
BTFuzzer: a profile-based fuzzing framework for
Bluetooth protocols

Min Jang1,2, Yuna Hwang2, Yonghwi Kwon3, and Hyoungshick Kim1

1 Sungkyunkwan University, Suwon, South Korea
{min.jang, hyoung}@skku.edu

2 Samsung Electronics, Suwon, South Korea
{min.s.jang, yuna.hwang}@samsung.com

3 University of Maryland, College Park, Maryland, USA
yongkwon@umd.edu

Abstract. Bluetooth vulnerabilities have become increasingly popular
in recent years due to, in part, the remote exploitability of Bluetooth.
Unfortunately, in practice, security analysts often rely on manual anal-
ysis to identify these vulnerabilities, which is challenging. Specifically,
testing various workloads while maintaining reliable Bluetooth connec-
tions between devices requires complicated network configuration set-
tings. This paper introduces BTFuzzer, a profile-based fuzzing frame-
work for Bluetooth devices. BTFuzzer eliminates the need for complex
network configurations by feeding Bluetooth packets directly into the
target device’s Bluetooth library without going through the Over-The-
Air (OTA) transmissions. BTFuzzer carefully crafts test inputs based
on protocol profiles and specifications to maximize code coverage effi-
ciently. Our evaluation results show that BTFuzzer is highly effective. In
particular, the framework has identified two security bugs in the latest
Android versions (i.e., 10 and later): CVE-2020-27024 and a publicly un-
known information leak vulnerability. The first is an out-of-bounds read
vulnerability (CVE-2020-27024). The second vulnerability allows attack-
ers to connect to a victim’s device and leak sensitive data without the
user’s awareness, as the adversary is not shown in the list of connected
Bluetooth devices.

Keywords: Bluetooth · Protocol · Fuzzing · Memory Corruption · Re-
mote Code Execution.

1 Introduction

Recent Bluetooth vulnerabilities such as BlueBorne [16] have sparked interest in
finding Bluetooth-related security bugs due to, in part, its broad impact across
multiple platforms. For example, BlueBorne affects Bluetooth implementations
across multiple platforms: Android, iOS, Windows, and Linux. As of September
2023, 720 CVEs have been registered as Bluetooth-related vulnerabilities [1],
where they are remotely exploitable. For instance, CVE-2017-0781 is a vulner-
ability in the Android’s BNEP service. It allows attackers to compromise Blue-
tooth devices [16,25] remotely. Due to Bluetooth vulnerabilities’ high and broad

2 Jang et al.

security impact, security testing of the systems using Bluetooth is particularly
important and critical.

Fuzzing is an automated testing approach that injects randomized inputs
into a system under test to reveal vulnerabilities. For software testing, fuzzing
has been successful over the years for various software systems, from OS ker-
nels [6,7,15] to robotics systems [8–11]. However, unfortunately, fuzzing network
protocols such as Bluetooth is still challenging. Specifically, the Bluetooth proto-
col is highly dependent on complex network configurations. Conducting various
tests while preserving the same network configurations and states after each test
requires non-trivial effort. In addition, practical challenges such as synchroniza-
tion and delay of network communication further complicate the testing process.
Worse, the root causes of many vulnerabilities stem from flaws in the Bluetooth
chipset firmware rather than the software stack. Hence, various firmware imple-
mentations should be taken into consideration as well. Unfortunately, existing
fuzzing approaches have difficulty thoroughly testing various layers of the sys-
tem such as the Bluetooth protocol layer and the application layer. For example,
many existing fuzzers generate test inputs targeting device drivers, which may
not even reach the application layer, which may contains various potential vul-
nerabilities. In other words, existing techniques may underexplore a non-trivial
amount of space for Bluetooth-related vulnerabilities.

This paper introduces BTFuzzer, a fuzzing framework that automatically
identifies Bluetooth vulnerabilities. While there exist approaches for identify-
ing Bluetooth security bugs [12, 13], they suffer from various challenges such as
(1) obtaining and maintaining complex network configurations during the test
and (2) crafting complex test inputs that can penetrate various software lay-
ers without violating the constraints from device drivers, network protocol, and
applications. Our approach, BTFuzzer, addresses these challenges by creating
an interface to inject Bluetooth packets into the library directly. It maximizes
code coverage by carefully crafting specific test inputs (e.g., Bluetooth packets)
with respect to the protocol specifications such as Hand-Free Profile (HFP), Hu-
man Interface Device (HID), and Bluetooth Radio Frequency Communication
(RFCOMM). The framework encompasses key components for comprehensive
Bluetooth protocol fuzzing, including a packet generator, crash collector, and
coverage analyzer.

To demonstrate the effectiveness of BTFuzzer, we conducted experiments
on Android using open-source software. BTFuzzer found two previously un-
known vulnerabilities that are exploitable in most Android devices: (1) An out-
of-bounds read vulnerability (CVE-2020-27024 [24]), affecting systems running
Android version 10 or later and (2) an information leak vulnerability that al-
lows attackers to connect to a victim’s device and leak data without the user’s
awareness as it is not visible in the list of connected Bluetooth devices.
Organization. The remainder of the paper is organized as follows: Section 2
provides background on Bluetooth and fuzzing. Section 3 introduces our pro-
posed fuzzing framework. Section 4 presents our experimental results. Section 5
discusses related work. Section 6 concludes the paper.

BTFuzzer: a profile-based fuzzing framework for Bluetooth protocols 3

2 Background

This section outlines the structure of Bluetooth that is essential for understand-
ing BTFuzzer. We also provide an overview of the Bluetooth stack, Bluetooth
profiles, and a generic fuzzing environment for Bluetooth protocols.

2.1 Bluetooth components

Figure 1 illustrates a generic Bluetooth stack. Bluetooth packets move from
the baseband to Logical Link Control and Adaptation Protocol (L2CAP) via
the Host Controller Interface (HCI). L2CAP then routes these packets to the
next appropriate stack for each channel. The HCI packet encapsulates data for
the upper protocols and profiles, including L2CAP, and the path to the upper
layer varies depending on the configuration of the HCI packet. If packets can
be fed directly to the HCI, a security evaluation of the Bluetooth stack can be
performed without the need for complex wireless configurations.

Fig. 1: Generic Bluetooth stack.

A Bluetooth profile is a protocol that aims to provide compatibility across
various devices, allowing diverse Bluetooth devices to interact with each other.
While the operation method may vary among devices, functions are implemented
according to specific Bluetooth profiles, enabling communication between devices
with different operating systems. Packet configurations differ for each profile and
conform to the forms defined in their respective specifications [2]. Vulnerabili-
ties may arise from improper profile implementations, making generating and
transmitting packets tailored to each profile crucial for effective vulnerability
discovery through fuzzing.

L2CAP operates based on the channel. A channel identifier (CID) [3] is the
local name representing a logical channel endpoint on the device. When a Blue-
tooth device makes a connection, a channel is created and a CID is assigned.
Communication with the device is possible through the assigned CID and chan-
nel. CID has a namespace designated according to its purpose. The CID names-
pace is 0x0000-0xFFFF. In the namespace, the null identifier (0x0000) is not

4 Jang et al.

used, and the identifiers from 0x0001 to 0x003F are reserved for a specific L2CAP
function, which is called fixed channels. Therefore, when connected to a generic
Bluetooth device, CIDs are allocated within the range of 0x0040-0xFFFF, which
are called dynamically allocated channels.

L2CAP’s upper layers support various protocols. Radio Frequency Communi-
cations (RFCOMM) replaces the traditional wired RS232 serial port and shares
characteristics with the TCP protocol. Currently, The Headset Profile (HSP)
and Handsfree Profile (HFP) are the popular profiles that use it. The Generic
Attribute Profile (GATT), or often referred to as GATT/ATT, outlines how to
exchange data between BLE devices using services and characteristics. It rep-
resents the highest-level implementation of the Attribute protocol (ATT). Each
attribute has a 128-bit UUID and ATT-defined attributes determine charac-
teristics and services. The Bluetooth Network Encapsulation Protocol (BNEP)
enables the transmission of common networking protocols over Bluetooth and
offers functionalities similar to Ethernet’s. Running on BNEP, the Personal Area
Networking Profile (PAN) specifies how two or more Bluetooth-enabled devices
can form an ad-hoc network and access a remote network via a network access
point.

2.2 Generic fuzzing environment for Bluetooth protocols

The fuzz testing technique is widely employed to discover security vulnerabil-
ities [4] automatically. A fuzzer can be specialized for a specific target (e.g., a
particular protocol or class of applications) or designed for a generic purpose
such as AFL. To conduct a successful vulnerability discovery, understanding the
characteristics of various fuzzers and selecting the most suitable one based on
the target and scope of the analysis is critical.

Fig. 2: Generic fuzzing environment for Bluetooth protocols.

Traditional Bluetooth fuzz testing requires two Bluetooth-capable devices: an
attacker device that sends malformed packets and a victim device that processes
the packets and potentially exposes vulnerabilities. The attacker device must
maintain a state where it can send and receive packets. It must also implement
a fuzzing engine with three functions: (1) Generating malformed packets (①),
(2) Establishing a Bluetooth connection (②), and (3) Sending the malformed
packets (③). The victim device must process packets (4) and detect crashes (⑤).

BTFuzzer: a profile-based fuzzing framework for Bluetooth protocols 5

Setting up this environment is time-consuming and complex, as it essentially
requires constructing the entire system, including the network environment.

The Bluetooth software stack processes packets sent over-the-air (OTA) via
the Bluetooth firmware on the target device. In OTA-based fuzzing, whether
specific packets reach the Bluetooth software stack may depend on the firmware
configuration of the Bluetooth chipset. This environment is more suited for Blue-
tooth firmware code analysis and has limitations for Bluetooth software stack
vulnerability analysis.

BTFuzzer simplifies the fuzz testing process by directly transmitting packets
to the victim device, bypassing the wireless environment. This approach allows
quicker fuzz testing and eliminates the need for the packets to go through the
Bluetooth firmware before reaching the software stack. BTFuzzer proposes an
automated method to identify logical errors within the Bluetooth software stack.

3 Proposed system

In this section, we explain how to fuzz the Bluetooth stack using the proposed
fuzzing framework, BTFuzzer.

3.1 Overview

Fig. 3: Overview of BTFuzzer.

We propose a new fuzzing framework, BTFuzzer, which directly feeds packets
into the target device, bypassing OTA. BTFuzzer generates packets and defines
an interface for direct input into the device’s HCI layer. Figure 3 provides an
overview of the proposed system. This configuration allows direct access to the
Bluetooth software stack for fuzz testing on profiles and protocols with indepen-
dent specifications. We note that the framework is highly configurable, meaning
that it can easily customized to support fuzz testing on diverse profiles and even
other protocols of interest.

6 Jang et al.

3.2 Fuzzing interface

We create a specialized fuzzing interface to feed packets directly into the device.
In particular, based on our analysis of the Android Open Source Project (AOSP)
Bluetooth stack, we implement our fuzzing interface in libbluetooth.so.4

The hci_initialize function within hci_layer_android.cc initializes the
HCI and creates (1) a fuzzing interface thread and (2) a socket for communication
with the fuzzing client. This client then feeds commands and packets from the
fuzzing server into the interface through the socket.

HCI Handles and L2CAP CIDs are essential for generating valid Bluetooth
packets. The interface receives and processes predefined commands from the
client to obtain these values. The currently connected Handles and CIDs are
saved, and the gathered Handles and CIDs are used for packet creation. Ad-
ditionally, HCI packets fed into the interface are categorized into four types
for processing: COMMAND, ACL, SCO, and EVENT. Figure 4 illustrates the
architecture of the fuzzing interface within the AOSP device.

Fig. 4: Composition of fuzzing interface.

3.3 Fuzzing server

The fuzzing server consists of the following three modules:

– Packet generator: This module creates a large corpus of malformed pack-
ets by randomly injecting errors into valid packets. This addresses perfor-
mance degradation when feeding individual packets to the Android device
via ADB. This ensures that the fuzzing process covers a wide range of pos-
sible inputs. The corpus is transferred to the Android device using the adb
push command.

4 The exact location of the implementation is ‘AOSP\system\bt\hci\src\hci_layer_
android.cc:hci_initialize().’

BTFuzzer: a profile-based fuzzing framework for Bluetooth protocols 7

– Crash collector: This module collects crashes that occur during fuzzing.
– Coverage analyzer: This module analyzes the coverage of the Bluetooth

software stack during fuzzing.

HCI handles, and L2CAP CIDs are assigned when a Bluetooth device is
connected. However, these values may change if the device is reconnected after a
crash. This requires the packet generator to regenerate the packets. Additionally,
the device’s Bluetooth settings may change due to previous packets. To mitigate
these issues, the fuzzing server initializes the Bluetooth stack before starting
the fuzzing process. This ensures that HCI handles and L2CAP CIDs remain
constant, allowing the use of pre-made packets even after a crash.

3.4 Fuzzing client

The fuzzing client is specialized for interaction with the fuzzing interface, im-
plemented in the libbluetooth.so library. This client is an executable file that
establishes a connection to the fuzzing interface’s socket. It reads from the cor-
pus file located at a predefined path and sequentially sends packets into the
Bluetooth stack via this socket. Essentially, the fuzzing client is responsible for
sending malformed packets to the Android device for testing.

Figure 5 illustrates the architecture of the fuzzing client, showcasing its var-
ious components and their interaction with the fuzzing interface. This helps to
understand the role of the fuzzing client in the overall architecture of BTFuzzer,
highlighting its critical role in injecting malformed packets into the system to
identify vulnerabilities.

Fig. 5: Composition of the fuzzing client.

3.5 Packet generator

This paper focuses on fuzzing three key Bluetooth protocols commonly used in
smartphones: RFCOMM, HFP, and HID. These were selected because they are
essential for core smartphone functions and have significant security implications.

8 Jang et al.

– RFCOMM is a simple, reliable data stream to which other applications can
connect as if they were serial ports. It is one of the foundational profiles used
in most Bluetooth devices, meaning that it is an essential test subject.

– HFP is crucial for enabling smartphone call functionalities. Given that calling
is a core function of smartphones and a profile used daily by many users,
any vulnerabilities in HFP could have significant security implications, such
as the potential for eavesdropping.

– HID is related to input devices such as keyboard and mouse. Vulnerabili-
ties in HID could allow an attacker to remotely control the victim’s device,
making it critical for security analysis.

To generate test cases for these profiles, we have implemented two different
types of packet generation techniques: mutation-based and profile-based.

First, the mutation-based packet generator takes existing valid Bluetooth
packets and modifies them in various ways to create malformed packets. These
malformed packets are then used to test how well the Bluetooth stack can handle
unexpected or non-standard data.

Second, the profile-based packet generator creates packets according to the
specifications of the target Bluetooth profiles (RFCOMM, HFP, and HID). By
adhering closely to the specifications, we can test for vulnerabilities caused by
wrong implementations of the protocols.

By combining the two different packet generation techniques, BTFuzzer aims
to achieve a comprehensive set of test cases that can thoroughly evaluate the
robustness and security of Bluetooth implementations in Android devices.

Fig. 6: Composition of the packet generator.

Mutation-based packet generation. Mutation-based packet generation cre-
ates new packets through mutation, using packets transmitted and received be-
tween devices to enhance code coverage. Base packets are obtained from Android
Bluetooth snoop logs [18]. Bluetooth HCI Snoop is specified in RFC 1761 [17].
A simple script was developed to parse these Snoop logs into a mutational hex

BTFuzzer: a profile-based fuzzing framework for Bluetooth protocols 9

format. Pyradamsa is used to mutate the parsed packets. A base packet is se-
lected for mutation. A packet must be generated with a matching HCI Handle
and L2CAP CID to facilitate normal communication and data processing. In
mutation-based generation, packets are created using two methods. The first
method sequentially writes and mutates the entire set of recorded packets. The
second method randomly selects a packet for mutation.

Profile-based packet generation. Profile-based packet generation produces
packets tailored for specific Bluetooth profiles and protocols. Target profiles and
protocols were selected, and their specifications were analyzed. We examined the
specifications for three items: HFP [19], HID [20], and RFCOMM [21]. Payloads
for each item are generated using Python’s random library. Like in mutation-
based generation, the HCI and L2CAP portions, excluding the payload, utilize
the allocated HCI Handle and L2CAP CID. Packets, including the generated
payload, are generated with matching HCI and L2CAP lengths.

Fig. 7: Structure of HCI and L2CAP packets.

Figure 7 illustrates the basic structure of HCI and L2CAP packets. The type
field in HCI packets consists of one octet and classifies COMMAND, ACL, SCO,
and EVENT types. The handle field, comprising two octets, holds connection
information between devices. The Length field, also of two octets, specifies the
total length of the HCI packet. If the length field value does not match the
packet length, Android Bluetooth HCI will immediately abort the connection.
Therefore, it is crucial to calculate and set the correct length and handle values
when generating a packet. Detailed specifications for HID, HFP, and RFCOMM,
along with their implementation in BTFuzzer, are outlined below.

Figure 8 depicts the packet structure of HID. The Header field contains
HID Header information in one octet. Only HANDSHAKE, HID_CONTROL,
and DATA Message types are used for packet generation. These types facilitate
data transmission from HID to the smartphone. The payload part consists of
randomly generated data, varying in size from 0x00 to 0xFF.

10 Jang et al.

Fig. 8: Packet structure of HID.

Figure 9 shows the packet structure of RFCOMM. The Address field, con-
sisting of one octet, contains the DLCI (Data Link Connection Identifier) or the
connection information for RFCOMM. To transmit data correctly, this address
value must be set accurately, which can be retrieved from Bluetooth logs. The
Control field is one octet and includes frame type and poll/final bit information.
Depending on the payload size, the Length field consists of one or two octets. If
the payload size exceeds 127 bytes, two octets are used. The Payload field is filled
with random values, and its size determines the Length field. Finally, the FCS
field, comprised of one octet, is used for CRC (Cyclic Redundancy Check). It is
calculated based on predefined CRC table values, Address, and Control fields.

Fig. 9: Packet structure of RFCOMM.

Figure 10 presents the packet structure of HFP. The payload field is the only
variable part based on AT Commands from the RFCOMM packet structure.
We extracted a list of usable AT Commands from Android Bluetooth code and
configured the system to randomly generate payloads for each AT Command.

3.6 Crash collector

When a crash occurs during fuzzing, the crash collector gathers and stores rele-
vant information. On Android devices, Signals 6 and 11 automatically generate
tombstone files. The crash collector checks whether a tombstone file is created
during fuzzing. If created, it collects the tombstone file from the Android device.
The generated corpus, handle, and CID information are stored to facilitate crash
reproduction. Figure 11 illustrates the components of the crash collector.

BTFuzzer: a profile-based fuzzing framework for Bluetooth protocols 11

Fig. 10: Packet structure of HFP.

AT Command List
AT+VGS AT+VGM AT+CCWA
AT+CHLD AT+CHUP AT+CIND
AT+CLIP AT+CMER AT+VTS
AT+BINP AT+BLDN AT+BVRA
AT+BRSF AT+NREC AT+CNUM
AT+BTRH AT+CLCC AT+COPS
AT+CMEE AT+BIA AT+CBC
AT+BCC AT+BCS AT+BIND
AT+BIEV AT+BAC

Table 1: List of AT Commands used for packet generation.

Fig. 11: Composition of the crash collector.

3.7 Coverage analyzer

To measure the coverage of the code, the coverage analyzer inserts log codes
into all AOSP Bluetooth stack files. To avoid duplicates, the log format is set as
FUZZ_COVERAGE _FileName_Count. For automated log insertion, we developed a
Python script. Once log code insertion is complete, the number of logs added to

12 Jang et al.

Fig. 12: Composition of the coverage analyzer.

each file and the total log count are recorded. By comparing the number of output
logs during fuzzing with the total number of logs, we can assess the extent of
code execution. Logs are inserted to identify most branching statements, allowing
efficient code coverage measurement for libbluetooth.so. Figure 12 illustrates
the structure of the coverage analyzer.

4 Evaluation

BTFuzzer was tested on a Pixel 3a device running Android 10. During the eval-
uation, it was paired with a Galaxy Watch, Galaxy Buds, a Bluetooth keyboard,
and a Bluetooth mouse. Fuzzing was conducted after analyzing the packets ob-
tained during basic interactions between the Pixel 3a and each Bluetooth device.
After that, random packets were generated for fuzzing. The profiles evaluated
were RFCOMM, HID, and HFP. To assess BTFuzzer’s effectiveness, we applied
it to the binary code before patching the vulnerability known as BlueFrag (CVE-
2020-0022) [22,23], one of the most critical Android Bluetooth vulnerabilities of
2020.

BTFuzzer discovered two vulnerabilities that could affect most Android de-
vices, including the latest version. One was reported to the Google Android Secu-
rity Team and recognized as a new vulnerability under the identifier A-182388143.
The other was reported as A-182164132 but was marked as a duplicate of
A-162327732, which has been assigned CVE-2020-27024 [24]. The BlueFrag vul-
nerability, for which the patch had been removed, was also detected.

The code coverage of BTFuzzer was assessed using the coverage analyzer.
When delivering packets generated specifically for a particular profile, it was
observed that the code coverage corresponding to that profile increased signifi-
cantly. This observation validates the effectiveness of profile-based fuzz testing.

BTFuzzer: a profile-based fuzzing framework for Bluetooth protocols 13

4.1 Hiding the list of malicious Bluetooth devices

We discovered a new vulnerability in the Bluetooth stack of Android devices.
This vulnerability allows attackers to manipulate the list of Bluetooth-connected
devices on a victim’s device. The vulnerability, which is assigned to the identifier
A-182388143. It was discovered by using RFCOMM profile-based fuzz testing
with BTFuzzer. The Google Android Security Team has confirmed it as a security
vulnerability.

The vulnerability can be exploited on most Android devices, including the
latest version. An attacker could use this flaw to hide a malicious Bluetooth
device connected to the user’s device, making it undetectable to the user. Con-
sequently, the attacker could access contacts and SMS messages or intercept
calls without the user noticing the attacker’s activities. The vulnerability can be
exploited by sending just one malicious packet to the user’s device.

(a) Before the attack (b) After the attack

Fig. 13: Result of the attack that exploited the A-182388143 vulnerability on
Google Pixel 3a. The connected devices list is shown before (a) and after (b)
the attack. Galaxy Buds are initially displayed in the connected list before the
attack but not in the connected list after the attack. This is because the attacker
was able to remove Galaxy Buds from the list by exploiting the vulnerability.

As shown in Figure 13, we can see the Bluetooth device in the connected
list before the attack is performed. However, after the attack is performed, the
Bluetooth device is not visible in the connected device list even though the device
can still maintain the connection with the victim device. This vulnerability was
discovered while fuzzing RFCOMM. It was possible to trigger the vulnerability
through a specific packet generated by BTFuzzer’s Profile-based. This attack
can hide the device by sending only one simple packet. We received a 2,000 USD
reward from the Google Android Security Team for reporting this vulnerability.
However, this vulnerability has not been patched yet and detailed information
cannot be disclosed to prevent malicious exploitation.

14 Jang et al.

4.2 Buffer overflow vulnerabilities

CVE-2020-0022. To demonstrate BTFuzzer’s effectiveness, we conducted fuzzing
tests on a binary containing the BlueFrag vulnerability, a significant Android
Bluetooth vulnerability from 2020. Our goal is to evaluate whether BTFuzzer
can find a known vulnerability effectively. Just less than 5 minutes, BTFuzzer
detected the CVE-2020-0022 vulnerability. Figure 14 displays the crash log for
this vulnerability, triggered by BTFuzzer.

Fig. 14: CVE-2020-0022 crash log.

A-182164132. The out-of-bounds vulnerability was discovered through the BT-
Fuzzer, and the vulnerability was reported to A-182164132. However, it was al-
ready reported as a vulnerability with A-162327732. This vulnerability has been
assigned CVE-2020-27024. CVE-2020-27024 is a vulnerability that can cause
out-of-bounds read due to a missing boundary check in smp_br_state_machine_
event() of smp_br_main.cc, Figure 15 shows the CVE-2020-27024 vulnerability
crash log triggered via BTFuzzer. The vulnerability (i.e., related to the missing
boundary check) is mitigated through Bounds Sanitizer, which is supported from
Android 10. However, it can be still exploited in the previous Android versions
or customized/specialized Android systems forked from the previous Android
versions. This vulnerability can be attacked when the connection handle is 0x02.
Figure 16 shows packets that can reproduce CVE-2020-27024. Sending these two
packets could trigger the CVE-2020-27024 vulnerability.

4.3 Coverage

Code coverage was measured using a log-based approach, in which 31,997 logs
were instrumented into the Android Bluetooth-related code. Fuzzing was carried
out for 24 hours for each of the three methods used to generate packets: mutation-
based, profile-based, and RFCOMM, HFP, and HID. The code coverage was then
measured after each fuzzing run.

Figure 17 shows the change in code coverage over time during fuzzing. Fig-
ure 17(a) shows the total coverage for the 24 hours, which reveals an initial rapid
increase followed by a slower growth rate. Figure 17(b) focuses on the first 10

BTFuzzer: a profile-based fuzzing framework for Bluetooth protocols 15

Fig. 15: CVE-2020-27024 crash log.

Fig. 16: CVE-2020-27024 trigger packets.

minutes of this period, demonstrating a similar trend: an initial swift rise in
coverage that eventually plateaus.

(a) Total 24 hours (b) First 10 minutes

Fig. 17: Code coverage changes over time. (a) represents the 24-hour coverage
for mutation, RFCOMM, HID, and HFP methods. (b) represents the coverage
changes during the first 10 minutes of the 24-hour period.

Figure 18(a) and (b) present the coverage results of mutation-based and
profile-based (HFP, RFCOMM, HID) fuzzing, respectively. Figure 18(a) illus-
trates the outcomes of profile-based fuzzing, where “Total” denotes the combined

16 Jang et al.

log results for HID, HFP, and RFCOMM, exceeding the individual log count for
RFCOMM, the highest among them. Each method executed distinct code seg-
ments. Figure 18(b) contrasts mutation-based and profile-based fuzzing. Tests
conducted on the same three types of Bluetooth devices (Galaxy Watch, Galaxy
Buds, and a Bluetooth keyboard and mouse) showed that profile-based fuzzing
achieved more code coverage than mutation-based fuzzing. Although profile-
based fuzzing offers more code coverage, it requires understanding the profile
and creating a packet structure code that aligns with the profile. Conversely,
mutation-based fuzzing, while achieving less code coverage than profile-based
fuzzing, allows fuzzing without profile comprehension. More importantly, each
method executed different code segments, indicating that the two methods are
complementary and could maximize fuzzing code coverage when combined.

Out of the 31,997 logs instrumented, 6,914 were recorded, representing ap-
proximately 21.6% of the total code coverage. Enhanced results are expected
with further profile/protocol testing.

(a) Profile-based coverage (b) Total coverage

Fig. 18: Coverage results for 31,997 instrumented logs. (a) represents the cover-
age of profile-based fuzzing, and (b) compares mutation-based and profile-based
methods.

4.4 Summary of evaluation results

BTFuzzer is an effective tool for finding vulnerabilities in Android Bluetooth
stacks. It found two vulnerabilities in the Pixel 3a, one of which was a new
vulnerability that allowed attackers to hide a Bluetooth device in the list of
Bluetooth-connected devices on a victim’s device. BTFuzzer also detected the
CVE-2020-0022 vulnerability, a significant Android Bluetooth vulnerability from
2020, in less than 5 minutes.

Our evaluation also shows that BTFuzzer’s profile-based fuzzing is more ef-
fective than mutation-based fuzzing at achieving more code coverage. However,

BTFuzzer: a profile-based fuzzing framework for Bluetooth protocols 17

each approach targeted different code segments, meaning that they are comple-
mentary. We believe that combining both techniques could maximize fuzzing
code coverage.

5 Related work

Research on Bluetooth security is diverse, covering topics such as attacks via ma-
licious devices, vulnerabilities in protocol implementations, and methodologies
for vulnerability analysis, including active fuzzing studies.

One approach focuses on exploiting the Bluetooth function by taking con-
trol of Bluetooth communication authority. Xu et al. [5] describe an attack that
leverages a device’s inherent trust in an already-connected Bluetooth device.
This research suggests that devices better manage Bluetooth function author-
ity, pairing conditions, and the intent of paired devices. A more straightforward
method of identifying vulnerabilities is to analyze Bluetooth protocol implemen-
tations. A notable example is BlueBorne [16], published by ARMIS Lab in 2017,
which examined Bluetooth specifications and identified vulnerabilities and logi-
cal errors. However, auditing the code for the entire Bluetooth specification and
its various profiles is challenging.

Another technique to consider is fuzzing. Mantz et al. [13] introduced a versa-
tile framework for finding vulnerabilities in Bluetooth firmware. Ruge et al. [12]
proposed an advanced, firmware emulation-based fuzzing framework for undis-
closed Bluetooth implementations and firmware. However, these studies focus
on chipset firmware-level security evaluation, not the Bluetooth software stack.
Heinze et al. [14] recently suggested a fuzzing approach targeting specific L2CAP
Channels in Apple’s private Bluetooth stack.

We propose a new approach: a profile-based fuzzing framework for the Blue-
tooth stack. This framework facilitates creating and fuzzing packets for each
Bluetooth profile, enabling comprehensive coverage of various protocols and pro-
files within the Bluetooth stack.

6 Conclusions

As Bluetooth technology becomes ubiquitous and its applications span multiple
devices and functionalities, vulnerabilities in Bluetooth technology have become
high-impact security risks. Despite ongoing research to enhance Bluetooth secu-
rity, new vulnerabilities continue to be discovered and exploited, demanding a
systematic approach to search for vulnerabilities effectively.

We introduce BTFuzzer, a scalable, profile-based fuzzing framework for Blue-
tooth devices. BTFuzzer implements in-device packet transmission, eliminating
the need for complex environment setup. It generates packets according to spe-
cific Bluetooth profiles to maximize code coverage. BTFuzzer has identified a
new vulnerability that allows an attacker’s Bluetooth device to remain concealed
while connected to a victim’s device. Additionally, BTFuzzer has demonstrated
its efficacy by detecting previously disclosed Bluetooth vulnerabilities.

18 Jang et al.

BTFuzzer is a generic approach and not limited to Android. It is highly con-
figurable, meaning that it can be easily configured to support other operating
systems and protocols. Our preliminary results indicate that BTFuzzer is com-
patible with Linux Bluez, making it a viable tool for evaluating vulnerabilities
in the Linux Bluetooth software stack. Further experimentation with the multi-
tude of Bluetooth profiles will enhance code coverage and enable the discovery
of additional vulnerabilities. We plan to expand our research to other operating
systems, Bluetooth profiles, and other wireless technologies such as NFC, Wi-Fi,
and Zigbee to improve wireless network security.

Acknowledgements We thank our anonymous shepherd and reviewers for
their valuable feedback and insights. Hyoungshick Kim is the corresponding
author. This work was supported by Institute for Information & communica-
tion Technology Planning & Evaluation grant funded by the Korea government
(No.2018-0-00532, Development of High-Assurance (>=EAL6) Secure Microker-
nel (50%), No.2022-0-00495 (30%), and No.2022-0-01199 (20%)).

References

1. MITRE, https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=bluetooth. Ac-
cessed on September. 15, 2023

2. Bluetooth Specifications, https://www.bluetooth.com/specifications/specs/.
Accessed on September. 15, 2023

3. BLUETOOTH CORE SPECIFICATION Version 5.2, page 1026-1028, https:
//www.bluetooth.org/docman/handlers/DownloadDoc.ashx?doc_id=478726.
Accessed on September. 15, 2023

4. Valentin Jean Marie Manès and HyungSeok Han and Choongwoo Han and Sang
Kil Cha and Manuel Egele and Edward J. Schwartz and Maverick Woo.: The Art,
Science, and Engineering of Fuzzing: A Survey. IEEE Transactions on Software
Engineering (2019)

5. Fenghao Xu, Wenrui Diao, Zhou Li, Jiongyi Chen and Kehuan Zhang.: BadBlue-
tooth: Breaking Android Security Mechanisms via Malicious Bluetooth Peripherals.
Network and Distributed System Security Symposium (NDSS 2019)

6. Seulbae Kim, Meng Xu, Sanidhya Kashyap, Jungyeon Yoon, Wen Xu and Taesoo
Kim.: Finding Semantic Bugs in File Systems with an Extensible Fuzzing Frame-
work. ACM Symposium on Operating Systems Principles (SOSP 2019)

7. Sergej Schumilo, Cornelius Aschermann, and Robert Gawlik, Ruhr-Universität
Bochum; Sebastian Schinzel, Münster University of Applied Sciences; Thorsten Holz,
Ruhr-Universität Bochum.: kAFL: Hardware-Assisted Feedback Fuzzing for OS Ker-
nels. USENIX Security Symposium (USENIX Security ’17)

8. Hyungsub Kim, Muslum Ozgur Ozmen, Antonio Bianchi, Z. Berkay Celik, and
Dongyan Xu.: PGFUZZ: Policy-Guided Fuzzing for Robotic Vehicles. Network and
Distributed System Security Symposium (NDSS 2021)

9. Taegyu Kim, Purdue University; Chung Hwan Kim and Junghwan Rhee, NEC Lab-
oratories America; Fan Fei, Zhan Tu, Gregory Walkup, Xiangyu Zhang, Xinyan
Deng, and Dongyan Xu, Purdue University.: RVFuzzer: Finding Input Validation
Bugs in Robotic Vehicles through Control-Guided Testing. USENIX Security Sym-
posium (USENIX Security ’19)

BTFuzzer: a profile-based fuzzing framework for Bluetooth protocols 19

10. Seulbae Kim, and Taesoo Kim.: RoboFuzz: fuzzing robotic systems over robot
operating system (ROS) for finding correctness bugs. ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE 2022)

11. Chijung Jung, Ali Ahad, Yuseok Jeon and Yonghwi Kwon.: SWARM-
FLAWFINDER: Discovering and Exploiting Logic Flaws of Swarm Algorithms.
IEEE Symposium on Security and Privacy (SP 2022)

12. Jan Ruge, Jiska Classen, Francesco Gringoli and Matthias Hollick.: Frankenstein:
Advanced Wireless Fuzzing to Exploit New Bluetooth Escalation Targets. USENIX
Security Symposium (USENIX Security ’20)

13. Dennis Mantz, Jiska Classen, Matthias Schulz and Matthias Hollick.: InternalBlue
– Bluetooth Binary Patching and Experimentation Framework. ACM International
Conference on Mobile Systems, Applications, and Services (MobiSys 2019)

14. Dennis Heinze, Matthias Hollick and Jiska Classen.: ToothPicker: Apple Picking
in the iOS Bluetooth Stack. USENIX Workshop on Offensive Technologies (WOOT
’20)

15. syzkaller, https://github.com/google/syzkaller. Accessed on September. 15,
2023

16. BlueBorne, https://www.armis.com/blueborne/. Accessed on September. 15,
2023

17. RFC 1761, https://tools.ietf.org/html/rfc1761. Accessed on September. 15,
2023

18. Android Bluetooth Verifying and Debugging, https://source.android.com/
devices/bluetooth/verifying_debugging#debugging-with-logs. Accessed on
September. 15, 2023

19. Hands-Free Profile 1.8, https://www.bluetooth.com/specifications/specs/
hands-free-profile-1-8/. Accessed on September. 15, 2023

20. Human Interface Device Profile 1.1.1, https://www.bluetooth.com/
specifications/specs/human-interface-device-profile-1-1-1/. Accessed
on September. 15, 2023

21. RFCOMM 1.2, https://www.bluetooth.com/specifications/specs/rfcomm-1-
2/. Accessed on September. 15, 2023

22. BlueFrag, https://insinuator.net/2020/04/cve-2020-0022-an-android-8-0-
9-0-bluetooth-zero-click-rce-bluefrag/. Accessed on September. 15, 2023

23. CVE-2020-0022, https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2020-0022. Accessed on September. 15, 2023

24. CVE-2020-27024, https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2020-27024. Accessed on September. 15, 2023

25. CVE-2017-0781, https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2017-0781. Accessed on September. 15, 2023

