
mdTLS: How to make middlebox-aware TLS
more efficient?

Taehyun Ahn[0009−0007−2339−286X], Jiwon Kwak[0009−0008−1560−7442], and
Seungjoo Kim⋆[0000−0002−2157−0403]

School of Cybersecurity, Korea University, Seoul 02841, South Korea
{thyun_ahn,jwkwak4031,skim71}@korea.ac.kr

Abstract. Recently, many organizations have been installing middle-
boxes in their networks in large numbers to provide various services to
their customers. Although middleboxes have the advantage of not be-
ing dependent on specific hardware and being able to provide a variety
of services, they can become a new attack target for hackers. There-
fore, many researchers have proposed security-enchanced TLS protocols,
but their results have some limitations. In this paper, we proposed a
middlebox-delegated TLS (mdTLS) protocol that not only achieves the
same security level but also requires relatively less computation compared
to recent research results. mdTLS is a TLS protocol designed based on
the proxy signature scheme, which requires about 39% less computation
than middlebox-aware TLS (maTLS), which is the best in security and
performance among existing research results. In order to substantiate the
enhanced security of mdTLS, we conducted a formal verification using
the Tamarin. Our verification demonstrates that mdTLS not only satis-
fies the security properties set forth by maTLS but also complies with
the essential security properties required for proxy signature scheme.1

Keywords: maTLS · Middlebox · Proxy signature · Formal verification

1 Introduction

The advent of the COVID-19 pandemic has instigated substantial transforma-
tions in the business landscape. Notably, a significant proportion of enterprises
have transitioned from conventional in-office working arrangements to facilitat-
ing remote work options for their workforce. Concurrently, the pandemic has
spurred innovative shifts in operational methodologies, exemplified by the sub-
stitution of face-to-face business procedures, historically reliant on in-person
meetings, with video conferencing solutions. As a result of these shifts, there has
been a discernible escalation in network traffic, with notable statistics from the
Telegraph indicating a remarkable 47% surge in internet traffic between 2019
and 2020 [28].

⋆ Corresponding Author
1 All of the formal models and lemmas are open to the public through the following

url https://github.com/HackProof/mdTLS

2 Ahn et al.

Especially during the COVID-19 pandemic, the security of confidential infor-
mation of various companies and individuals has been emphasized as most social
activities, including business, are conducted remotely over the network. Among
the most prominent and widely adopted technologies addressing network secu-
rity concerns during this period is HTTPS (HyperText Transfer Protocol Secure)
[36].

HTTPS represents a communication protocol that integrates the HTTP (Hy-
perText Transfer Protocol) [13] to the TLS (Transport Layer Security) protocol
[10], with the overarching objective of ensuring the confidentiality and integrity
of data transmitted over networks. This protocol finds utility not only in desk-
tops but extends its application domain to encompass a diverse array of embed-
ded devices, including IoT (Internet of Things) devices. HTTPS offers several
fundamental security attributes, including the following:

– Encryption: It serves as a pivotal mechanism within HTTPS, facilitating
the obfuscation of sensitive information by encoding the data exchanged
between communicating entities. Commonly employed encryption algorithms
encompass symmetric key algorithms like Advanced Encryption Standard
(AES) [19].

– Authentication: It constitutes an integral component of HTTPS, operating
to ascertain the identity of entities by utilizing digital certificates.

– Integrity: It is another crucial facet of HTTPS, operating as a mechanism
to detect unauthorized tampering or forgery of messages. Conventional al-
gorithms used to maintain message integrity involve the implementation of
Message Authentication Codes (MACs), such as the Secure Hash Algorithm
(SHA) [9], to uphold the veracity and unaltered state of a network connec-
tion.

According to the Google transparency report, there has been a consistent
increase in the loading speed of HTTPS pages in the chrome browser since 2014
[17]. Moreover, among the top 100 non-Google websites on the internet, which
collectively constitute approximately 25% of global website traffic, 96 websites
have embraced HTTPS, with 90 of them making HTTPS their default protocol.
Additionally, according to Gartner’s article [34], edge computing technology is
anticipated to evolve into a core IT technology. This technology facilitates the
secure communications of data collected through embedded systems deployed
across various domains, relying on TLS protocols. Consequently, TLS commu-
nication is expected to assume an increasingly pivotal role. However, the robust
encryption mechanisms employed by TLS to protect data can also be exploited
by attackers to hide malware within network traffic, thereby evading detection
by conventional security measures. In fact, according to research by Cisco and
Sophos, TLS is vulnerable to detecting malicious traffic, and the number of such
cases continues to increase [5, 14]. As a result, TLS cannot be considered a com-
plete solution against cybersecurity threats.

mdTLS: How to make middlebox-aware TLS more efficient? 3

For this reason, numerous organizations have deployed specialized middle-
boxes with distinct functionalities designed to enhance security for their clients,
such as firewall and intrusion detection [39]. For instance, some companies have
integrated Transport Layer Security Inspection (TLSI) [30] capabilities into mid-
dleboxes to identify and intercept malicious traffic attempting to infiltrate their
internal networks. TLSI represents a technology devised to thwart unauthorized
actions perpetrated by hackers on encrypted network traffic, and numerous en-
tities, including industry giants such as Microsoft, are actively leveraging this
technology [27].

However, according to a survey conducted in the United States, more than
70% of employees still believe that hackers can exploit middleboxes. Also, 50%
of the respondents answered that their personal information could be infringed
by exploiting vulnerabilities in the middleboxes [33]. Ironically, middleboxes, ini-
tially installed to fortify data security within TLS communications, have emerged
as potential targets for cyberattacks. Consequently, safeguarding data trans-
mitted over TLS communications necessitates a holistic approach considering
network components, such as middleboxes, from the inception of communica-
tion channel construction. This approach goes beyond simply installing security-
hardened components into an existing network.

As a consequence, numerous researchers have proposed a range of TLS exten-
sion protocols to enhance security during communication via the TLS protocol.
However, prior research endeavors, driven primarily by a pursuit of security,
have inadvertently encountered performance-related challenges. In this study,
we will introduce the mdTLS protocol, which is meticulously designed based on
the proxy signature scheme. The mdTLS is subject to comparative evaluation
against maTLS [24], widely recognized as the most exemplary among prior re-
searches in terms of both security and performance. First, we investigated the
amount of arithmetic operations that must be performed for each designed pro-
tocol to compare the performance of the mdTLS and maTLS protocols. We then
formally verified that the mdTLS satisfies not only the security properties veri-
fied in maTLS, but also three other security properties related to the proxy sig-
nature scheme. To ensure methodological consistency in our experimental setup,
we employed the Tamarin [26, 37, 40], utilized in prior maTLS research, during
the security analysis.

The remainder of the paper is organized as follows. First, we analyzed the
strengths and weaknesses of related works (Section 2). Next, we introduced our
mdTLS protocol (Section 3). After that, we compare the performance between
maTLS and mdTLS (Section 4). In Section 5, we verified our protocol using
Tamarin (Section 5). We showed that the performance can be further improved
when the Schnorr digital signature is used in the protocol (Section 6). Finally,
we present our concluding remarks (Section 7).

4 Ahn et al.

2 Related works

Many researches have been conducted to improve TLS protocol. They are catego-
rized into two types. One is the TLS-encryption extension-based approach. Their
research is to improve the mechanism itself inside the protocol. The other one
is the Trusted Execution Environment (TEE) based approach. Their research is
to improve the protocol by using specific hardware.

2.1 TEE based approaches

A typical example of the Trusted Execution Environment (TEE) based approach
is SGX-Box [18]. It utilized the remote attestation of Intel SGX. The server
performs remote attestation to verify the integrity of the SGX-Box module in
middleboxes. If remote attestation succeeds, they create a secure channel to
prevent sensitive information from leaking between them. However, it is limited
in that it is too dependent on its specific hardware (Intel SGX). Besides SGX-
Box, there are many researches such as STYX [42], EndBox [16], and ShieldBox
[41]. However, they also had the same limitations mentioned above.

2.2 TLS-extension based approaches

A typical example of the TLS-extension approach is SplitTLS [20]. In SplitTLS,
middleboxes act as servers and clients at the same time. This feature gives them
too many privileges. It can cause some security incidents. For example, middle-
boxes such as CDN service providers could receive the private key to act as a
server. It accidentally exposes the private key during the key-exchange phase.
The worst thing is that when the middleboxes become compromised, malicious
users (attackers) could abuse their privileges. Unlike SplitTLS, mcTLS [32] pro-
vides the least privilege to middleboxes. Middleboxes can read or write the TLS
payload by obtaining MAC key pair from each endpoint. For example, they can
only read the TLS packets when they get a unique key for reading. The advan-
tage of mcTLS is that it does not force middleboxes to create or install further
objects. Since the mcTLS uses only one key when creating a session, it is con-
sidered insecure. In the performance view, it has a limitation in that additional
latency occurs when establishing the first connection. Furthermore, it does not
follow TLS standards. David Naylor, who had proposed mcTLS, proposed an
extended version of mcTLS called mbTLS [31]. mbTLS was created to improve
compatibility with TLS standards. mbTLS establishes two types of sessions.
One is the mbTLS session, and the other is the standard TLS session. If one
of the endpoints does not use mbTLS, then traditional TLS sessions are acti-
vated. Overall, mbTLS offers improvements over mcTLS, which causes latency
when adding a secondary session. maTLS [24] is another extended protocol to
address security issues in SplitTLS. It treats middleboxes as equivalent entities
to the server and includes them in the TLS session. As the server’s certificate,
middleboxes’ certificates are issued by the Certificate Authority (CA), and by

mdTLS: How to make middlebox-aware TLS more efficient? 5

introducing the Middlebox Transparency (MT) log server, the middleboxes cer-
tificate contains a Signed Certificate Timestamp (SCT) [2, 23]. This guarantees
middleboxes’ audition and improves the reliability of the middleboxes’ certifi-
cates. Also, unlike SplitTLS, this procedure shows middleboxes can create their
own official certificates without using custom root certificates or server certifi-
cates. However, these security elements entail performance issues. To make every
session in each section, maTLS handshakes are essential between every entity.
This is why maTLS’s initial handshake takes more time than the original version
of TLS.

3 mdTLS: middlebox-delegated TLS protocol with proxy
signature scheme

In this section, we described the mdTLS protocol. At first, we defined the adver-
sary model and security goals related to the mdTLS. After that, we described
each phase in the protocol in detail.

3.1 Adversary model

We considered the attacker’s capability under the Dolev-Yao model [11]. Attack-
ers can obtain and analyze messages in the network. Furthermore, they can get
public keys. They aim to obtain certificates, perform an impersonation attack
via forged certificates, and reveal private keys.

3.2 Security goal

TLS currently provides the following properties in multi-party cases. Among
them, we define "secure" for mdTLS by extending three security properties to
cover the "delegation" concept.

Authentication: The notion of authentication was defined as that every entity
must be able to verify whether they are talking to the "right person". This goal
was divided into two sub-goals. First, each entity(client or server) can verify
whether the other endpoint is operated by the expected middleboxes. It is called
entity authentication. Second, If a session between two endpoints consists of an
ordered set of middleboxes MB1 ... MBn−1, then any data received by MBj

must be a prefix of the data sent by MBj−1 or MBj+1, where 1 < j < n− 1. It
is called data authentication. We refined entity authentication into two security
goals. First, the client ensures the delegated middleboxes by verifying the warrant
in signature. It is called verifiability. Second, each middlebox can be identified as
an appropriately delegated middlebox by checking its public key from the proxy
signature. It is called strong-identifiability.

6 Ahn et al.

Secrecy: The notion of secrecy can be defined as that adversaries should learn
nothing more from observing ciphertext in network connections. This goal is
divided into two sub-goals. First, each mdTLS segment sent from entities should
be encrypted with a strong ciphersuite. It is called segment secrecy. Second, each
segment should have its own security parameters, such as a unique session key,
to prevent the data from being reused. It is called individual secrecy.

Integrity: The notion of integrity means that only authorized or delegated en-
tities can make or modify messages under their permissions. This goal is divided
into two sub-goals. First, the entity can confirm which middleboxes have made
each modification to the message. It is called modification accountability. Sec-
ond, endpoints can determine the list and order of middleboxes that messages
pass through. It is called path integrity. In mdTLS, we defined one security goal
additionally. Delegated middleboxes can generate valid signatures. It means, in
converse, undelegated entities cannot modify messages because they cannot gen-
erate and verify the signatures. Hence, it is called strong-unforgeability.

3.3 Overview of mdTLS protocol

The mdTLS applies a proxy signature scheme based on the partial delegation
with warrant [6, 22, 25] to improve performance while having the same security
level as maTLS.

Proxy signature scheme [25] is a technique in which a proxy signer electroni-
cally signs on behalf of the original signer. When the original signer is temporarily
absent, a proxy signer receives signature authority from the original signer and
performs the proxy signing. This signing authority delegation technique can be
used in various distributed systems, such as edge computing. There are four types
of delegation in the proxy signature scheme: full delegation, partial delegation,
delegation by warrant, and partial delegation with warrant [22, 25].

– Full delegation: The proxy signer uses the original signer’s private key to
generate the proxy signature.

– Partial delegation: This method generates a proxy signing key using the
private keys of both the original and the proxy signers. The advantage is
that it can prevent the original signer from arbitrarily proxy signing, but
there is no way to revoke or limit proxy signing authority.

– Delegation by warrant: This method uses a warrant that specifies the proxy
delegation period and message space to limit proxy signing authority. It
can compensate for the shortcomings of partial delegation, but performance
in verification deteriorates because the verifier must additionally verify the
warrant when verifying the proxy signature.

– Partial delegation with warrant: Kim et al. [22] first introduced this type of
delegation. This method utilizes the advantages of both partial delegation
and delegation by warrant. Proxy signing authority can be restricted or re-
voked through a warrant. Additionally, since this method only verifies the
proxy signature, the verification efficiency can be improved.

mdTLS: How to make middlebox-aware TLS more efficient? 7

The details of the mdTLS are shown in Figure 1, 2. For reader’s convenience,
notation definitions are listed in Table 1. mdTLS is divided into 3 phases.

– Generating certificates phase: Before negotiation, server certificates are gen-
erated.

– Handshake phase: Negotiation between two endpoints on a network – such
as a client and a server – to establish the details of their connection. During
handshake, ECDH and ECDSA [21, 29] are used in key exchange and digital
signature, respectively.

– Record phase: Data communications are encrypted between the two entities.

The following statements below Table 1 are detailed sequences in which each
entity establishes a secure communication channel based on the mdTLS.

Table 1: Notations in mdTLS
Notation Meaning

Entities

C Client
S Server

MBi i-th middlebox (0 < i < n)
ei i-th entity (e0: client, en: server)

ECDH (dexei , Q
ex
ei) ei’s ECDH key pairs

ECDSA

p A prime number
E An elliptic curve on Fp

q A field size (prime number)
G A base point on E having prime order q
dei A private key with 0 < dei < q
Qei A public key with dei ·G on E
H Cryptographic hash function ({0, 1}∗ → Fq)

SH(dei ,m) Sign message m with private key dei using H

V H(Qei ,m, σ) Verify signature σ generated by SH(dei ,m)

Proxy-
signature

PS(skp,m)
Proxy signing the message m with proxy signing key
skp

PV (Qei ,m, σp) Proxy verification for proxy signature σp, with Qei

Phase 0. Generating certificates

1. Server sends Certificate Signing Request (CSR) to Certificate Authority
(CA).

2. CA verifies CSR, creates pre-certificates, and submits to the Certificate
Transparency (CT) log server to get SCTs [2].

3. After the CT log server adds pre-certificates to the logs, it returns SCTs to
CA. Due to the Certificate Transparency policy [2, 23], at least 2 SCTs from
different CT log servers are required for certificates.

4. Using the X.509 v3 [7] extension, CA attaches SCTs to the certificate and
issues the certificate to the server.

8 Ahn et al.

Fig. 1: Handshake phase of mdTLS

Phase 1. Handshake

1. Client generates ECDH key pair, and the public key Qex
C will be sent by

ClientHello message.
2. Middleboxes attach their two types of keys to the ClientHello message. One is

ECDH public key, Qex
MBi

, and the other is ECDSA public key, QMBi
, which

will be used in the proxy signature scheme.
3. Server, the original signer, also creates its ECDH and ECDSA key pairs

as middleboxes. When the server receives a ClientHello message, it operates
the designation process to delegate middleboxes as proxy signers. Outputs
of this process are called signed delegations σd_MBi

. For delegation, the
server has to sign the hash value of the delegation message. This message
consists of QS , the identity of proxy signer IDMBi

, QMBi
, and a warrant

ω containing the message space and delegation period. In addition, 0 is
prepended to represent that it is for the proxy signature scheme. σd_MBi

can be represented as (xYd
, sd) according to ECDSA form. Signed delegations

will be sent by ServerHello message with Qex
S .

– σd_MBi
← SH(dS , 0||QS ||IDMBi ||QMBi ||ω)

• random value yd (0 < yd < q)
• Yd ← yd ·G
• xYd

← x-coordinate of Yd

• c← H(md) (md = 0||QS ||IDMBi ||QMBi ||ω)
• sd ← (c+ dS · xYd

) · y−1
d mod q

• ∴ σd_MBi
= (xYd

, sd) = signed delegation
4. Middleboxes attach their own ECDH public key Qex

MBi
to the ServerHello

message. Then, middleboxes check whether signed delegations from the server
are valid. If validation succeeds, middleboxes generate their proxy signing key
skpMBi

.

mdTLS: How to make middlebox-aware TLS more efficient? 9

– skpMBi
← (QS ||IDMBi

||QMBi
||ω, xYd

, t)

• c← H(md) (md = 0||QS ||IDMBi
||QMBi

||ω)
• r ← H(QS ||IDMBi ||QMBi ||ω||c)
• t← r + dMBi ·H(Yd||ω) mod q

∗ Yd ← yd ·G = s−1
d · (c+ dS · xYd

) ·G
5. Due to the ServerCertificate message, the server sends its certificate CertS

to the client and middleboxes. Middleboxes generate their own certificates
CertMBi

by proxy signing the received server’s certificate. Then, their cer-
tificates are sent to the client by appending to the ServerCertificate message.
– PS(skpMBi

, CertS) returns CertMBi
, which can be shown as below:

• (IDMBi , QMBi , ω, (xYd
, sd), S

H(t, 0||CertS ||QS ||IDMBi ||QMBi ||ω||xYd
||sd||r))

∗ (xYp , sp)← SH(t, 0||CertS ||QS ||IDMBi ||QMBi ||ω||xYd
||sd||r)

6. The client, a verifier, verifies certificates to authenticate entities in TLS ses-
sion. Unlike CertS , the client has to use proxy verification, PV , to verify
CertMBi

, which requires the client to generate proxy public keys PKPMBi

corresponding to each middleboxes. With PKPMBi
, the client verifies CertMBi

.
– PV (QS , CertS , CertMBi)

• CertMBi
← (IDMBi

, QMBi
, ω, (xYd

, sd), (xYp
, sp))

• If CertS /∈ ω then return false;
• Else PKPMBi

← r ·G+H(s−1
d · (c ·G+ xYd

·QS)||ω) ·QMBi
;

∗ c← H(0||QS ||IDMBi ||QMBi ||ω), r ← H(QS ||IDMBi ||QMBi ||ω||c)
• V H(PKPMBi , 0||CertS ||QS ||IDMBi ||QMBi ||ω||xYd

||sd||r, (xYp , sp))

7. Server sends ServerFinished message with security parameter block (SPB).
These blocks consist of signatures of HMAC. This HMAC generates au-
thentication code from security parameters such as ciphersuite and hand-
shake messages. For middleboxes, they have to proxy sign their blocks with
their generated skpMBi

. For a client, it must verify middleboxes’ signed
blocks with its generated proxy public keys PKPMBi

.

Phase 2. Record

– Modification log is attached to the message and helps to check whether a
message is modified. Besides, endpoints can also check whether unauthorized
entities modify messages without permission.

Fig. 2: Record phase of mdTLS

10 Ahn et al.

4 Performance analysis for mdTLS

In this section, we analyzed the performance of the mdTLS by conducting a
comparative analysis with maTLS, which we consider to be among the best of
the existing TLS-extension protocols. Our performance analysis is focused on the
number of computations in protocols. Both mdTLS and maTLS rely on ECDSA
for the generation of security parameters. ECDSA, being based on the Elliptic
Curve Discrete Logarithm Problem (ECDLP), involves a substantial number of
point multiplication operations. These operations can significantly influence the
performance of both protocols. Therefore, we conducted a performance analysis
employing algorithms capable of measuring the number of point multiplication
operations. It is important to note that this analysis is based on server-only
authenticated TLS version 1.2 and assumes that 3 SCTs are created for each
certificate through the Certificate Transparency policy [1–3, 23].

4.1 Preliminaries for performance analysis

To facilitate performance comparisons between two protocols that offer the same
128-bit security strength, we have set the elements within the protocols, as shown
below [12].

– Types of elliptic curve: Secp256r1
– Private key size: 256 bits
– Hash size: 256 bits

4.2 Analyzing the performance between maTLS and mdTLS

To measure the number of point multiplication operations, we employed the
double-and-add algorithm, which averages 1 point doubling and 0.5 point ad-
ditions per bit. Therefore, we considered an average of 1.5 point multiplication
operations per bit. Following this, we divided the protocol into two segments
and measured the number of point multiplication operations. The first segment
corresponds to the generation and verification of certificates for utilization in the
handshake phase. The number of computations for each protocol in this segment
is detailed in Table 3 and 4 below. The second segment is where entities (server,
client, middlebox) create and verify security parameters to be exchanged at the
handshake phase. The number of computations for each protocol in this segment
is detailed in Table 2 below.

Table 2: Computational analysis for security parameter blocks
Descriptions maTLS mdTLS

Server generates security parameter blocks. 384 384
Middlebox generates security parameter blocks. 384N 384N
Client verifies blocks from the server. 768 768
Client verifies blocks from the middleboxes. 768N 768N

mdTLS: How to make middlebox-aware TLS more efficient? 11

Table 3: Computational analysis for generating certificates
Descriptions maTLS mdTLS

- Server side
Server generates keys and signature for CSR to CA. 768 768
CA verifies CSR signature. 768 768
CT log servers generate keys and signatures for 3 SCTs. 2,304 2,304
CA generates keys and signs for server’s certificate. 768 768
- Middlebox side for maTLS
Middleboxes generate keys and signature for CSR to CA. 768N -
CA verifies CSR signature. 768N -
MT log servers generate keys and signatures for 3 SCTs. 2,304N -
CA generates keys and signs for middleboxes’ certificate. 768N -
- Middlebox side for mdTLS
Each middlebox generates its keys. - 384N
Server generates signed delegations to assign proxy signers. - 384N
Middlebox verifies signed delegation and generate proxy signing key. - 768N
Middleboxes generate certificates with proxy signing key. - 384N

Table 4: Computational analysis for certificates verification
Descriptions maTLS mdTLS

Client verifies the signature and 3 SCTs in the server’s certificate. 3,072 3,072
Client verifies the middleboxes’ certificates. 3,072N 2,304N

(a) Certificate generation (b) Certificate verification

(c) Security parameter blocks (d) Overall performances

Fig. 3: Performance of protocols when using ECDSA

12 Ahn et al.

We have implemented certain components essential for the functionality of
mdTLS. We mainly implemented internal functions for computing data required
during the handshake phase, such as key or signature generation and verification.
We implemented and analyzed its performance within a virtual environment,
specifically using docker container. The rest of our testbed in docker image is as
follows:

– Ubuntu 22.04.3 LTS
– Intel(R) Core(TM) i5-10400 CPU @ 2.90GHz
– 2GiB RAM

Table 5: Average execution time in implementation
Features maTLS mdTLS

ECDSA signing 1.4ms 1.4ms
ECDSA verification 2.5ms 2.5ms

Proxy signing - 1.6ms
Proxy verification - 8.9ms

Table 5 shows the time spent when signing and verifying the CSR files.
Since the proxy signature scheme requires additional keys, the execution time of
mdTLS is longer than maTLS. However, by reusing these keys when processing
the security parameter block, the execution time of mdTLS can become similar
to maTLS.

5 Security analysis for mdTLS

In this section, we conducted a security analysis of mdTLS using an approach
similar to the one employed for maTLS [24], involving formal specification and
verification through the Tamarin [40]. Tamarin is an automated formal veri-
fication tool based on multiset rewriting rules in the theory of equations. It
has been continuously updated to maintain its effectiveness. Using this tool,
maTLS formally verified six security lemmas: server authentication, middlebox
authentication, data authentication, path integrity, path secrecy, and modification
accountability. In the case of mdTLS, we successfully verified not only the same
lemmas as previously done in maTLS but also three novel lemmas related to
the proxy signature scheme following the same approach and tools: verifiability,
strong-unforgeability, and strong-identifiability. However, in this paper, we only
described three novel lemmas related to the proxy signature scheme, taking into
consideration the maximum page limit imposed by the conference guidelines.
The rest can be found on our GitHub [4].

mdTLS: How to make middlebox-aware TLS more efficient? 13

5.1 Experimental setup

To analyze the security of the mdTLS, we established an experimental environ-
ment, as illustrated below. Our goal was to confirm that the formal model of
mdTLS aligns with the security lemmas within our testing environment.

– Amazon Elastic Compute Cloud (Amazon EC2) c5a.24xlarge instance
– 96 vCPUs, 192 GiB RAM
– Ubuntu 22.04.2 LTS

5.2 Formal specification

We have formalized the mdTLS, specifying the detailed operations conducted
by each entity during the handshake and record phases in the form of rules.
For cryptographic primitives like hash, signature, and PRF (Pseudo-Random
Function) [15], we used the built-in functions provided by Tamarin. Details of
all rules can be found in the spthy file uploaded to our github [4]. The script
below illustrates an example of the detailed operations concerning ServerHello
messages. In the handshake phase, when the server receives a ClientHello mes-
sage from the client, it responds by sending a ServerHello message to initiate
mutual authentication. In this process, mdTLS sends a ServerKeyExchange mes-
sage, a signed delegation, a Diffie-Hellman public key, and a ServerCertificate
message. The delegation in this context consists of the server’s public key, the
middlebox’s public key and identification information, and a warrant providing
an explanation of the delegation.

rule Server_Hello:
let

server_hello_msg
= < ’server_hello’, ~ns, server_chosen_details >

...
server_key_exchange = s_dhe_pub
server_key_exchange_signed

= < server_key_exchange, sign(h(server_key_exchange)
, ltk) >

server_cert = < $S, pk(ltk) >
warrant = ~warrant_fresh
proxy_delegation = < pk(ltk), $M, mb_pubkey, warrant >
proxy_delegation_signed = sign(h(proxy_delegation), ltk)

Y_d = calcY_d(~y, ’G_skp’)
y_d_x = pointx(Y_d)
c = h(proxy_delegation)
s_d = multp(plus(multp(ltk, y_d_x), c), inv(~y))
proxy_delegation_signed_pair
= < proxy_delegation, proxy_delegation_signed, <y_d_x, s_d> >

in
[In(<mb_client_hello_msg, c_mb_extension>)

, !PrivateKey(’server’, $S, ltk)]
--[

ServerSendDelegation(ltk_pub, mb_pubkey, warrant, proxy_delegation)
]->
[Out(<server_hello_msg, server_key_exchange_signed

, proxy_delegation_signed_pair, s_extension
, server_cert>) ...]

14 Ahn et al.

5.3 Formal verification

A Tamarin-based formal model is a set of multiple rules, and these single rules are
made up of three basic components. Facts represent detailed information about
the current execution in the model. States are multisets of facts. During formal
verification, user-defined functions called rules can add or remove facts from the
state. This is often denoted as l →[a] →r, indicating that fact "l" is removed
from the state and replaced by fact "r," with this process traced through the
action denoted as "a." Tamarin, following these principles, can verify whether a
lemma, which is desired to be satisfied throughout the protocol, holds even as the
state changes in the operation. Tamarin’s verification process is based on tracing
the protocol’s state through actions. To evaluate the security of our protocol,
we defined nine security lemmas and one source lemma. Among them, security
lemmas consist of six security lemmas of maTLS and three security lemmas
related to the proxy signature scheme. As previously noted, we described three
security lemmas associated with proxy signatures. Prior to describing them, we
described an additional description of a source lemma designed to assist Tamarin
in accurately verifying the formal specifications.

Source lemma. A source lemma is a concept used for formally verifying the secu-
rity lemmas that a security protocol must adhere to during its execution. When
conducting formal verification of an overall protocol, Tamarin adopts a strategy
of deconstructing the protocol into smaller, more manageable components for
analysis. The verification outcomes for these individual subsets are then used
as supporting evidence to confirm that the entire protocol operates correctly
and meets its prescribed security lemmas. However, during the verification pro-
cess of these subsets, if Tamarin encounters difficulties in distinguishing between
variables as nonce values or ciphertexts, it may face challenges in completing
the verification. This is commonly referred to as a "partial deconstruction". To
address such issues, it becomes necessary to establish a source lemma that pre-
cisely specifies the origin of these variables. From this source lemma, a refined
source is generated, comprising a new set of sources. All security lemmas are
subsequently verified using these refined sources, underscoring the importance
of validating the source lemma to ensure the accurate computation of these re-
fined sources [8, 40]. When we initially omitted the definition of source lemmas,
the formally specified mdTLS model yielded 120 partial deconstructions. Con-
sequently, we defined source lemmas to enable Tamarin to discern the origins
of these problematic variables. Upon closer analysis, it was determined that the
issue of partial deconstruction occurred in 4 distinct segments, one of which per-
tained to the scenario where a middlebox received an encrypted request message
sent by the client. To resolve this particular issue, we formulated a source lemma
indicating that the encrypted message enc received by the middlebox had been
transmitted from the client through the OutClientRequest() action, as shown
below. By employing this approach, we could generate refined sources in a state
of "deconstructions completed". This strategic use of source lemmas proved in-

mdTLS: How to make middlebox-aware TLS more efficient? 15

strumental in addressing the partial deconstruction challenge and facilitating the
successful verification process within the mdTLS model.

All enc msg #i.
InMbClientRequest(enc, msg) @ i
==> (Ex #j. KU(msg) @ j & j < i)

| (Ex #j. OutClientRequest(enc) @ j & j<i)

Security lemma. After resolving the partial deconstruction issue, we verified
that our protocol meets the nine security lemmas outlined in Section 3.2. In
this section, we define three of the nine security goals related to proxy signature
scheme. We also defined detailed information about the formulas that convert
informal definitions into mathematical formulas called lemmas.

- Verifiability: The client must verify whether the middlebox’s certificate, the
proxy signature, was created with the consent of the server. To verify this lemma,
we have to check whether the middlebox generated its certificate based on delega-
tion and warrant sent by the server through the ServerHello message, as specified
in rule Server_Hello.

All warrant mbLtk mbCert #tc.
ClientReceivedProxySign(warrant, pk(mbLtk), mbCert) @tc
==> Ex delegation gy #tmb.

MbGenerateProxySign(delegation, mbLtk, gy, warrant, mbCert)
@tmb & KU(gy) @tmb & not(Ex #tmb. KU(mbLtk) @tmb)
==> Ex sPub #ts.

ServerSendDelegation(sPub, pk(mbLtk), warrant, delegation)
@ts & (#ts < #tmb) & KU(sPub) @ts

- Strong-unforgeability: The proxy signer’s private key, which is used to generate
the proxy signature, must not be revealed. Otherwise, the proxy signature can
be forged by an adversary.

All warrant mbLtk mbCert #tc.
ClientReceivedProxySign(warrant, pk(mbLtk), mbCert) @tc
==> All delegation gy sPub #tmb.

(MbGenerateProxySign(delegation, mbLtk, gy, warrant, mbCert) @tmb
& KU(gy)@tmb & not(Ex #tmb.KU(mbLtk) @tmb))

& (MbReceiveProxyDelegation(sPub, pk(mbLtk), delegation) @tmb)
==> All #ts.

ServerSendDelegation(sPub, pk(mbLtk), warrant, delegation)@ts & KU(sPub)@ts
==> Ex #tmbclient. MbSendPublicKey(pk(mbLtk)) @tmbclient

& KU(pk(mbLtk)) @tmbclient

- Strong-identifiability: The identification of a proxy signer can be proved by its
public key. The public key of the middlebox included in the proxy signature sent
to the client must be the same as the public key of the middlebox sent to the
server for proxy delegation.

16 Ahn et al.

All warrant mbPub mbCert #tc.
ClientReceivedProxySign(warrant, mbPub, mbCert)@tc
==> All delegation mbLtk gy sPub #tmb.

(MbGenerateProxySign(delegation, mbLtk, gy, warrant, mbCert)
@tmb & KU(gy)@tmb & not(Ex #tmb. KU(mbLtk) @tmb))

& (MbReceiveProxyDelegation(sPub, pk(mbLtk), delegation) @tmb)
==> All #ts.

ServerSendDelegation(sPub, pk(mbLtk), warrant, delegation)
@ts & KU(sPub)@ts
==> Ex #tmbclient. MbSendPublicKey(pk(mbLtk)) @tmbclient

& KU(pk(mbLtk)) @tmbclient & (mbPub = pk(mbLtk))

Results of verification The overall result of formal verification is shown in Fig-
ure 4. Figure 4 illustrates that our mdTLS protocol not only satisfies the three
security lemmas introduced above but also aligns with the lemmas validated
for maTLS. Furthermore, Figure 5 shows mathematical proofs (verification pro-
cess) demonstrating the consistent validity of the verifiability lemma within our
mdTLS protocol among the security lemmas outlined in Figure 4.

Fig. 4: Overview of formal verification results

As mentioned earlier, Tamarin formally verifies whether the rules always sat-
isfy the lemma, called validity. A typical approach to verifying validity is negat-
ing the formulas and checking for inconsistencies. Figure 5 shows the negated
lemma for verifiability, followed by verifying whether this formulation leads to
contradictions. Following this process, we have validated all six security lemmas
mentioned earlier.

mdTLS: How to make middlebox-aware TLS more efficient? 17

Fig. 5: Proof of verifiability lemmas in Tamarin

6 Discussion

We proposed an ECDSA-based cryptographic protocol. However, during the re-
search, we found new insights for improvement. The insight is to use the Schnorr
algorithm instead of ECDSA for the algorithm that generates the digital signa-
ture. Boldyreva et al.’s research [6] used Schnorr signature, and they shows better
outcomes in terms of both performance and security than ECDSA.

– Performance: Schnorr does not have modular inverse calculations that sig-
nificantly affect performance.

– Security: Since Schnorr is strongly unforgeable under chosen message attack
(SUF-CMA), Schnorr is provably secure in the random oracle model [35].

So we compared the performance of the maTLS and mdTLS protocols as-
sumed that both protocols use the Schnorr signature. To measure the perfor-
mance of Schnorr, the number of modular multiplication operations was cal-
culated using the square-and-multiply algorithm. This algorithm requires 1.5
modular multiplications per bit on average. Besides, as mentioned in Schnorr’s
paper [38], we calculated the modular multiplications of the Schnorr verification
equation by multiplying by 1.75 per bit. When the security level is set to 128-bit,
the related parameters’ sizes can be shown below [12].

– Public key size: 3,072 bits
– Private key size: 256 bits
– Hash size: 256 bits

18 Ahn et al.

Table 6 shows the number of modular multiplications at each stage. Here, N
represents the number of middleboxes. The mdTLS reduces the number of mod-
ular multiplications by 51.8% compared to maTLS, demonstrating better per-
formance when using Schnorr than when using ECDSA. Nevertheless, the TLS
standard mandates the utilization of the ECDSA algorithm for digital signature
creation, rendering the adoption of the Schnorr signature algorithm impractical
now.

Table 6: Modular multiplications in maTLS and mdTLS
Stages maTLS mdTLS

Certificate generation 4,293N + 4,293 1,603N + 4,293
Certificate verification 1,792N + 1,792 897N + 1,792

Security parameter blocks 833N + 833 833N + 833
Overall 6,918N + 6,918 3,333N + 6,918

(a) Certificate generation (b) Certificate verification

(c) Security parameter blocks (d) Overall performances

Fig. 6: Performance of protocols when using Schnorr

mdTLS: How to make middlebox-aware TLS more efficient? 19

7 Conclusion

In this paper, we proposed a middlebox-delegated TLS protocol in which only
middleboxes that have been permitted can participate in the network. To demon-
strate the excellence of our proposed protocol, we verified our protocol from two
aspects of view: performance and security. In the performance view, we calcu-
lated the number of computations in the protocol. We found that the mdTLS
reduces about 39% of the computations compared to maTLS. Also, we formally
verified that our proposal achieved nine security lemmas: server/middlebox/data
authentication, path integrity, path secrecy, modification accountability, verifiabil-
ity, strong-unforgeability, and strong-identifiability. Especially among them, the
latter three security lemmas are newly defined for our protocol by extending
existing concepts. The primary contribution of this work is to show that using
the proxy signature scheme can enhance performance efficiency and maintain its
security level.

Acknowledgements This work was partly supported by Institute of Informa-
tion communications Technology Planning Evaluation (IITP) grant funded by
the Korea government (MSIT) (No.2018-0-00532, Development of High-Assurance
(EAL6) Secure Microkernel, 100) and supported by Korea University.

References

1. Apple’s Certificate Transparency policy Homepage, https://support.apple.com/en-
ng/HT205280, Last accessed 21 May 2023

2. Certificate Transparency Homepage, https://certificate.transparency.dev, Last ac-
cessed 21 May 2023

3. Chrome Certificate Transparency Policy Homepage,
https://googlechrome.github.io/CertificateTransparency/ct_policy.html, Last
accessed 21 May 2023

4. Hackproof github Homepage, https://github.com/HackProof/mdTLS, Last ac-
cessed 26 May 2023

5. Anderson, B.: Detecting Encrypted Malware Traffic (Without Decryption),
https://blogs.cisco.com/security/detecting-encrypted-malware-traffic-without-
decryption, Last accessed 26 September 2023

6. Boldyreva, A., Palacio, A., Warinschi, B.: Secure Proxy Signature Schemes for
Delegation of Signing Rights. Journal of Cryptology 25, 57–115 (2012)

7. Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., Polk, W.: Inter-
net X. 509 Public Key Infrastructure Certificate and Certificate Revocation List
(CRL) profile (2008), https://www.rfc-editor.org/rfc/rfc5280.txt, Last accessed 23
September 2023

8. Cortier, V., Delaune, S., Dreier, J.: Automatic generation of sources lemmas
in TAMARIN: towards automatic proofs of security protocols. In: Computer
Security–ESORICS 2020: 25th European Symposium on Research in Computer
Security, ESORICS 2020, Guildford, UK, September 14–18, 2020, Proceedings,
Part II. pp. 3–22. Springer (2020)

20 Ahn et al.

9. Dang, Q.H.: Secure Hash Standard (2015), https://nvlpubs.nist.gov/nistpubs/FIPS
/NIST.FIPS.180-4.pdf, Last accessed 23 September 2023

10. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol Version
1.2 (2008), https://www.rfc-editor.org/rfc/rfc5246.txt, Last accessed 23 September
2023

11. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Transactions on
information theory 29(2), 198–208 (1983)

12. Elaine, B.: Recommendation for Key Management: Part 1 – General (2020),
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r5.pdf,
Last accessed 23 September 2023

13. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P.,
Berners-Lee, T.: Hypertext Transfer Protocol–HTTP/1.1 (1999), https://www.rfc-
editor.org/rfc/rfc2616.txt, Last accessed 23 September 2023

14. Gallagher, S.: Nearly half of malware now use TLS to conceal communi-
cations, https://news.sophos.com/en-us/2021/04/21/nearly-half-of-malware-now-
use-tls-to-conceal-communications, Last accessed 26 September 2023

15. Goldreich, O., Goldwasser, S., Micali, S.: How to Construct Random Functions.
Journal of the ACM (JACM) 33(4), 792–807 (1986)

16. Goltzsche, D., Rüsch, S., Nieke, M., Vaucher, S., Weichbrodt, N., Schiavoni, V.,
Aublin, P.L., Cosa, P., Fetzer, C., Felber, P., et al.: EndBox: Scalable Middlebox
Functions Using Client-Side Trusted Execution. In: 2018 48th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN). pp. 386–
397. IEEE (2018)

17. Google: Google Transparency Homepage, https://transparencyreport.google.com/
https/overview?hl=en, Last accessed 9 May 2023

18. Han, J., Kim, S., Ha, J., Han, D.: Sgx-Box: Enabling Visibility on Encrypted
Traffic using a Secure Middlebox Module. In: Proceedings of the First Asia-Pacific
Workshop on Networking. pp. 99–105 (2017)

19. Heron, S.: Advanced Encryption Standard (AES). Network Security 2009(12), 8–
12 (2009)

20. Jarmoc, J., Unit, D.: SSL/TLS Interception Proxies and Transitive Trust. Black
Hat Europe (2012)

21. Johnson, D., Menezes, A., Vanstone, S.: The Elliptic Curve Digital Signature Al-
gorithm (ECDSA). International journal of information security 1, 36–63 (2001)

22. Kim, S., Park, S., Won, D.: Proxy Signatures, Revisited. In: Information and
Communications Security: First International Conference, ICIS’97 Beijing, China,
November 11–14, 1997 Proceedings 1. pp. 223–232. Springer (1997)

23. Laurie, B., Langley, A., Kasper, E.: RFC 6962: Certificate Transparency (2013),
https://www.rfc-editor.org/rfc/rfc6962.txt, Last accessed 23 September 2023

24. Lee, H., Smith, Z., Lim, J., Choi, G., Chun, S., Chung, T., Kwon, T.T.: maTLS:
How to Make TLS middlebox-aware? In: NDSS (2019)

25. Mambo, M., Usuda, K., Okamoto, E.: Proxy Signatures: Delegation of the Power to
Sign Messages. IEICE transactions on fundamentals of electronics, communications
and computer sciences 79(9), 1338–1354 (1996)

26. Meier, S., Schmidt, B., Cremers, C., Basin, D.: The TAMARIN Prover for the
Symbolic Analysis of Security Protocols. In: Computer Aided Verification: 25th
International Conference, CAV 2013, Saint Petersburg, Russia, July 13-19, 2013.
Proceedings 25. pp. 696–701. Springer (2013)

27. Microsoft: Microsoft Azure firewall Homepage, https://learn.microsoft.com/ko-
kr/azure/firewall/premium-features, Last accessed 9 May 2023

mdTLS: How to make middlebox-aware TLS more efficient? 21

28. Miller, J.: Telegeography Homepage, https://blog.telegeography.com/2021-global-
internet-map-tracks-global-capacity-traffic-and-cloud-infrastructure, Last accessed
9 May 2023

29. National Institute of Standards and Technology: Digital Signature Standard (DSS)
(2023), https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf, Last ac-
cessed 23 September 2023

30. National Security Agency: Cybersecurity and Infrastructure Security Agency
Homepage, https://www.us-cert.gov/ncas/current-activity/2019/11/19/nsa-
releases-cyber-advisory-managing-risk-transport-layer-security, Last accessed 9
May 2023

31. Naylor, D., Li, R., Gkantsidis, C., Karagiannis, T., Steenkiste, P.: And Then There
Were More: Secure Communication for More Than Two Parties. In: Proceedings
of the 13th International Conference on emerging Networking EXperiments and
Technologies. pp. 88–100 (2017)

32. Naylor, D., Schomp, K., Varvello, M., Leontiadis, I., Blackburn, J., López, D.R.,
Papagiannaki, K., Rodriguez Rodriguez, P., Steenkiste, P.: Multi-context TLS
(mcTLS): Enabling Secure In-Network Functionality in TLS. ACM SIGCOMM
Computer Communication Review 45(4), 199–212 (2015)

33. O’Neill, M., Ruoti, S., Seamons, K., Zappala, D.: TLS Inspection: How Often and
Who Cares? IEEE Internet Computing 21(3), 22–29 (2017)

34. Panetta, K.: Gartner Homepage, https://www.gartner.com/smarterwithgartner/
gartner-top-10-strategic-technology-trends-for-2019, Last accessed 9 May 2023

35. Pointcheval, D., Stern, J.: Security Arguments for Digital Signatures and Blind
Signatures. Journal of cryptology 13, 361–396 (2000)

36. Rescorla, E.: HTTP Over TLS (2000), https://www.rfc-editor.org/rfc/rfc2818.txt,
Last accessed 23 September 2023

37. Schmidt, B., Meier, S., Cremers, C., Basin, D.: Automated Analysis of Diffie-
Hellman Protocols and Advanced Security Properties. In: 2012 IEEE 25th Com-
puter Security Foundations Symposium. pp. 78–94. IEEE (2012)

38. Schnorr, C.P.: EFFICIENT IDENTIFICATION AND SIGANTRUES FOR
SMART CARDS. In: Advances in Cryptology—CRYPTO’89 Proceedings 9. pp.
239–252. Springer (1990)

39. Sherry, J., Hasan, S., Scott, C., Krishnamurthy, A., Ratnasamy, S., Sekar, V.:
Making Middleboxes Someone Else’s Problem: Network Processing as a Cloud
Service. ACM SIGCOMM Computer Communication Review 42(4), 13–24 (2012)

40. The-Tamarin-Team: Tamarin-Prover Manual, https://tamarin-
prover.github.io/manual/master/tex/tamarin-manual.pdf, Last accessed 17
May 2023

41. Trach, B., Krohmer, A., Gregor, F., Arnautov, S., Bhatotia, P., Fetzer, C.: Shield-
Box: Secure Middleboxes using Shielded Execution. In: Proceedings of the Sympo-
sium on SDN Research. pp. 1–14 (2018)

42. Wei, C., Li, J., Li, W., Yu, P., Guan, H.: STYX: A Trusted and Accelerated
Hierarchical SSL Key Management and Distribution System for Cloud Based CDN
Application. In: Proceedings of the 2017 Symposium on Cloud Computing. pp.
201–213 (2017)

