
PHI: Pseudo-HAL Identification for Scalable
Firmware Fuzzing

Seyeon Jeong1,2⋆, Eunbi Hwang1,∗, Yeongpil Cho3, and Taekyoung Kwon1⋆⋆

1 Graduate School of Information, Yonsei University, Seoul 03722, South Korea
2 Suresofttech Inc., Seongnam-si, Gyeonggi 13453, South Korea
best6653@gmail.com, {ebhwang95, taekyoung}@yonsei.ac.kr

3 Hanyang University, Seoul 08826, South Korea
ypcho@hanyang.ac.kr

Abstract. Firmware fuzzing aims to detect vulnerabilities in firmware
by emulating peripherals at different levels: hardware, register, and func-
tion. HAL-Fuzz, which emulates peripherals through HAL function han-
dling, is a remarkable firmware fuzzer. However, its effectiveness is con-
fined to firmware solely relying on HAL functions, and it necessitates
intricate firmware information for best outcomes, thereby limiting its
target firmware range. Notably, in commercial firmware, both HAL and
non-HAL (which we call “pseudo-HAL”) functions are prevalent. Identi-
fying and addressing both is crucial for comprehensive peripheral control
in fuzzing. In this paper, we present PHI, a tool designed to identify
HAL and pseudo-HAL functions at the register level. Using PHI, we de-
velop PHI-Fuzz, an enhanced firmware fuzzer operating at the function
level. This fuzzer efficiently manages HAL and pseudo-HAL functions,
demanding minimal prior knowledge yet delivering substantial results.
Our evaluation demonstrates that PHI identifies HAL functions accessing
the MMIO range as effectively as LibMatch of HAL-Fuzz, while over-
coming its constraints in detecting pseudo-HAL functions. Significantly,
when benchmarked against HAL-Fuzz, PHI-Fuzz showcases superior
bug-finding capabilities, uncovering crashes that HAL-Fuzz missed.

Keywords: Security, Firmware, Fuzzing, Hardware Abstraction Layer

1 Introduction

Embedded devices play a crucial role in various applications, including the
Internet of Things (IoT), aviation, and weapons systems. According to State
of IoT—Spring 2023 [1] report, there was an 18% growth in the number of
global IoT connections during 2022, resulting in a total of 14.3 billion active
IoT endpoints. However, when compared to the total vulnerabilities discovered,
firmware vulnerabilities have consistently accounted for about 2% each year since
2017, and as of 2023, 2.41% of firmware vulnerabilities have been identified [2].

⋆ Equal contribution.
⋆⋆ Corresponding author.

2 S. Jeong et al.

Firmware vulnerabilities, which can result from system crashes, reboots, and
hangs, are exploitable by attackers aiming to compromise embedded devices.
This poses a significant risk to society, thus necessitating dynamic analysis and
proactive detection through firmware fuzzing [14,19,20].

Fuzzing, a dynamic bug-finding technique, provides random input values to
a program and monitors its executions. AFL (American Fuzz Lop) [24] is a
coverage-guided fuzzer that has demonstrated high performance in general soft-
ware fuzzing and can also be utilized for firmware fuzzing on microcontroller
units (MCU) [16, 20, 25]. However, exploring firmware vulnerabilities through
fuzzing techniques can be challenging, particularly for embedded devices with
inherent limitations. To address these challenges, recent firmware fuzzing re-
search has proposed emulation-based fuzzing [10–13,18,26]. Firmware emulation
enables fuzzing on devices with sufficient power and capacity. Nonetheless, us-
ing a general emulator like QEMU [9] can lead to execution failures due to
undefined peripheral access during firmware fuzzing. Consequently, how emula-
tors handle peripherals is crucial for successful firmware emulation and fuzzing.
Emulation through Hardware-In-The-Loop (HITL) method can result in per-
formance degradation due to communication between hardware and the emula-
tor [19]. Recent studies have focused on peripheral modeling as a way to over-
come this limitation. Peripheral modeling techniques can be classified into three
types: hardware-level, function-level, and register-level modeling. Function-level
and register-level modeling do not require hardware during the modeling phase,
resulting in better performance for firmware emulation and fuzzing.

Function-level peripheral modeling involves emulating firmware by hooking a
function during emulation and connecting pre-made handlers. Register-level pe-
ripheral modeling handles each register during emulation. Compared to register-
level modeling, function-level modeling boasts faster processing, as peripheral
functions accessing Memory-mapped I/O (MMIO) are processed with a han-
dler. HALucinator, a firmware emulator, implements function-level peripheral
modeling using Python handlers achieved through Hardware Abstraction Layer
(HAL) function hooking [11]. Building upon this concept,HAL-Fuzz, a firmware
fuzzer, integrates HALucinator with UnicornAFL [3]. HALucinator and HAL-
Fuzz identify functions to be hooked using LibMatch [4], a HAL function
identification tool. Although LibMatch can identify HAL functions, it requires
a software development kit (SDK) containing HAL function object files com-
piled in the same environment as the target firmware. As a result, LibMatch
needs extensive information about the firmware despite its limited capabilities
in identifying functions.

Many modern firmware implementations utilize not only HAL but also pseudo-
HAL functions. Consequently, LibMatch may not fully identify all functions in
the firmware, limiting the effectiveness of HALucinator and HAL-Fuzz. Addi-
tionally, obtaining detailed information about firmware compilation options can
be challenging, and the scripts used in LibMatch are often not openly avail-
able. This makes it difficult to use LibMatch in an ideal operating environ-
ment. To overcome these limitations, we propose the Pseudo-HAL Identification

PHI: Pseudo-HAL Identification for Scalable Firmware Fuzzing 3

(PHI) program, which leverages symbolic execution to identify HAL and pseudo-
HAL functions at the register level without relying on specific firmware compila-
tion environments or firmware stripping. Furthermore, we introduce PHI-Fuzz,
a function-level firmware fuzzer based on HAL-Fuzz that utilizes PHI’s results.
With the scalability provided by PHI, PHI-Fuzz can perform more efficient and
effective fuzzing compared to existing function-level firmware fuzzers.
Contribution. This paper makes the following contributions.

– Pseudo-HAL Identification We propose PHI, a register-level function
identification method for more scalable function-level peripheral modeling.

– PHI-Fuzz We propose PHI-Fuzz, an enhanced and scalable firmware fuzzer
operating at the function level by leveraging PHI.

– For further research, we will release our tool at publication time.

Organization. This paper is organized as follows. Section II provides the nec-
essary background and discusses the existing problems. Section III presents the
design of the proposed system. Section IV describes the implementation of the
system. Section V presents the evaluation of the system. Section VI provides a
discussion of the results and limitations. Section VII reviews the related work.
Finally, Section VIII concludes the paper.

2 Motivation

In this section, we briefly discuss the background of firmware fuzzing, identify
the challenges of existing techniques, and demonstrate their limitations through
a series of experiments.

2.1 Background

Firmware in Embedded Devices Firmware is a type of software that of-
fers low-level control over hardware components, including on-chip and off-chip
peripherals, as well as MCUs integrated into embedded systems. Muench et
al. [19] classified embedded devices into three categories based on firmware: gen-
eral OS-based firmware, embedded OS-based firmware, or monolithic firmware.
Monolithic firmware (also known as bare-metal firmware) is present in approxi-
mately 81% of embedded devices as of 2019 [5]. This firmware type operates by
executing simple functions in a continuous loop and is commonly used in small-
scale embedded systems. Our study focuses on developing a firmware fuzzing
technique that specifically targets monolithic firmware.

Firmware Fuzzing Traditional fuzzing techniques for general software often
require instrumentation to observe and analyze the behavior of the tested pro-
gram. However, firmware fuzzing presents additional challenges due to the high
dependency on heterogeneous peripherals and the lack of reliable emulation tech-
niques. Fully emulating firmware, including both the processor and peripherals,

4 S. Jeong et al.

Application
Middleware
HAL

On-chip peri.

Firmware

Hardware

Fig. 1. STM32 firmware architecture

can be a complex and time-consuming process owing to the wide variety of pe-
ripherals available. For firmware testing, partial emulation using the hardware-
in-the-loop (HITL) method may be slower than the peripheral modeling method,
as it may cause a bottleneck in the communication process between the emula-
tor and the actual hardware being emulated [19, 22]. Recently, emulation tech-
niques utilizing peripheral modeling have gained popularity for effective firmware
fuzzing [10–13,18,21,26].

HAL(Hardware Abstraction Layer) HAL is a library provided by manu-
facturers to enhance the convenience of firmware development. By abstracting
common functionality for specific devices, HAL makes developers program with-
out relying on a specific hardware target [6]. Since many manufacturers produce
various types of hardware, developing firmware based on specific hardware re-
quires a significant loss of productivity to develop firmware that directly accesses
the hardware. Using HAL has the advantage of facilitating the development
of essential functions when creating firmware. It is presented as higher-layer
functions rather than register units, enabling convenient usage through function
calls without the need for direct register access. For instance, in implement-
ing the functionality to send data over UART, developers can simply call the
HAL UART Transmit() function without directly manipulating the Data Reg-
ister. HALucinator [11] leveraged the characteristics of this HAL in firmware
emulation. Identified HAL function calls and handled them with pre-made han-
dlers, HALucinator improved emulation efficiency. Unlike HALucinator, which
identified HAL functions at the function level, the PHI proposed in this paper
detects not only HAL functions but also various library functions for peripherals
HAL functions at the register level.

2.2 Problem Definition

A central question this study aimed to address is whether function-level
fuzzing, as a peripheral modeling method, is more efficient than register-level
fuzzing. We also examined the scalability of current function-level emulation
techniques. To answer these questions, we conducted several experiments as part
of our research.

PHI: Pseudo-HAL Identification for Scalable Firmware Fuzzing 5

Example 1 Firmware execution code

1: int main(){
2: char a[5];

3: char b = HAL uart getc();

4: a[b] = 1;

5: }

Example 2 Firmware execution code

1: int main(){
2: char a[5];

3: data = HAL UART Receive IT(huart, pData, Size);

4: strcpy(a, data);

5: }

Efficiency of function-level emulation for fuzzing This paper investigates
the use of different levels of peripheral modeling for firmware fuzzing, including
hardware, function, and register levels. While hardware-level modeling necessi-
tates physical devices, function-level and register-level modeling can be achieved
through emulation. To compare the performance of firmware fuzzing at the func-
tion and register levels, we conducted an experiment using recent fuzzers, includ-
ing HAL-Fuzz, P2IM, Fuzzware, and HEFF. HAL-Fuzz employs function-level
modeling, while P2IM and Fuzzware utilize register modeling. HEFF uses dual-
level modeling at both functional and register levels [15]. We tested these fuzzers
on the Drone firmware [12], and the results are presented in Table 9. The exper-
iment indicates that the fuzzing speed of register-level fuzzers (including dual-
level fuzzers) is approximately half as fast as the fuzzing speed of HAL-Fuzz, a
function-level fuzzer. These results suggest that function-level fuzzing is a more
efficient approach.

The difference in fuzzing speed between function-level and register-level fuzzing
(including dual-level) is due to the additional processing overhead incurred by
register-level fuzzing as it handles all accessed registers (also partially handles
accessed registers). Firmware vulnerabilities can arise from processing inputs re-
ceived through peripherals. We provide two examples of vulnerabilities resulting
from buffer overflow in this paper. In Example 1, a vulnerability occurs in line
4, where an external input is received through the HAL function and stored
as a variable. In Example 2, an external input is saved as a variable, leading
to a vulnerability. While both examples use HAL functions, the vulnerabili-
ties arise outside of the HAL function, not within it. In the above-mentioned
case, register-level emulation handles all accesses made inside the HAL function,
whereas function-level emulation handles functions with pre-made handlers, thus
avoiding any processing overhead.

The necessity of identifying pseudo-HAL functions. Figure 1 illustrates
the structure of STM32 firmware, where the HAL acts as an intermediate layer

6 S. Jeong et al.

Table 1. Peripheral related functions in CNC firmware

Firmware Pseudo-HAL HAL

CNC

dirn wr HAL DeInit

enable tim clock HAL DisableCompensationCell

enable tim interrupt HAL EnableCompensationCell

enable usart clock HAL GPIO DeInit

g540 timer init HAL GPIO EXTI IRQHandler

g540 timer start HAL GPIO Init

g540 timer stop HAL GPIO ReadPin

gpio clr HAL GPIO TogglePin

gpio init HAL GPIO WritePin

gpio rd HAL Init

gpio set HAL RCC ClockConfig

gpio toggle HAL RCC DeInit

mc dwell HAL RCC GetHCLKFreq

set step period HAL RCC GetOscConfig

set step pulse delay HAL RCC GetPCLK1Freq

set step pulse time HAL RCC GetPCLK2Freq

step isr disable HAL RCC GetSysClockFreq

step isr enable HAL RCC MCOConfig

step timer init HAL RCC NMI IRQHandler

step wr HAL RCC OscConfig

SystemClock Config

SystemCoreClockUpdate

SystemInit

TIM2 IRQHandler

usart getc

usart init

usart putc

usart tstc

Total(#) 28 20

between hardware and software, directly writing values to MCU registers or con-
trolling peripheral devices. The HAL is a universal library commonly employed
by developers to manage peripheral devices in firmware implementation. Tools
like HALucinator and HAL-Fuzz are used to identify and hook these HAL func-
tions for handling. The HAL function identification program proposed in [11],
called LibMatch, is currently employed for this purpose. This enables firmware
to operate without requiring physical peripheral devices or separate peripheral
emulations. However, LibMatch has two significant limitations due to its re-
liance on a context-matching technique between the target firmware and the
HAL function object file to extract HAL function information.

A lot of information is required. The first limitation of LibMatch is that
it necessitates the SDK (object file of the HAL functions) to be compiled in an

PHI: Pseudo-HAL Identification for Scalable Firmware Fuzzing 7

Fig. 2. Result of libmatch HAL function identification according to SDK and firmware
combination by compile optimization level

environment with the same compiler version and optimization level as the target
firmware. Figure 2 displays the LibMatch function identification results for
six types of compile optimization levels of the target firmware and their cor-
responding SDKs. The x-axis represents the optimization options for firmware,
while the y-axis represents the optimization options for the SDK. For example,
in Figure 2, the matrix (0,0) represents 96.4% of the matching HAL function
ratio when the firmware is built with the -O0 option and the SDK is built with
the -O0 option, using the libmatch extraction method. When the optimization
levels match (6 out of 36), a high matching rate ranging from 67.9% to 96.4% is
achieved. However, in most cases where the optimization levels do not match (30
out of 36), function search is either impossible or, even if a match is identified,
the matching rate is below 20%. This indicates that Libmatch has a high depen-
dency on the SDK files. If it fails to find an SDK that matches the optimization
options of the target firmware, the matching ratio of HAL functions decreases.

Unidentified functions exist. The second limitation of LibMatch is that it
can only identify HAL functions, as the required SDK file contains only HAL
function information. Consequently, functions other than HAL functions cannot
be identified by LibMatch. However, as demonstrated in the CNC [7] firmware
example in Table 1, not all firmware exclusively depends on HAL functions to
control their peripherals. In such cases, developers define and utilize functions
that behave like HAL but can be controlled in smaller units for convenience.
These functions, referred to as pseudo-HAL functions in this study, perform
functions using registers assigned to peripheral devices while accessing within
the range of the HAL functions and MMIO. Therefore, for scalable function-level
firmware fuzzing, it is crucial to identify both HAL and pseudo-HAL functions.

8 S. Jeong et al.

FWMCU Information
< e.g, STM32F469NI>

DB Configuration
(Section 3.2)

-Extract function name
-Extract status_rw
-Extract MMIO & offset

Firmware Binary

Feature Extraction
(Section 3.3)

-Detect parant nodes
-List up r/w access
-Extract MMIO & offset

Feature Comparison
(Section 3.4)

-MMIO matching
-Offset matching
-Function name matching

Function Information
<Fun_i, Ins_addr>

Fig. 3. PHI system flow

2.3 Our approach

We propose the use of pseudo-HAL function identification for effective and
scalable firmware fuzzing at the function level. Pseudo-HAL functions are iden-
tified based on register access patterns at the register level. This can be ac-
complished through symbolic execution of MMIO and identifying characteristic
offset information for each function. This approach reduces the reliance on the
SDK compilation environment and enables fuzzing of a wider range of firmware
than HAL-Fuzz. In the next section, we will provide a detailed description of
our PHI system.

3 System Design

3.1 System Overview

In this section, we present an overview of the PHI (Pseudo-HAL Identifi-
cation) system, which involves a two-input, three-step process, as illustrated in
Figure 3. The user provides the target firmware and the corresponding MCU
(Microcontroller Unit) name as inputs. The MCU name is used for selecting
the appropriate DB (Database) file, while the firmware is utilized for feature
extraction to identify functions related to peripheral devices. The PHI process
comprises three steps: DB configuration, feature extraction, and feature com-
parison. DB configuration (Section 3.2) is the first step, which involves creating
a DB for each MCU prior to the PHI operation and selecting the appropriate
DB based on the input MCU name. The second step, feature extraction (Section
3.3), extracts the function features from the firmware using symbolic execution.
This step is the most computationally intensive and involves the extraction of
three features for each peripheral access. In the final step, feature comparison
(Section 3.4), the functions used in the firmware are identified by matching the
extracted features with the DB. The extracted files in this step are utilized for
fuzzing.

3.2 DB Configuration

The process of configuring the DB includes two primary steps: DB creation
and DB selection. DB creation involves extracting the features of peripheral

PHI: Pseudo-HAL Identification for Scalable Firmware Fuzzing 9

 ADC_GetResolution
 ADC_IsEnabled
 ADC_INJ_SetOffset

 USART_IsEnabledIT_TXT
 USART_SetStopBitsLength
 USART_TransmitData9

…
 0 0x40012000 0x4
 0 0x40012000 0x8
 1 0x40012000 0x14
…
 0 0x40011000 0xc
 1 0x40011000 0x10
 1 0x40011000 0x4
…

Fig. 4. Example of DB

functions used in each MCU from MMIO (Memory-Mapped Input/Output) and
offset that can be called from the embedded board, and converting them into
a database. This process is essential for obtaining the necessary information to
accurately map the functions used in the firmware to the MCU. It involves ana-
lyzing the registers used and their corresponding states, as well as dividing the
base address and offset of each peripheral device to enable further classification.
As a result, the database structure can be represented as <func i, state rw,
peri addr, offset>. Figure 4 illustrates an example of a database (DB). DB
includes the name of low-level functions (func i), whether the function involves
reading or writing to the MMIO registers (state rw), the MMIO address asso-
ciated with the function (peri addr), and the register access offset (offset). For
the indication of reading or writing to MMIO registers, 0 represents the state
of reading from the MMIO register, and 1 represents the state of writing to the
MMIO register. In the first row of the Figure 4, ADC GetResolution represents
the function name, 0 indicates reading from the MMIO register, 0x40012000 in-
dicates the base address of peripheral and 0x4 indicates the offset for accessing
the MMIO register.

DB selection, on the other hand, is the process of selecting the appropriate
DB based on the MCU name input for PHI. This step is crucial for effective
and accurate PHI operation. These DBs are stored in a single folder, and DB
selection is the process of selecting a DB corresponding to the entered MCU
name. The reason for configuring various DBs is that the register addresses used
for each MCU are different, and selecting the correct DB ensures the proper
mapping of peripheral functions to the specific MCU.

3.3 Feature Extraction

The feature extraction step extracts the features of functions called when the
target firmware is executed using symbolic execution, a static analysis technique.
Typically, to identify functions at the function-level, an object file containing
function information is necessary, as in the case of LibMatch results. However,
this paper proposes a register-level function detection approach that extracts
function features from all register-level accesses without requiring detailed func-
tion information, such as function names. As a result, we leverage symbolic

10 S. Jeong et al.

Table 2. Information of USART

Register Offset

Status Register SR 0x00

Data Register DR 0x04

Baud Rate Register BRR 0x08

Control Register
CR1 0x0C

CR2 0x10

CR3 0x14

Guard Time and Prescalar Register GTPR 0x18

execution to identify functions at the register level without relying on detailed
information, instead of using a matching method that requires such information.
This approach is possible because peripheral registers in firmware are assigned
to specific memory ranges, such as the MMIO range of 0x40000000–0x5fffffff
for ARM Cortex-M4 MCUs, for example.

Consider the case of USART, which manages asynchronous serial commu-
nication between computers. In an ARM Cortex-M4 MCU, the peripheral base
address for USART is 0x40011000, and offsets such as SR, DR, BRR, CR, and
GTPR are allocated to it, as shown in Table 2. By utilizing these offsets and
their corresponding USART functions, which control USART using the related
registers, it is possible to identify functions at the register level without the need
for detailed information, such as function names. MMIO ranges, peripheral base
addresses, and offset information can be obtained from the datasheet for each
MCU, facilitating the construction of this information. Therefore, to extract
the features of functions related to firmware peripherals, the following steps are
performed:

1. List the functions that access the MMIO range.

2. Check the base address and offset used by each function.

3. Record whether the function reads or writes to that memory.

To accomplish this, the top-level parent node is first extracted from the target
firmware. Then, the function call flow within the firmware is checked, starting
from all parent nodes. All accesses that read or write memory information within
the MMIO address range are recorded. These accesses are listed by creating
the tuple <instruction address (ins addr), block address (block addr), state rw,
peri addr, and offset>. Typically, functions can access the MMIO range multi-
ple times, and memory reads/writes can occur sequentially. If a function has a
continuous sequence of the same type of operation, such as read/read/read/... or
write/write/write/..., the sequence of accesses is summarized into a single input.
However, if both read and write operations occur in the same function with the
same offset, they are summarized as a write operation because the same offset
is read and written when writing to a specific register for a function.

PHI: Pseudo-HAL Identification for Scalable Firmware Fuzzing 11

3.4 Feature Comparison

In the feature comparison step, a list of functions for fuzzing is extracted
by matching the feature extraction results, which consist of instruction address,
block address, status (read or write), peripheral base address, and offset, with
the previously constructed database. These function names are used as keys
when connecting to a function handler after function hooking. The corresponding
function search result field is the same as that of <func i, ins addr>. In this step,
the corresponding results are extracted to a file and used for function hooking
during fuzzing.

4 Implementation

In this study, we implemented PHI, PHI-Fuzz, and a handler. PHI takes the
firmware binary and the name of the MCU on which the firmware is loaded
as input, then selects the DB corresponding to the MCU name. The PHI is
implemented as a Python script consisting of 479 lines, which configures the
function information DB, totaling 972 lines of code.

To configure the DB and identify the pseudo-HAL, PHI utilizes angr [8], a
symbolic execution tool. The angr functions used include Control-Flow Graph
(CFG) analysis and Data Dependency Graph (DDG) results. The CFG func-
tions were divided into CFGFast and CFGEmulated. CFGFast was employed to
extract the parent node, while CFGEmulated (with a call depth of 7) was used
to extract the DDG.

PHI-Fuzz is implemented based on HAL-Fuzz and receives the PHI result as
an addr.yaml file, saves it, and fuzzes the target firmware through a modified
handler. The essential handler functions for fuzzing were implemented by adding
them to the existing HAL function handler file. Specifically, the existing HAL
function handler was connected with the pseudo-HAL function, which played a
similar role, to enable fuzzing. Functions discovered through PHI that could not
be replaced with existing functions were implemented and added to the existing
handler file.

5 Evaluation

The evaluation of PHI-Fuzz was experimentally conducted to answer the
following research questions:

– RQ1: How scalable is a PHI that uses only firmware images for identifica-
tion?

– RQ2: How effective is the PHI in terms of function identification?

– RQ3: How good is the PHI-Fuzz in Bug finding?

12 S. Jeong et al.

Table 3. Firmware tested in Section 5.2, 5.3, 5.4

Firmware MCU OS Library
Peripherals

GPIO UART I2C SPI

UART transmit

STM32F469NI

Baremetal

HAL

✓ ✓

UART receive Baremetal ✓ ✓

I2C receive Baremetal ✓ ✓ ✓

SPI receive Baremetal ✓ ✓ ✓

UART
Baremetal ✓ ✓

HyperTerminal IT [11]

Drone [12]
STM32F103RB

Baremetal HAL ✓ ✓ ✓

CNC [12] Baremetal
HAL,

✓ ✓ ✓
Pseudo-HAL

Baremetal I2C

STM32F469NI

Baremetal

Pseudo-HAL

✓ ✓ ✓

FreeRTOS I2C FreeRTOS ✓ ✓ ✓

Baremetal UART Baremetal ✓ ✓

FreeRTOS UART FreeRTOS ✓ ✓

RIOT I2C receive RIOT OS ✓ ✓

RIOT I2C transmit RIOT OS ✓ ✓ ✓

RIOT SPI receive RIOT OS ✓ ✓

RIOT UART
STM32F103RB

RIOT OS
Pseudo-HAL

✓ ✓

RIOT SPI RIOT OS ✓ ✓ ✓

RIOT I2C RIOT OS ✓ ✓ ✓

5.1 Experimental Setup

Experimental environment. Experiments for PHI and PHI-Fuzz evaluation
were conducted in an Intel® Core™ i7-8700 CPU @ 3.20GHz, 8GB RAM, and
Ubuntu 18.04.4 LTS (VM) environment.

Experiment data.

Table 3 presents the information on the firmware used to evaluate PHI and
PHI-Fuzz. The firmware was based on STM32F469NI and STM32F103RB, with
the source code collected from an open-source project on GitHub and then ported
for use. The per firmware included GPIO, UART, I2C, and SPI for evaluation.
In total, four HAL-based firmware and ten pseudo-HAL-based firmware were
created and used for the experiments. Additionally, one HALucinator benchmark
firmware and two P2IM benchmark firmware were used in the experiment. The
firmware was compiled without optimization using the 2018 q4 (gcc8) version.
The HAL object file required for Libmatch, a program that compares with PHI,
was also compiled with the 2018 q4 (gcc8) version and without optimization.

PHI: Pseudo-HAL Identification for Scalable Firmware Fuzzing 13

Table 4. PHI result of UART Hyperterminal IT by Optimization level

Optimization level Total(#) Result(%)

-O0 No optimization 16 69
-O1 Reduced code size, execution time 15 75
-O3 Optimization of inline functions and registers 15 75
-Os Omit optimizations that increase code size 15 75
-Og Remove optimizations that confuse debugging 15 75

5.2 Scalability of PHI (RQ1)

To demonstrate PHI’s scalability, this study shows that identifying pseudo-
HAL functions is feasible with only the MCU name, without relying on de-
tailed firmware information. To validate this claim, function identification ex-
periments were conducted on compiled firmware at various optimization levels,
and the function identification rates were compared with LibMatch’s HAL
function identify results when the compiler versions of the SDK file and the
target firmware differed. The reason for demonstrating scalability through re-
sults obtained with different compilation options is that LibMatch, which uses
the specific SDK, exhibits varying results depending on compilation options, as
shown in Figure 2. Therefore, by achieving consistent results without using the
SDK, PHI establishes its scalability. Table 4 presents the PHI results for the
UART Hyperterminal IT [11] firmware compiled at different optimization levels
using the same source code. Optimization led to a reduction of one in the total
number of peripheral-related functions (HAL functions), but at all optimization
levels, 15 identical pseudo-HAL function identifications were possible. In com-
parison, LibMatch’s identification rate varies depending on the compilation
level of the SDK and firmware, unlike PHI, which not only requires the SDK
but also shows consistent identification results in target firmware compiled at
each optimization level.

As an additional experiment, a comparison experiment was conducted by
detecting with a different compiler. While the original experimental firmware
and SDK files were compiled with 2018 q4 (gcc8), for this experiment, only the
experimental firmware was compiled with 2016 q4 (gcc6) to compare the results
in the unideal environment. Figure 5 and 6 show the results of PHI and Lib-
Match with four types of firmware that utilize HAL functions and compiled with
2018 q4 (gcc8) and 2016 q4 (gcc6) each. Figure 5 represents the identification
results in an ideal environment for using LibMatch. As a result, PHI exhibited
an average exploration rate of around 69%, while LibMatch showed an average
exploration rate of approximately 75%. Figure 6 illustrates the results of exper-
iments conducted using firmware compiled with 2016 q4 (gcc6), which did not
occur in an ideal environment. PHI, since it doesn’t rely on the SDK, produced
the same results as the exploration with the firmware compiled with 2018 q4
(gcc8). However, LibMatch did not achieve the same results. LibMatch de-
tected only NVIC-related functions, resulting in detection performance of up to

14 S. Jeong et al.

Fig. 5. Comparison of HAL function identification rates between PHI and LibMatch.
The figure shows the execution outcome of the LibMatch with the ideal compiler
version.

Fig. 6. Comparison of HAL function identification rates between PHI and LibMatch.
The figure shows the execution outcome of the LibMatch without the ideal compiler
version.

17% or less. As a result of these experiments, it was confirmed that PHI can
explore functions consistently across various compilation optimization options
and compiler versions, demonstrating its scalability as a program. With this
scalable feature of PHI, it is possible to detect peripheral-related functions in
commercially available firmware without prior information. These detection re-
sults can subsequently be used for vulnerability exploration through PHI-Fuzz.
The experimental results related to this will be presented in Section 5.4.

5.3 Effectiveness of PHI (RQ2)

In Section 5.2, it was observed that LibMatch’s identification rate is fa-
vorable when the SDK is in an ideal environment. Therefore, in this section,
we compare LibMatch and our approach in the ideal environment. Gener-
ally, the HAL function identification rate of PHI closely resembled LibMatch’s

PHI: Pseudo-HAL Identification for Scalable Firmware Fuzzing 15

Table 5. HAL function identification result for SPI receive firmware

Function Libmatch PHI

HAL GPIO Init ✓

HAL NVIC SetPriority ✓

HAL NVIC SetPriorityGroup ✓

HAL RCC ClockConfig ✓ ✓

HAL RCC GetHCLKFreq ✓

HAL RCC GetPCLK1Freq ✓ ✓

HAL RCC GetPCLK2Freq ✓ ✓

HAL RCC GetSysClockFreq ✓ ✓

HAL RCC OscConfig ✓ ✓

HAL SPI Init ✓

HAL SPI MspInit

HAL SPI Receive ✓

HAL SPI Transmit ✓

HAL SPI TransmitReceive ✓

HAL UART Init ✓

HAL UART MspInit ✓

HAL UART Transmit ✓ ✓

Total 10 12

rate (as shown in Figure 5). However, for UART transmit, UART receive, and
I2C receive firmware, LibMatch displayed a higher search rate than PHI. What
could be the reason? The functions identified by LibMatch but not by PHI
were NVIC-related functions, specifically HAL NVIC SetPriority and HAL NVI
C SetPriorityGrouping. PHI failed to identify these functions because the NVIC-
related DB configuration was not established in PHI since the access address was
outside the MMIO range. Conversely, for SPI receive firmware, PHI exhibited a
higher search rate than LibMatch. In Table 5, while PHI did not identify two
NVIC-related functions, LibMatch could not identify four other SPI-related
functions. This confirms that LibMatch cannot identify all HAL functions,
whereas PHI can identify functions that LibMatch cannot.

Additionally, Table 6 shows the results of another function identification
experiment using 10 firmware that call pseudo-HAL functions instead of HAL
functions. While LibMatch had a detection rate of 0%, PHI could identify
functions at a significantly high rate of 92.3%. As a result, PHI can identify HAL
functions with performance similar to or even superior to LibMatch, which has
access to all SDK information, even without utilizing the SDK. Additionally,
PHI can also identify pseudo-HAL functions that were previously inaccessible for
exploration with LibMatch. Furthermore, similar to the results in Section 5.2
, PHI’s effectiveness in detecting a wider range of peripheral-related functions
allows for more efficient fuzzing, making it beneficial.

16 S. Jeong et al.

Table 6. Pseudo-HAL function identification(%)

Firmware Libmatch PHI

Baremetal I2C 0 68.1
FreeRTOS I2C 0 63.6
Baremetal UART 0 64.2
FreeRTOS UART 0 64.2
RIOT I2C receive 0 60
RIOT I2C transmit 0 62.5
RIOT SPI receive 0 60
RIOT UART 0 64.7
RIOT SPI 0 92.3
RIOT I2C 0 84.2

Table 7. Fuzzing experiment

Firmware HAL-Fuzz PHI-Fuzz

UART receive O O
I2C receive O O
UART HyperTerminal IT O O
Drone O O
CNC X O
Baremetal I2C X O
FreeRTOS I2C X O
Baremetal UART X O
FreeRTOS UART X O

5.4 Effectiveness of PHI-Fuzz in bug finding (RQ3)

To demonstrate the effectiveness of PHI-Fuzz, the fuzzing results of PHI-Fuzz
and HAL-Fuzz were compared. Table 7 represents the results of testing the fea-
sibility of fuzzing on nine firmware, using HAL-Fuzz and PHI-Fuzz. Among the
experimental firmware, UART receive, I2C receive, UART HyperTerminal IT,
and Drone contain HAL functions, and both HAL-Fuzz and PHI-Fuzz can be
used to fuzz these samples. However, CNC, Baremetal I2C, FreeRTOS I2C,
Baremetal UART, and FreeRTOS UART contain pseudo-HAL functions, and
can only be fuzzed using PHI-Fuzz.

Table 8 shows the execution results of HAL-Fuzz and PHI-Fuzz on Drone
and CNC. The experimental results reveal that both fuzzers could run on Drone,
but only PHI-Fuzz was capable of running on CNC. PHI-Fuzz outperformed in
terms of fuzzing execution speed and execution path on Drone, as more func-
tions were identified and handled. Furthermore, PHI-Fuzz discovered six unique
crashes not detected by HAL-Fuzz, indicating that PHI-Fuzz demonstrated
superior performance in finding bugs.

PHI: Pseudo-HAL Identification for Scalable Firmware Fuzzing 17

Table 8. Fuzzing experiment with Drone and CNC firmware

HAL-Fuzz PHI-Fuzz
Firmware

Exec. #Path #Crash Exec. #Path #Crash

Drone 2,981,648 473 ✗ 3,511,621 491 ✗

CNC ✗ ✗ ✗ 4,020,289 958 6

Table 9. Drone firmware fuzzing Performance Comparison in terms of execution speed
& a number of basic blocks.

HAL-Fuzz [3] P2IM [12] HEFF [15] Fuzzware [20] PHI-Fuzz

Modeling level Function Register Dual Register Function

Function scalable HAL
HAL HAL HAL HAL

Pseudo-HAL Pseudo-HAL Pseudo-HAL Pseudo-HAL
Speed(exec/s) 49 20 21 23 53

Executed BB (#) 254 519 707 377 210

6 Discussion & Limitation

The results presented in Section 5.2 demonstrate that PHI can effectively
identify both pseudo-HAL and HAL functions independently of firmware in-
formation, as shown in Section 5.3. Moreover, due to its scalability, PHI can
efficiently find bugs, as discussed in Section 5.4. Furthermore, the HAL function
identification results in Table 5 reveal that PHI outperforms LibMatch, since
it identified four out of the five SPI-related functions that LibMatch failed to
identify. However, LibMatch has not yet identified HAL RCC GetHCLKFreq
and HAL UART MspInit. Therefore, to achieve high function coverage during
fuzzing, a dual identification technique can be employed. This approach involves
first identifying function information through LibMatch and then executing
PHI to identify functions related to all peripheral devices within the MMIO
range.

Table 9 compares the fuzzing performance of firmware fuzzers at various
levels. As seen in the table, PHI-Fuzz exhibits more than twice the speed com-
pared to register-level fuzzers and is 8% faster than the function-level firmware
fuzzer HAL-Fuzz, achieving the best results in terms of fuzzing speed. How-
ever, it also obtained the lowest number of executed basic blocks. This is because
register-level firmware fuzzers process all registers, resulting in a larger number
of executed basic blocks. On the other hand, function-level firmware fuzzers
execute a relatively smaller number of basic blocks since they have predefined
handlers for each function call. In this context, PHI explored and handled more
functions than HAL-Fuzz, leading to the execution of the fewest basic blocks.

18 S. Jeong et al.

7 Related Work

Firmware fuzzing for an MCU target requires firmware emulation. Unlike
general software, firmware depends on various peripheral devices, making pe-
ripheral device emulation the core of firmware emulation. To address this depen-
dency problem of peripheral devices, various firmware emulation studies have
been conducted. In this section, we introduce the firmware emulation technique
and the latest fuzzers that utilize it.

7.1 Firmware Emulation

In WYCINWYC [19], firmware emulation is divided into two categories: full
emulation, which emulates both the core and peripheral devices of the firmware,
and partial emulation, which emulates only the core device and handles periph-
eral device emulation through physical hardware or peripheral modeling. Full
emulation requires significant engineering effort, as all peripherals must be di-
rectly configured into the emulator. In particular, in the case of MCUs, which
can have various manufacturers and peripheral devices, directly emulating all
of them incurs high costs. On the other hand, partial emulation is proposed to
mitigate the inefficient development effort of peripheral devices required during
full emulation. This method was studied using hardware-in-the-loop (HITL) and
peripheral modeling techniques.

The hardware-in-the-loop emulation handles peripheral access by using real
peripheral hardware [17, 23]. This approach performs firmware emulation by
communicating with peripherals not supported by the emulator using actual
peripheral hardware. However, its availability is limited due to the requirement
of actual peripheral hardware. On the other hand, peripheral modeling emulates
I/O processing for peripheral devices through a model of the peripheral de-
vice [10–13, 26]. This method does not use actual peripheral devices, making it
easier to use and reducing engineering efforts. Muench et al. [19] demonstrated
that emulation through peripheral modeling is more effective than the HITL
method and improves emulation performance.

7.2 Hardware-Level Emulation

Peripheral modeling can be categorized into hardware-level, function-level,
and register-level modeling based on the modeling level of the peripheral device.
Pretender [13] models a peripheral device based on hardware values obtained
by inputting values for the actual device. The modeling process uses machine
learning, and firmware fuzzing is performed using the implemented model. This
is different from the HITL method in that the hardware is used only during the
peripheral modeling phase. Thus, fuzzing can proceed without an actual device,
relying solely on the modeled result. However, a drawback of this approach is
that various hardware is eventually required for the peripheral modeling phase.
In contrast, PHI makes it possible to identify functions related to peripheral
devices using only firmware binary images and MCU names, without the need for

PHI: Pseudo-HAL Identification for Scalable Firmware Fuzzing 19

actual hardware at any stage. This enables more scalable fuzzing than Pretender
and other peripheral modeling-based approaches.

7.3 Function-Level Emulation

HALucinator [11] is an emulator that allows developers to model peripheral
devices of MCU devices directly using the Hardware Abstraction Layer (HAL).
Compared to full emulation, which requires detailed modeling of the register
unit, HALucinator reduces overhead by allowing developers to directly model
the HAL, which is commonly used in many MCU target operating systems.
When HAL functions are called, HALucinator handles them by using modeled
function handlers. Moreover, HALucinator provides emulation for each periph-
eral device in the HAL layer, making it possible to fuzz without emulating com-
plex hardware. PHI-Fuzz uses a self-modified HAL-Fuzz function handler for
fuzzing. Furthermore, PHI’s ability to identify pseudo-HAL functions addresses
the limitation of HALucinator, which could only identify HAL functions.

7.4 Register-Level Emulation

Compared to HALucinator, which focuses on handling functions, P2IM [12]
is designed for dynamic testing and fuzzing of individual I/O devices at the
register level. When the firmware is executed in the emulator, P2IM classifies
the access pattern of the peripheral’s MMIO registers into categories such as
CR, SR, DR, and C&SR using a proposed heuristic and performs peripheral de-
vice modeling with each register handling method. As a result, P2IM does not
require prior knowledge of which specific peripheral devices are connected to the
MCU since peripheral device handling is performed automatically. PHI leverages
P2IM’s register access pattern classification to identify peripheral functions. By
analyzing the MMIO information output through DDG, PHI classifies periph-
erals and calculates the used offset, categorizing them into memories such as
SR, DR, and CR. Through this classification process, PHI identifies the accesses
performed by the HAL and pseudo-HAL functions. In contrast to P2IM, which
automatically creates and operates a handler during fuzzing, PHI-Fuzz requires
only a pre-written function handler for the identified function, enabling faster
fuzzing.

Laelaps [10] performed firmware emulation through dynamic symbolic execu-
tion when an undefined peripheral device access occurred in the emulator while
being emulated through QEMU. µEmu [26] analyzed register access patterns for
peripheral access via symbolic execution, prior to firmware fuzzing. During sym-
bolic execution, rules for responding to unknown peripheral accesses are inferred,
stored in the Knowledge Base (KB), and referenced in the firmware analysis. To
address the limitations of Laelaps and µEmu, Fuzzware [20] proposes a solution
for limiting fuzzing coverage expansion through path removal during symbolic
execution and partial input overhead. PHI also leverages symbolic execution
to extract the called functions. Function identification information is provided
through Angr, a symbolic execution tool. The offset used when the address of

20 S. Jeong et al.

the called function is in the MMIO range is extracted, and function matching is
performed through this information.

8 Conclusion

This study aims to improve firmware fuzzing efficiency by identifying both
HAL and pseudo-HAL functions at the register level and implementing PHI and
PHI-Fuzz as firmware fuzzers based on HAL-Fuzz. The proposed method was
able to identify HAL functions accessing the MMIO range at a comparable level
to LibMatch, while also addressing the limitation of LibMatch in identify-
ing pseudo-HAL functions. PHI-Fuzz proved to be more effective in bug finding
than HAL-Fuzz, as it discovered additional crashes not found by HAL-Fuzz.
However, there are still some functions that LibMatch can identify but PHI
cannot. To address this, future work will involve conducting a study that com-
bines LibMatch and PHI to increase the function identification rate.

Acknowledgement. This work was supported by Institute of Information &
communications Technology Planning & Evaluation (IITP) grant funded by the
Korea government(MSIT) (RS-2023-00229400, Development of user authentica-
tion and privacy preserving technology for a secure metaverse environment) and
by Institute of Information & communications Technology Planning & Evalua-
tion (IITP) grant funded by the Korea government(MSIT) (No.RS-2023-00230337,
Advanced and Proactive AI Platform Research and Development Against Mali-
cious Deepfakes)

PHI: Pseudo-HAL Identification for Scalable Firmware Fuzzing 21

References

1. State of IoT spring-2023: https://iot-analytics.com/product/

state-of-iot-spring-2023/

2. National vulnerability database. Accessed: Jun. 1, 2021. [Online]. Available: https:
//nvd.nist.gov/vuln/

3. HAL Fuzz. Accessed: Jun. 1, 2021. [Online]. Available: https://github.com/

ucsb-seclab/hal-fuzz

4. Libmatch. Accessed: Jun. 1, 2021. [Online]. Available: https://github.com/

subwire/libmatch

5. 2019 Embedded markets study.(2019) Accessed: Jun. 1, 2021. [Online].
Available: https://www.embedded.com/wp-content/uploads/2019/11/EETimes_

Embedded_2019_Embedded_Markets_Study.pdf

6. Description of STM32F4 HAL and low-layer
drivers: https://www.st.com/resource/en/user_manual/

dm00105879-description-of-stm32f4-hal-and-ll-drivers-stmicroelectronics.

pdf

7. P2IM real-world firmware samples. Accessed: Jun. 1, 2021. [Online]
Available: https://github.com/RiS3-Lab/p2im-real_firmware/tree/

d4c7456574ce2c2ed038e6f14fea8e3142b3c1f7

8. Angr : https://github.com/angr/angr

9. Bellard, F.: QEMU, a fast and portable dynamic translator. In: Proc. USENIX
annu. technical conf., FREENIX Track. Berkeley, CA, USA (Apr 2005)

10. Cao, C., Guan, L., Ming, J., Liu, P.: Device-agnostic firmware execution is possible:
A concolic execution approach for peripheral emulation. In: Annual Computer
Security Applications Conference. pp. 746–759 (2020)

11. Clements, A.A., Gustafson, E., Scharnowski, T., Grosen, P., Fritz, D., Kruegel,
C., Vigna, G., Bagchi, S., Payer, M.: Halucinator: Firmware re-hosting through
abstraction layer emulation. In: Proc. USENIX Secur. Symp. pp. 1201–1218 (2020)

12. Feng, B., Mera, A., Lu, L.: P2im: Scalable and hardware-independent firmware test-
ing via automatic peripheral interface modeling. In: Proc. USENIX Secur. Symp.
pp. 1237–1254 (2020)

13. Gustafson, E., Muench, M., Spensky, C., Redini, N., Machiry, A., Fratantonio, Y.,
Balzarotti, D., Francillon, A., Choe, Y.R., Kruegel, C., et al.: Toward the analysis of
embedded firmware through automated re-hosting. In: Proc. Int. Symp. Research
in Attacks, Intrusions and Defenses (RAID). pp. 135–150. Beijing, China (Sep
2019)

14. He, Y., Zou, Z., Sun, K., Liu, Z., Xu, K., Wang, Q., Shen, C., Wang, Z., Li,
Q.: Rapidpatch: Firmware hotpatching for real-time embedded devices. In: 31th
USENIX Security Symposium (USENIX Security 22) (2022)

15. Hwang, E., Lee, H., Jeong, S., Cho, M., Kwon, T.: Toward fast and scalable
firmware fuzzing with dual-level peripheral modeling. IEEE Access 9, 141790–
141799 (2021)

16. Klees, G., Ruef, A., Cooper, B., Wei, S., Hicks, M.: Evaluating fuzz testing.
In: Proc. ACM Conf. Comput. Commun. Secur. (CCS). pp. 2123–2138. Toronto,
Canada (Oct 2018)

17. Koscher, K., Kohno, T., Molnar, D.: SURROGATES: Enabling near-real-time dy-
namic analyses of embedded systems. In: Proc. USENIX Workshop Offensive Tech-
nol. Washington, DC, USA (Aug 2015)

22 S. Jeong et al.

18. Mera, A., Feng, B., Lu, L., Kirda, E., Robertson, W.: DICE: Automatic Emulation
of DMA Input Channels for Dynamic Firmware Analysis. In: Proc. IEEE Symp.
Secur. and Privacy (SP). pp. 302–318. Los Alamitos, CA, USA (may 2021)

19. Muench, M., Stijohann, J., Kargl, F., Francillon, A., Balzarotti, D.: What You
Corrupt Is Not What You Crash: Challenges in fuzzing embedded devices. In:
Proc. Netw. Distrib. Syst. Secur. Symp. (NDSS). San Diego, CA, USA (January
2018)

20. Scharnowski, T., Bars, N., Schloegel, M., Gustafson, E., Muench, M., Vigna, G.,
Kruegel, C., Holz, T., Abbasi, A.: Fuzzware: Using precise mmio modeling for ef-
fective firmware fuzzing. In: 31st USENIX Security Symposium (USENIX Security
22). pp. 1239–1256 (2022)

21. Spensky, C., Machiry, A., Redini, N., Unger, C., Foster, G., Blasband, E., Okhravi,
H., Kruegel, C., Vigna, G.: Conware: Automated modeling of hardware peripherals.
In: Proc. ACM Asia Conf. on Comput. Commun. Secur. (Asia CCS). pp. 95–109
(2021)

22. Wright, C., Moeglein, W.A., Bagchi, S., Kulkarni, M., Clements, A.A.: Chal-
lenges in firmware re-hosting, emulation, and analysis. J. ACM Computing Surveys
(CSUR) 54(1), 1–36 (2021)

23. Zaddach, J., Bruno, L., Francillon, A., Balzarotti, D., et al.: AVATAR: A framework
to support dynamic security analysis of embedded systems’ firmwares. In: Proc.
Netw. Distrib. Syst. Secur. Symp. (NDSS). vol. 23, pp. 1–16. San Diego, CA, USA
(February 2014)

24. Zalewski, M.: American funzz lop. Accessed: Jun. 1, 2021. [Online].Available:
https://lcamtuf.coredump.cx/afl/

25. Zheng, Y., Davanian, A., Yin, H., Song, C., Zhu, H., Sun, L.: FIRM-AFL: high-
throughput greybox fuzzing of IoT firmware via augmented process emulation. In:
Proc. USENIX Secur. Symp. pp. 1099–1114. Santa Clara, CA, USA (August 2019)

26. Zhou, W., Guan, L., Liu, P., Zhang, Y.: Automatic firmware emulation through
invalidity-guided knowledge inference. In: Proc. USENIX Secur. Symp. (2021)

