing inspiration from neural network parameter adjustments during training,
we design a novel change detection technique suitable for online entropy estima-
tion. Besides, we are the first to address the challenges associated with evaluating
min-entropy in scenarios involving small sample datasets and extreme probabil-
ities. We provide a reasonable solution to this issue, which plays a critical role
in on-the-fly test.

3) We compare the performance among our estimator and other existing es-
timators, using different types of simulated datasets with known entropy values.
The experimental results show that, our estimator performs well for all different
types of tested datasets, outperforming the other ones.

The rest of this paper is organized as follows. In Section 2, we introduce the
definition of min-entropy, along with an overview of the 90B standard. In Section
3, we expound and analyze the existing estimators. Section 4 presents our new
framework and provides detailed descriptions, including the change detection
technique and so on. In Section 5, we present a series of experiments comparing
our estimator with other estimators. Finally, in Section 6, we conclude our paper.

2 Preliminaries

2.1 Min-Entropy

“Entropy” is the unit representing the size of information in communication,
which can quantify the randomness of the output sequence [15]. Min-entropy is
a conservative way to ensure the quality of random numbers in the worst case.
The definition of min-entropy is as follows: we take the next output from an
entropy source as a random variable X, which is an independent discrete ran-
dom variable. If X takes value from the set A = {x1, x2, ..., xk} with probability
Pr{X = xi} = pi for i = 1, ..., k, the min-entropy of the output is

Hmin = min1≤i≤k[-log2(pi)] = -log2[max1≤i≤k(pi)] . (1)

If the min-entropy of X is H, then the probability of any value that X can
take doesn’t exceed 2−H . For a random variable with the possibility of k distinct
values, the maximum value that the min-entropy can reach is log2k, achieved
when the variable follows a uniform probability distribution, i.e., p1 = p2 = ... =
pk = 1/k.

2.2 NIST SP800-90B Standard

The 90B estimation suite is a widely-used standard for calculating statistical
entropy [15]. It calculates global predictability and local predictability with an
upper bound of 99% confidence, and chooses the maximum value between them
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to estimate min-entropy. The suite comprises ten distinct entropy estimators
that will be discussed in Section 3.

Global Predictability: Global predictability is the proportion of all pre-
dicted data to be correctly predicted. For a given prediction method, let p

′

global =
c/n, where c represents the number of correct predictions and n denotes the num-
ber of predictions made. Then, to give a conservative calculation method, 90B
calculates pglobal according to the following equation [7]:

pglobal =

{
1− 0.011/n, p′global = 0

min(1, p′global + 2.576

√
p′
global(1−p′

global)

n−1 ), otherwise
, (2)

which is the upper bound of the 99% confidence interval on p′global, and it
should meet the condition of De Moivre-Laplace Central Limit Theorem, that is:
let X1, X2, . . . , Xn be i.i.d Bernoulli random variables with success probability
p ∈ (0, 1) such that np → ∞, as n → ∞. Denote Sn : X1 +X2 + ...+Xn and

Y ∗
n = Sn−np√

np(1−p)
.

Then, ∀ y ∈ R, the theorem states that

limn→∞[P (Y ∗
n ≤ y)] = Φ(y) =

1√
2π

∫ y

−∞
e−t2/2 dt. (3)

Local Predictability: Local predictability is based on the longest run of
correct predictions, which is valuable mainly when the source falls into a state of
very predictable output for a short time [4]. Let l be the number one larger than
the longest run of correct predictions. Then local predictability is calculated as

0.99 =
1− plocalx

(l + 1− lx)q
· 1

xn+1
, (4)

where q = 1 − plocal , n represents the number of predictions, and x is the
real positive root of the equation 1−x+ qpllocalx

l+1 = 0. Then by iterations and
the binary search, we can solve the mentioned equation and calculate the local
predictability.
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3 Related Work

3.1 Statistical Entropy Evaluation

Statistical entropy evaluation is comprised of estimators based on statistic meth-
ods and deep learning algorithms. For the former, in 2018, the final NIST SP800-
90B test suite published, which is a typical representative of the statistical en-
tropy estimations, which is based on min-entropy and specifies how to design
and test entropy sources.It employs ten different estimators to calculate the min-
entropy [15]. While it performs well on stationary datasets, it falls short when
dealing with time-varying datasets. Before conducting entropy estimation, the
90B standard carries out an initial IID (independent and identically distributed)
test. If the dataset meets the IID requirement, the MostCommon Estimator is
utilized. Otherwise, the suite employs ten different estimators and selects the
minimum value among them. These ten estimators can be divided into two cat-
egories: statistic-based and prediction-based. On the one hand, statistic-based
estimators treat the test sequence as a whole and employ statistical methods
to analyze properties related to entropy sources. On the other hand, prediction-
based estimators use a training set comprised of previously observed samples
to predict the next sample. By comparing the predicted results with the actual
samples, the success rate of prediction is determined, and entropy estimation
is performed based on the probability of successful prediction. Prediction-based
estimators have a better performance than the other estimators in this standard.
A brief introduction of the 10 estimators is as follows.

−Most Common Value Estimator performs entropy estimation based on
the frequency of the most commonly occurring sample values in the sequence.

−Collision Estimator performs entropy estimation based on the collision
frequency of samples in the sequence.

−Markov Estimator assumes the sequence as a first-order Markov process
for entropy estimation.

−Compression Estimator is an entropy estimator based on the Maurer’s
algorithm.

−T-Tuple Estimator calculates entropy based on the occurrences of some
fixed length repeated tuples.

−LRS Estimator calculates entropy based on the occurrences of some
longer repeated tuples.

−MultiMCW Prediction Estimator utilizes four sliding windows of dif-
ferent sizes to determine the most frequently occurring value for prediction. A
scoreboard is employed to determine the appropriate sliding window to use.

−Lag Prediction Estimator selects a prediction period ranging from 1 to
128 and also employs a scoreboard to select the optimal period.

−MultiMMC Prediction Estimator begins by setting up a dictionary (a
two-dimensional array) and a scoreboard (a one-dimensional array). The dictio-
nary is responsible for counting the frequency of prefixes and suffixes, while the
scoreboard keeps a record of accurate predictions. After counting, it calculates
the min-entropy.
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−LZ78Y Prediction Estimator creates a dictionary based on patterns
observed in the sequences and uses it for prediction.

Table 1. 90B Estimators.

Statistic-based Prediction-based
MostCommon Value Estimator MultiMCW Prediction Estimator
Collision Estimator Lag Prediction Estimator
Markov Estimator MultiMMC Prediction Estimator
Compression Estimator LZ78Y Prediction Estimator
T-Tuple Estimator
LRS Estimator

For the latter, Yang et al. [20] were the first to apply neural networks to en-
tropy source evaluation in 2018. In 2020, Lv et al. [12] conducted a comprehensive
study on parameter settings for fully-connected neural networks (FNN) and re-
current neural networks (RNN), achieving accurate estimates of M-sequences
with up to 20 stages. In 2019, Zhu et al. [21] combined change detection tech-
niques with neural networks, partially resolving the issue of inaccurate prediction
for time-varying sequences, and their model is named CDNN. Furthermore, in
2023, Zhang et al. [10] utilized TPA-LSTM to quantify the unpredictability of
random numbers, and validated the effectiveness of pruning and quantized deep
learning models in the field of random number security analysis. The above
methods provide increasingly accurate estimation, but the speed needs to be
improved.

In summary, the prediction-based estimators of SP800-90B can provide the
same accurate estimation as the deep learning based estimators for stationary
datasets and some time-varing datasets, and the former can consume less time.

3.2 On-the-fly Test Technologies

In terms of the on-the-fly test applied in cryptography, Santoro et al. [14] con-
ducted the evaluation of the harmonic series on FPGA in the entropy test in
2009. Then, in 2012, Veljković et al. [16] proposed the online implementation for
NIST SP800-22 and Yang et al. [18] improved it in 2015.

At the same time, Yang et al. [19] completed hardware implementations of 4
statistic-based estimators of NIST SP800-90B on FPGA after some simplifica-
tions, but it is only aimed at the estimators of the first draft 90B and its accuracy
needs to be improved. In 2017, Grujić et al. [6] used the three prediction estima-
tor of NIST SP800-90B to implement the on-the-fly test, but the results is not
very accurate because there some mistakes in the second draft standard, and
besides, the latest draft is also not suitable because the dictionaries updates lag-
gardly. Then, in 2021, Kim et al. [9] proposed an online estimator that updates
the min-entropy estimate as a new sample is received, which is based on the idea
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of the compression estimate of NIST SP800-90B, and it is implement on soft-
ware. However, it doesn’t perform well in time-varying datasets, even in some
stationary datasets. Therefore, new framework should be designed to improve
it.

4 New Framework of the 90B’s Prediction Estimator for
On-the-fly Test

4.1 Design Goal and Principle

Our design goal and principle is to achieve on-the-fly test effectively, so we need
to improve speed while ensuring accuracy. We have tested that the minimum
of time consumption of estimators based on deep learning is 30 seconds for
processing 1Mbit of data which can’t meet the requirement of on-the-fly test.
By contrast, the raw 90B estimators only consume 0.15 seconds. Therefore, we
design the new framework according to the 90B estimators.

Besides, we know that on-the-fly test requires as few estimators as possible to
reduce the time consuming, and prediction estimators outperform the other ones
[7]. Therefore, while ensuring accuracy, we choose the four prediction estimators
included in 90B to modify for on-the-fly test. Last but not least, suitable change
detection technology and calculation method of global predictability should be
designed to improve the accuracy.

4.2 Framework of Our Estimator

We can observe that the predictors in SP800-90B all feature scoreboards or dic-
tionaries, which serve as key components in the prediction process. However,
the estimation accuracy of these predictors in handling time-varying sequences
is compromised. This can be attributed to the fact that, even as the datasets
change, the scoreboards and dictionaries retain information from the previous
datasets. As a result, there is a lag in the response of the dictionaries and score-
boards to data changes during accumulation, leading to prediction errors when
applied to new datasets. Therefore, it is imperative to make improvements in
this regard.

We have made the following modifications to the aforementioned estimators
for conducting on-the-fly test. The entire process is presented in Figure 1. In it,
point is the change position, and i is the serial number of the sample. For each
estimator, we perform the simultaneous operations of reading in data and out-
putting results in a serial manner. In step one, considering that the dictionaries
and scoreboards have not yet started accumulating data at startup, which may
result in erroneous estimation, we exclude the first 4999 samples from undergoing
entropy estimation. During this phase, only the dictionaries and scoreboards are
accumulated. Then, in the second step, at the point when there are 5000 samples,
we calculate the prediction probability as the initial value for the change detec-
tion process based on the accumulated dictionaries. Starting from the 5001st
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Fig. 1. The flowchart of the new framework.

sample, we calculate the prediction probability for each subsequently read-in
sample. This calculated probability serves as the basis for the change detection
technology.

In step three, if the prediction suddenly deviates and exceeds the threshold,
we output the calculated min-entropy, clear the dictionaries and scoreboards,
and initiate a new round of entropy estimation. Otherwise, as shown in the
fourth step, if there is no change appearing, for every I samples input, entropy
calculation is performed according to the formula in Section 4.4, and the results
are outputted without clearing the dictionaries and scoreboards. Throughout
this process, the minimum value among the four estimators is selected as the
final output result. Here, I refers to the interval between two outputs.
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4.3 Change Detection Module

In Figure 1, we employ a sequential approach for the four estimators to carry
out the accumulation of dictionaries and scoreboards. We then utilize change
detection technology to identify changes in the datasets and promptly clear the
dictionaries and scoreboards when such changes are detected. This is followed by
initiating a new round of dictionaries accumulation and scoreboards counting.

The current change detection technology can be categorized into three types:
error rate-based drift detection, data distribution-based drift detection, and mul-
tiple hypothesis test drift detection [11]. The latter two methods require more
time and resource consumption as they involve additional feature extraction and
comparison processing on the data. Consequently, they are not suitable for our
on-the-fly test scenario. Error rate-based drift detection, specifically the widely
used Drift Detection Method (DDM) [5], offers a viable approach. Its concept
is as follows: when the sample dataset exhibits stable distribution, the error
rate of the model gradually decreases with the input of data; when there is a
change in the probability distribution, the error rate of the model increases. We
can reference the DDM approach for our change detection modules, but some
adjustments will be necessary in terms of specific details.

For our estimator, when the probability distribution changes, the error rate
of our model has a possibility of both an increase and a decrease; when the
sample dataset is stable, the error rate is in an almost stable and unchanging
state. Besides, Gama et al. [5] set the confidence level for drift to 99%, and the
drift level is reached if pi + si ≥ pmin + 3 × smin , where pi is the probability
corresponding to the first i samples and si is the standard deviation of the first i
samples. pmin is the minimum probability of the previous samples and smin is the
corresponding standard deviation. However, the inequality can hold only when
the normal approximation of the binomial distribution holds. Therefore, we re-
place it with another formula for general which mentioned in Section 4.4, that is,

pi ≥
pmin +

z2
α/2

2(imin−1) + zα/2

√
pmin(1−pmin)

imin−1 +
z2
α/2

4(imin−1)2

1 +
z2
α/2

imin−1

, (5)

and for the lower bound of confidence interval, we use the formula

pi ≤
pmax +

z2
α/2

2(imax−1) − zα/2

√
pmax(1−pmax)

imax−1 +
z2
α/2

4(imax−1)2

1 +
z2
α/2

imax−1

, (6)

where pmax is the maximum probability of the previous samples and zα/2 is
2.576 when the confidence level is 99%. This can apply to all situations.
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Then, during the estimation, we use the prediction probabilities of four esti-
mators for simultaneous change detection. As long as a probability that exceeds
the confidence interval appears, it is determined that a change has occurred
and immediately clear the dictionaries and scoreboards. In theory, our method
is similar to the hyperparameter update of deep learning algorithms, but more
timely than it.

4.4 Optimization of Global Predictability for Small Sample
Datasets and Extreme Probability

According to Section 2.2, the calculation method of global predictability confi-
dence interval is divided into two situations. When p′global is zero, it uses Clopper-
Pearson Exact Method [3]. In other cases, use normal distribution to approximate
binomial distribution and calculate the confidence interval.

However, the above method only contains situation when np > 5 and n(1−
p) > 5, or p = 0 or p = 1, where n is the sample size and p is the probability.
Therefore, we should consider the case that np ≤ 5 or n(1− p) ≤ 5 to make the
perfect.

In our proposed online estimator, the dataset was truncated according to the
sample distribution and parameter changes due to the use of change detection
technology. Besides, in the process of entropy estimation, the probability may
approach to 0 or 1. The two factors may make us encounter the case mentioned
above, i.e., np ≤ 5 or n(1−p) ≤ 5. In this case, the confidence interval calculation
of the global prediction probability in 90B standard is no longer valid because it
does not meet the condition that the binomial distribution is approximated to
normal distribution, that is, the central limit theorem mentioned in Section 2.2.
Therefore, we need to use a new method to calculate it.

Poisson approximations can do for the above issue to some extent, but
it doesn’t provide the method of calculating the confidence interval [4]. T-
distribution can also handle some small sample issues, but still can’t solve the
above problem completely [2]. Therefore, we use “Plus Four Confidence Intervals”
to handle the small sample issue here. This is proposed by Edwin Bidwell Wilson
in 1927, which is an asymmetric interval [17]. It can be used for any probability
value between 0 and 1 in the case of the small sample securely. It is obtained

by solve the equation of p : p = p̂ ± zα/2

√
p(1−p)

n . p̂ is the correct prediction
proportion of the sample, and n is the sample size. zα/2 is the confidence co-
efficient, and it equals to 2.576 when the confidence interval is 99%. The result is

p =
p̂+

z2
α/2

2n ± zα/2

√
p̂(1−p̂)

n +
z2
α/2

4n2

1 +
z2
α/2

n

. (7)
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Then, the upper bound of confidence interval of global prediction under the
new method is

pglobal =
p′global +

z2
α/2

2(n−1) + zα/2

√
p′
global(1−p′

global)

n−1 +
z2
α/2

4(n−1)2

1 +
z2
α/2

n−1

. (8)

From the result, according to knowledge of the infinitesimal of higher order
of the limit theory, we can see that when n → ∞, the equation is approximate
to

pglobal = p′global + zα/2

√
p′global(1− p′global)

n− 1
. (9)

This means that the formula is also applicable to the case of large sample
datasets. Besides, when p′global = 0, the result is greater than 0, which indicates
that it can also handle the situation of endpoint values.

Last but not least, we retain the original local prediction during the pro-
cess of estimation because it is valid regardless of the sample size and extreme
probability. Then, we choose the maximum of the global and local prediction to
calculate the min-entropy as the final result.

4.5 Setting of Key Parameters

In this section, we discuss the setting of the parameters. We choose an initial
accumulation size of 5000 samples for dictionaries and scoreboards due to the fact
that the largest sliding window of the MultiMCW prediction estimator is 4095.
If the accumulation size is smaller than 4095, the largest sliding window cannot
accumulate dictionaries and scoreboards for the initial samples. This setting is a
conservative approach, and it is suitable for other prediction estimators in 90B.

When determining the size of the interval I in Figure 1, we take into account
it both from theoretical and experimental perspectives. On the one hand, as
mentioned earlier, the MultiMCW estimator’s largest sliding window has a size
of 4095. Thus, the interval I should be greater than this value, and we also prove
it through the experiment. On the other hand, we conducted an experiment to
determine the upper bound. We set the intervals as 2k, and k takes from 1 to 17,
and evaluated sequences that followed IID and non-IID distributions separately.
Because the dataset within each segment is stationary after segmentation under
change detection technology, we needn’t use the time-varying sequence here.
For the IID dataset, we select a typical dataset generated by the Oscillator-
based model [1]. For the non-IID dataset, we choose one that followed a Markov
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Fig. 2. Accuracy under Different Intervals.

Fig. 3. Throughput Rate under Different Intervals.

model. The accuracy and throughput rate under different intervals are depicted
in Figure 2 and Figure 3.

In the results, we use the line chart to depict the accuracy and throughput
rate. We see that the accuracy improves as the interval size increases, and when
the interval exceeds 212, the accuracy starts to fluctuate around 90%. Besides,
with larger intervals, the throughput rate grows faster, and when the interval
reaches 212, the throughput rate gradually becomes stable. However, processing
too much data at once may consume a significant amount of memory and lead to
latency. Therefore, to ensure accuracy and throughput rate, we set the interval
range from 212 to 217. For the sake of convenience in displaying the results
throughout the rest of this paper, we set a fixed interval of 50000.

5 Experiment Results and Analysis

5.1 Experiment Setup

Our estimator is implemented in C/C++ language, and we show the results of
the other estimators for comparison. In this section, all experiments are con-
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ducted on a Windows 11 system with an Intel 11th Gen Intel(R) Core(TM)
i7-1195G7 CPU and 16GB of memory.

During the experiment, we present the results in two ways. Firstly, for the
offline estimators such as the estimators in 90B and others based on deep learn-
ing algorithms [10, 12, 21], we only compare their final offline estimation results
with the endpoint result of our proposed estimator. We then display the error
rate in the figure. This is because their methods are exclusively used in offline
scenarios, and it would be unreasonable to choose intermediate output results
for the final comparison. The error rate is calculated by the following formula:

ErrorRate =
|Htest −Hcorrect|

Hcorrect
× 100%, (10)

where Hcorrect is the theoretical min-entropy, and Htest is the results of the
estimators.

Secondly, for the online estimators, including our proposed one and the on-
line estimator based on collision entropy proposed by Kim [9], we plot their
estimations in the figures. We do not present the values of the 90B estimators
implemented on FPGA because they utilize outdated estimators of the old ver-
sion of 90B standard, which have some mistakes [6, 19].

5.2 Simulated Datasets for Experiments

The datasets used in our experiment can be divided into two categories: sta-
tionary datasets and time-varying datasets. The stationary datasets comprise
various distribution families, including discrete uniform distribution, discrete
near-uniform distribution, and normal distribution rounded to integers. More
details are provided below.

− Discrete Uniform Distribution: The samples are subject to the discrete
uniform distribution and are equally-likely. They come from an IID source.

− Discrete Near-uniform Distribution: The samples are subject to the
discrete near-uniform distribution with one higher probability than the rest.
They come from an IID source.

− Normal Distribution Rounded To Integers: The samples are subject
to normal distribution and are rounded to integer values. They come from an
IID source.

The time-varying datasets consist of two common situations: mutation (i.e.,
sudden change) and gradient (i.e., gradual change). To represent mutation, we
utilize a dataset that undergoes near-uniform distribution with 9 mutations.
For the gradient scenario, we employ a Markov model that exhibits a gradient
following a linear function curve. The specific details are outlined below.

− Discrete Near-uniform Distribution with Mutation: The samples
are divided into ten parts and each subject to the discrete near-uniform distribu-
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tion with different parameter values, i.e., the higher probability. Table 2 shows
the changes.

− Markov Model with Gradient: The samples are subject to a first-

order Markov process of {0, 1}, and its transfer matrix is
(
1− p p
p 1− p

)
, where

p changes along a linear function curve:

p(i) =

{
0.1 + 0.0000004i , 0 ≤ i < 500000
0.3 , 500000 ≤ i < 1000000

, (11)

where i is the serial number of the sample.

Table 2. Discrete Near-uniform Distribution with Mutation.

Serial Number of the Sample Higher probability
[1, 80000] 0.5
[80001, 230000] 0.8
[230001, 330000] 0.6
[330001, 380000] 0.85
[380001, 400000] 0.7
[400001, 600000] 0.9
[600001, 900000] 0.55
[900001, 1200000] 0.75
[1200001, 1350000] 0.95
[1350001, 1500000] 0.65

In terms of the dataset size, our proposed online estimator only requires
a minimum of 212 samples. However, other offline estimators, as per the 90B
standard, necessitate no less than one million samples. To facilitate comparison,
we utilize a dataset that follows a discrete near-uniform distribution with 1.5
million samples for the mutation scenario, and other datasets with 1 million
samples for the remaining scenarios.

5.3 Experimental Results

In this subsection, we present the results and then analyze them.
1) Offline estimation results
In figure 4, we use a column chart to represent the comparison of the error rate

of ours and other estimators under different sequences. We find that our online
estimator can give better results than raw 90B estimators and other estimators
that use deep learning algorithms, especially in time-varying sequences.

2) On-the-fly test results
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Fig. 4. Comparison of error rate of estimators.

In the figures, we denote the correct values with red line, and use green “+”
dots representing the results of the online estimator based on collision entropy.
Ours is shown by blue “x” dots.

Figure 5(c) shows the estimated results of the simulation dataset from the
independent normal distribution entropy source. We observed that the results
provided by our estimator and the online estimator based on collision entropy
are both close to the correct entropy.

Figure 5(a) and Figure 5(b) shows that the online estimator based on collision
entropy always provide severely underestimation results on the datasets subject
to discrete uniform distribution and discrete near uniform distribution because
its algorithm is too simple to mine out the features of the datasets. By contrast,
ours provides almost accurate estimations.

For the time-varying datasets, the online estimator based on collision entropy
completely deviates from the theoretical min-entropy in Figure 6(a) and Figure
6(b). The estimations of ours can approach the theoretical correct values at
most points due to the timely clearing of the dictionaries, although there are
some deviations at the inflection points. This is caused by the delay in the
change detection technology, and the delay is quite small, which is less than
1000 samples. It proves the effectiveness of our change detection technology.

5.4 Performance Evaluation

In this section, we discuss the performance of our proposed estimator. Firstly,
in above results, our estimator can give more accurate estimation than other
estimators.

Secondly, in terms of time consumption, as is shown in Table 3, the through-
put rate of our estimators is stationary under different datasets, which is about
8.85 Mbit/s. Therefore, for on-the-fly test, our estimator is suitable for random
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(a) Comparison of min-entropy estima-
tors for uniform source.

(b) Comparison of min-entropy estima-
tors for near-uniform source.

(c) Comparison of min-entropy estima-
tors for normal distribution source.

Fig. 5. Comparison of min-entropy for stationary sequences.

number generators with throughput rates less than or equal to 8.7 Mbit/s in
terms of conservative estimation, whether software or hardware random number
generators.

Besides, in the real world, entropy is an issue on low-power devices. Our
estimator consumes 300 Mbit of memory for processing 1Mbit of data, which is
the same as the raw 90B standard.

6 Conclusion

In this paper, we design a new estimator based on the 90B prediction estimators
for on-the-fly test. This design enhances both speed and accuracy. By employing
change detection technology in our proposed new framework, we have achieved
excellent performance. Additionally, to address situations involving small sam-
ple datasets or extreme probability, we utilize the “Plus Four Confidence In-
tervals” method to calculate the global predictability. Our estimator achieves a
throughput rate exceeding 8.7 Mbit/s, meeting the on-the-fly test requirements
of many RNGs. It currently stands as the most accurate technology for eval-
uating min-entropy. Looking ahead, our future plans involve further improving
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(a) Comparison of min-entropy estima-
tors for near uniform mutation sources.

(b) Comparison of min-entropy estima-
tors for Markov model gradient source.

Fig. 6. Comparison of min-entropy for time-varying sequences.

Table 3. Throughput rate under different sequences.

Data type Throughput rate (Mbit/s)
Uniform 8.92
Near-uniform 8.90
Normal distribution 8.85
Mutation 8.76
Gradient 8.82

speed through hardware enhancements and parallel computing, aiming to ensure
compatibility with a broader range of entropy sources.
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