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Abstract. The widespread adoption of Intel Software Guard Extensions
(SGX) technology has garnered significant attention, primarily owing to
its robust hardware-based data-in-use protection. To alleviate the com-
plexities of SGX application development, an approach involving the
incorporation of a Library Operating System (LibOS) within an enclave
has gained prominence. This strategy enables SGX utilization without
necessitating extensive modifications to legacy code. However, this ap-
proach increases the potential attack surface and may be susceptible to
memory corruption vulnerabilities. To address this challenge, the trend
of leveraging Rust programming language offering memory safety guar-
antees for implementing system components has prompted the develop-
ment of Rust-based SGX frameworks. But still, a gap exists in providing
guidelines or systematic analyses to aid developers in selecting a suitable
Rust-based SGX framework, considering factors like implementation cost
and runtime overhead. This study undertakes a comprehensive compara-
tive analysis of three representative SGX frameworks implemented with
Rust: Rust SGX SDK, Occlum, and Fortanix EDP. Our analysis en-
compasses an exploration of their internal implementations, focusing on
their impact on both performance and security. Additionally, we quan-
tify the engineering effort required for migrating legacy Rust applications
and evaluate the supplementary overhead incurred when subjecting these
frameworks to CPU and memory-intensive workloads. By conducting this
analysis, we aim to provide valuable guidance to developers seeking to
choose a Rust-based SGX framework that aligns with their application’s
specific purpose and workload characteristics.
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1 Introduction

The commercialization of Intel Software Guard Extensions (SGX) technology [12]
has garnered substantial industrial and academic attention. In particular, In-
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tel SGX technology plays a pivotal role in evolving the confidential computing
paradigm [28]. This interest is primarily driven by its robust hardware-based
data-in-use protection and its inherent practicality, notably its compatibility
with the x86 architecture ensuring native speed [6]. By leveraging SGX to legacy
applications, it is possible to guarantee the confidentiality and integrity of cloud-
based TEE service. In fact, leading cloud service providers (CSPs) have begun
offering public cloud instances supporting SGX functionalities. These ground-
breaking solutions, known as confidential VMs, include commercial products like
Amazon Nitro Enclaves [3] and Azure Confidential Computing [26]. Such inno-
vation has expedited the widespread adoption of confidential computing across
diverse domains, such as safeguarding AI/ML models [13,21], protecting digital
assets [22], and securing key management services [10,35].

Basically, there are two primary approaches for implementing the SGX pro-
gram: 1) porting an application based on SGX SDK [1] and 2) running unmod-
ified applications on top of frameworks that support SGX compatibility [6]. In
particular, the adoption of a Library Operating System (LibOS) within the en-
clave has emerged as a viable strategy to facilitate the utilization of SGX without
necessitating modifications to legacy code [5,6,27,33]. The LibOS-based strategy
offers distinct advantages when porting legacy applications into the SGX envi-
ronment. Developers are relieved from the complexities of segregating security-
sensitive components from the original code-base and re-implementing system
call wrappers for enclave transitions. However, it is important to note that this
design choice expands the potential attack surface, given that the entire LibOS
codebase is loaded and executed within an SGX enclave. SGX does not guar-
antee the memory safety of the enclave, which means that memory corruption
vulnerabilities inherent in traditional code written in languages like C or C++
(e.g., Heartbleed [7]) can still be effective even when executed within the security
boundary provided by SGX CPU [20, 29]. Therefore, an additional instrumen-
tation or protection mechanism is required to achieve robustness over memory
vulnerabilities.

Simultaneously, the rise of the Rust programming language has equipped
developers with a potent instrument for constructing robust and secure applica-
tions. Rust delegates memory safety checking (e.g., rust pointer always references
valid memory) to the Rust compiler. In contrast to low-level codes implemented
in C or C++ that are prone to subtle memory bugs, Rust guarantees mem-
ory safety by rejecting the compilation of them by introducing features, such as
ownership and lifetime elision rules [24]. Furthermore, Rust is fast and memory-
efficient as its runtime does not require a garbage collector to reclaim memory
space, making it well-suited for the development of performance-critical services.
This appeal leads to the adoption of Rust in state-of-the-art system software,
including container runtimes [2], microkernels [19], and storage systems [17].

Such a trend has also spurred the development of the SGX framework tai-
lored for Rust utilization. The state-of-the-art LibOS-based SGX frameworks
have extended support for the execution of Rust applications [27, 33]. Besides,
several studies [8, 31, 34] utilize Rust programming language [24] as the foun-
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dation for building SGX frameworks. Such design choice enables developers to
reduce runtime overhead (e.g., garbage collection), thereby drawing attention to
the potential of leveraging Rust in SGX framework development. Nevertheless,
a notable gap persists in the absence of comprehensive guidelines or systemic
analyses that can aid developers in selecting the most suitable Rust-based SGX
framework for their applications. Such guidelines would encompass considera-
tions related to implementation cost and runtime overhead, crucial factors when
deciding to execute existing applications or develop new Rust applications in the
SGX environment.

This study conducts a comparative study on existing Rust-based SGX frame-
works to provide implications for newly implementing or porting legacy security-
sensitive Rust applications. For this, we conduct an in-depth analysis between
three cutting-edge Rust-based SGX frameworks: Rust SGX SDK, Occlum, and
Fortanix EDP. First, we explore the internal implementation details of each
framework relevant to the application performance and security. Then, we quan-
tify the engineering effort required to deploy legacy Rust applications atop these
frameworks, providing insights into the ease of transition. Finally, we evalu-
ate the additional overhead incurred by each framework, subjecting them to
CPU-intensive and memory-intensive workloads to gauge their performance im-
plications. We believe our analysis provides guidance for developers to select an
appropriate Rust-based SGX framework when implementing an SGX application
according to its purpose and workload characteristics.

2 Background

2.1 Intel SGX and LibOS-based SGX Framework

Intel SGX is a secure processor architecture to ensure trustworthiness of applica-
tion to protect sensitive and valuable information. It offers an isolated protection
domain in memory called an enclave, which is only decrypted within the CPU
package when executing it as an enclave mode. This ensures that even system
administrators or other software running on the host cannot access the sensi-
tive data in the enclave. To help developers implement SGX applications, Intel
provides the SGX Software Development Kit (SDK). The SDK offers essential
libraries and toolchains for tasks such as enclave signing and debugging [25]. It
simplifies the process of creating secure enclaves and managing their execution.
For building an SGX application using SDK, a developer needs to separate an
application codebase into two parts, an enclave region and an untrusted region.
In addition, the transition interface between them must be defined by a de-
veloper in the Enclave Definition Language (EDL). This interface specifies the
secure functions ECALLs for entering an enclave mode and functions OCALLs that
can be invoked to switch execution to the untrusted region. Additionally, EDLs
detail how data should be transferred in and out of the enclave, specifying data
structures and communication mechanisms. Note that OCALLs are typically used
for handling system calls, as SGX does not allow executing syscall instructions
in an enclave mode.
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LibOS-based SGX focuses on using a Library OS that provides operating
system functionality in the form of a library to act as an interface between ap-
plications and hardware. It runs entirely within an enclave, and to port an appli-
cation into an enclave, the application binary needs to be loaded and executed
along with the libraries it relies on. One of the key advantages of LibOS-based
SGX is the simplification of the enclave interface. This minimizes the number of
system calls that occur within the enclave, ensuring that the code running within
the enclave does not require system calls that involve crossing between user and
kernel domains. LibOS also plays a crucial role in implementing and managing
necessary operating system functionalities within the enclave when executed in
user space. This allows enclaves to handle privileged operations that would typ-
ically require execution in processor supervisor mode, maintaining security iso-
lation while performing necessary tasks. Operations represented as system calls,
particularly those related to file system operations, can be straightforwardly im-
plemented within LibOS by modifying data structures related to the file system
implementation. These system calls do not impact the security of other applica-
tion programs and do not require execution by privileged system software [30].
Frameworks such as Grammine [33], SGX-LKL [27], and Haven [6], which imple-
ment LibOS-based SGX, offer the advantage of enhancing portability by freeing
applications from dependence on a specific operating system.

2.2 Rust Programming Language

Rust is a newly introduced programming language developed by Mozilla Re-
search that guarantees safety on the memory side with cost-free abstraction [24].
Rust delegates memory safety checking (e.g., rust pointer always references valid
memory) to the Rust compiler. In contrast to low-level codes implemented in C
or C++ prone to subtle memory bugs, Rust guarantees memory safety by re-
jecting their compilation by introducing features, such as ownership and lifetime
elision rules [24]. Such design choice enables developers to minimize a runtime
overhead (e.g., garbage collection), which in turn introduces the attention to
utilizing Rust for implementing system software [24]. Rust introduces a unique
ownership system central to its memory safety guarantees [16]. The ownership
system enforces strict rules about how memory is allocated and deallocated, en-
suring that memory is managed safely without the risk of common bugs like
null pointer dereferences, data races, and memory leaks. Rust also incorporates
lifetime, which are annotations that specify the scope or duration for which ref-
erences are valid [16]. It prevents references from outliving the data they point
to or being used after the data has been deallocated.

3 Characteristics Analysis of Frameworks

To take advantage of Rust mentioned above (e.g., guaranteeing in-enclave mem-
ory safety), recent studies utilize Rust when implementing an SGX framework
itself and enable developers to execute Rust applications on SGX environment [8,
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Fig. 1: Rust-based SGX Framework Overview. (The red boxes indicate regions
that are isolated and protected by the enclave application, while the black dashed
boxes are regions that are written in Rust.)

31, 34]. In particular, we provide an overview of three existing frameworks that
facilitate the development of SGX applications in Rust: Rust SGX SDK, Occlum,
and Fortanix EDP. As depicted in Figure 1, these frameworks each exhibit a dis-
tinct system architecture. It is worth noting that Occlum exclusively employs a
LibOS-based approach, while both Rust SGX SDK and Fortanix EDP offer a
custom interface to interact with the host OS for system operations.

3.1 Fortanix EDP

Enclave development platform (EDP) [8], developed by Fortanix, offers a dis-
tinct advantage in generating and running enclave from scratch with Rust code,
eliminating the dependency on the Intel SGX SDK [8]. Notably, Fortanix EDP
introduces its own unique API and ABI while ensuring binary-level compatibility
for Rust applications. Specifically, EDP’s usercall interface is designed not to
expose existing enclave interface attack surfaces. It achieves this by incorporat-
ing elements that handle memory allocation in user space and data copying from
user memory within the context of a Rust-type system. This approach effectively
safeguards against direct memory access, preemptively mitigating time-of-check
time-of-use (TOCTOU) attacks. It’s worth noting that the usercall interface
establishes a connection to the syscall interface through an enclave. Within the
untrusted region, an enclave runner takes on the responsibility of managing
enclave loading and serves as an intermediary layer bridging the gap between
usercall requests originating from the enclave and the syscall interface required
for external interactions. While EDP enables the utilization of much of Rust’s
standard library for application implementation, it intentionally imposes restric-
tions on specific functionalities, such as multi-processing support and file system
operations, for security reasons.
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3.2 Occlum

Occlum is a memory-safe multi-process LibOS for Intel SGX to enable execution
of legacy applications without modifying the source code [31]. Occlum proposes
multi-domain software fault isolation (MMDSFI) by leveraging Intel Memory
Protection Extensions (MPX) technology [14] to preserve isolation between pro-
cesses that share a single address space. To support this, the Occlum framework
has newly implemented SGX LibOS, the Occlum toolchain, and the Occlum
verifier. Untrusted C/C++ code can generate executable binaries through the
Occlum toolchain and be verified by the Occlum verifier, ensuring the integrity of
MMDSFI. Consequently, the verified MMDSFI enables the secure construction
of the LibOS within the enclave.

LibOS based on Intel SGX SDK and Rust SGX SDK is predominantly im-
plemented in Rust, accounting for approximately 90% of the codebase, with the
remainder implemented in C. This supports the execution of enclaves in both
C and Rust, providing protection for enclave programs against potential mem-
ory vulnerabilities. Furthermore, to protect LibOS from unsafe entities, a shim
layer called occlum-PAL is provided to the application, offering APIs. This isola-
tion mechanism is crucial for security as it prevents one process from interfering
with or accessing the memory of another with strict boundary checking. By
securely sharing the enclave’s single address space with Occlum’s SFI-isolated
processes (SIPs) which is a unit of application domain, it supports multi-tasking
efficiently. For example, compared to other SGX frameworks that utilize LibOS
with supporting multi-tasking [5, 6, 33], startup time is 1000 times faster and
IPC (inter-process communication) is up to 3 times faster [31].

3.3 Rust SGX SDK (Teaclave SGX SDK)

The Rust SGX SDK, developed by Baidu, offers a secure platform for executing
Rust-based applications within SGX environments [34]. This SDK introduces a
wrapper Rust API that layers Rust functionalities on top of the SGX SDKs,
originally implemented in C and C++. Through this layered approach, it es-
tablishes a secure connection between the Intel SGX SDK code and the trusted
application. Notably, as a dependency on the Intel SGX SDK, it places trust ex-
clusively in the software operating within an enclave while maintaining untrusted
towards the rest of the system. The SDK doesn’t provide its own Application
Binary Interface (ABI) but instead adheres to the same ABI as the vanilla In-
tel SGX SDK. This strategic choice ensures seamless compatibility between the
Rust SGX SDK and the Intel SGX environment. Consequently, any updates or
alterations within the SGX ecosystem can be swiftly accommodated without the
risk of breaking compatibility.

4 Qualitative aspects affecting application performance

In this section, we conduct in-depth analysis by systemically exploring the in-
ternal design of each framework and categorize three key indicators related to
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application performance: Memory boundary check, Enclave transition, and ad-
ditional runtime overhead. Table 1 summarizes our analysis result.

Memory boundary

check

Enclave

Transition

Runtime

Overhead

Memory

Safety

Occlum MMDSFI PAL API Enclave SIP Enclave SIP

Incubator Teaclave

SGX SDK
Runtime (Enclave-runner) Legacy ECALL/OCALL Rust Wrapper API Rust Wrapper API

Fortanix EDP Sanitizable function Usercall (Custom) Own ABI Own API and ABI

Table 1: Estimating framework performance impact overhead based on frame-
work analysis

4.1 Memory boundary check

To avoid overhead caused by unnecessary bound checking, Rust SGX SDK pro-
vides a Sanitizable function to check the raw byte array and verify that memory
represents a valid object when binding an application. For the case of Fortanix
EDP, the enclave-runner runtime checks before entering an enclave to ensure
processor state sanitation, similar to Rust SGX SDK. Finally, Occlum utilizes
SFI (Software Fault Isolation), a software instrumentation technique that sand-
boxes untrusted domains within a single address space to reduce the enclave size
in a multi-tasking environment. However, Occlum performs boundary checking
for every memory access to ensure that it does not deviate from the domain
boundary, which becomes a runtime overhead.

4.2 Enclave transition (ECALL/OCALL)

Rust SGX SDK follows the design choice made by Intel SGX SDK for imple-
menting enclave transition wrapper, ECALL (enclave call) and OCALL (out-call)1.
To make legacy ECALLs and OCALLs implemented in C compatible with Rust ap-
plication code, Rust SGX SDK provides wrapper routines by leveraging Rust’s
unsafe keyword, which explicitly translates the boundary between C code and
Rust code for foreign function interface (FFI). During the conversion, sanity
checking is performed, resulting in runtime overhead. Fortanix EDP, on the
other hand, defines the usercall interface written in Rust, instead of writing
ECALL and OCALL for enclave transition. Because they use their own call process,
which is not optimized for SGX, each interaction related to the enclave would
generate transition overhead using the usercall interface [34]. Similarly, Occlum
inserts a trampoline code with a byte that identifies the domain ID in MMDSFI

1 Note that ECALLs are used for to enter the enclave and OCALLs are used to switch
an execution flow to untrusted region, respectively.
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to securely implement untrusted binaries generated by the toolchain in LibOS.
In other words, entry into the LibOS within the Enclave can only occur using
this trampoline code. Furthermore, to exit outside the LibOS, one must verify
the predefined domain ID once again before being allowed to escape. Therefore,
from the user’s perspective in Occlum, there is no need to write an EDL file.
Instead, users can utilize the pre-defined occlum build command to build the en-
clave image and the occlum run command to use the enclave entry point. Within
the Occlum framework, the run command is passed to the PAL API Layer to
enter the enclave. The process of passing through the PAL Layer to enter the
enclave can involve transition overhead [18].

4.3 Runtime overhead (Miscellaneous)

The Rust SGX SDK raises an additional overhead due to the dependency on
Intel SGX SDK by calling a different directory SGX instruction with the Rust
layer, rather than directly executing the assembly code. On the other hand,
Fortanix EDP uses its own ABI, called fortanix-sgx-abi [9], implemented with
a pure rust abstraction layer, so it is relatively overhead-free [15]. When assuming
multi-tasking scenario, Occlum has an advantage compared to other frameworks,
as it handles multiple process domains(SIPs) within a single enclave region.
Such a design also saves the cost of inter-process communication (IPC) overhead
between processes.

4.4 Memory safety guranteed by each framework

Both the Rust SGX SDK and Occlum have dependencies on the C language Intel
SGX SDK layers, with the Rust SGX SDK utilizing a wrapper API implemented
in Rust, and Occlum having 90%of its LibOS code written in Rust. When these
frameworks have dependencies on the Intel SGX SDK, they remain susceptible to
various vulnerabilities, including DoS attacks and side-channel attacks. In other
words, Occlum and Rust SGX SDK may share similar security threats at the
library level. However, Occlum can leverage enclave SIP to defend the enclave
against attacks such as code injection and ROP attacks by providing isolation
between processes that protect SIP from other SIPs and between processes that
protect LibOS itself from any SIP and LibOS.

In contrast, Fortanix EDP distinguishes itself by defining its own API and
ABI based on the Rust language, thereby enhancing security against vulnerabil-
ities like side-channel attacks that are inherent in the Intel SGX SDK. Addition-
ally, Fortanix EDP is designed in a way that similar to how a LibOS operates,
does not expose the enclave interface surface to the user. Additionally, by lim-
iting the number of usercall interfaces to fewer than 20, it reduces the attack
surface. Furthermore, it allocates memory in user space and utilizes elements
like fortanix sgx::usercalls::alloc to prevent direct memory access, thereby
proactively mitigating Time-of-Check-to-Time-of-use (TOCTOU) attack.

Rust SGX SDK introduces an extra layer of wrappers, which can lead to
performance degradation. This may manifest as slower enclave execution and a
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higher demand for system resources. While Occlum provides isolation between
SIPs, there can be overhead in terms of communication and data sharing between
processes due to this isolation. Fortanix EDP makes changes to memory alloca-
tion and access methods to defend against TOCTOU attacks. However, these
changes can result in additional overhead for memory management and internal
enclave operations. Additionally, limiting the number of user call interfaces for
security purposes can restrict the functionality and flexibility of enclaves. All
three frameworks may require extra security and compliance checks during en-
clave execution and communication, which can slow down the overall execution
speed.

5 Performance evaluation

In this section, we describe our experimental setup and present the results of
our experimental evaluations of application workloads on each framework. Based
on the analysis Section 4, specified the following evaluation metrics: 1)Execu-
tion time measurement to evaluate the performance of the application according
to the characteristics, 2) Enclave size measurement result to evaluate the en-
clave hardening and security. The results of the two performance evaluations are
summarized in Table 2 and Table 3.

Experimental Setup. Our evaluation was assessed on Ubuntu 20.04. The SGX
SDK for developing SGX applications utilized 2.18v. For the Rust language, we
used rustc 1.66.0-nightly, which is compatible with all frameworks. Additionally,
Occlum used glibc 2.31, as there are glibc versions compatible with running
musl-based applications.

Application Benchmark. Ring is a library that exposes a Rust API, pri-
marily utilized for performing CPU-intensive workloads related to encryption.
It emphasizes the implementation, testing, and optimization of a core set of
cryptographic operations exposed through an API that is both easy to use and
resistant to misuse. Considering the computationally intensive nature of encryp-
tion and decryption processes, we intend to leverage this code to evaluate the
CPU computational load of each framework.

HashMap in Rust is utilized for mapping and storing keys and values, offering
swift search and insertion operations. However, this process entails the need for
basic object implementations, an array of hash tables, and individual objects for
each hash item, resulting in a memory-intensive workload with substantial RAM
consumption. Moreover, this hash map not only provides a default hash function
but also allows users to specify hash functions for custom data types. It permits
custom hash behavior for specific data, enabling the implementation of optimal
hashing strategies. Chaining is primarily employed for collision handling, and the
size dynamically adjusts to automatically optimize memory usage when adding
or removing data. We intend to employ this HashMaps to assess the memory
computational load of each framework.
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5.1 Performance Overhead

We evaluated the execution times of Ring, and Hashmap core logic within an
Enclave, using a local environment as a baseline, without employing SGX En-
clave.

Occlum performs processes by excluding the Occlum toolchain and Occlum
verifier from the LibOS, instead delivering only verified MMDSFI to the LibOS.
Accordingly, the necessary code (LibOS) is loaded inside the Enclave, minimiz-
ing time delays associated with context switching and exhibiting execution times
similar to baseline environment. On the other hand, Fortanix EDP, which em-
ploys an intermediate Shim layer called enclave-runner to load the Enclave and
handle logic processing, resulted in significantly higher program execution times.
When a user invokes the enclave, the Enclave-runner inspects and sanitizes the
code using the Enclave entry ABI, then loads and enters the enclave. Once inside
the Enclave, after performing the logic between the enclave-runner and the En-
clave, the enclave exit ABI is called to terminate the thread. Therefore, including
these processes, Fortanix EDP had the longest execution times for application
workloads.

Incubator Teaclave SGX SDK demonstrated the fastest execution times in
the Hashmap and Ring workloads. This can be attributed to the use of a
Rust wrapper optimized for the Intel SGX API, enabling faster execution even
within the SGX environment, including Without SGX execution. Notably, the
sgx tcrypto used in the Ring workload called the crypto module implemented
in C through unsafe calls, resulting in faster execution times. However, it did
not guarantee Rust’s memory safety. Therefore, Incubator Teaclave SGX SDK
implements functions such as Rust’s Lifetimes to ensure memory safety by auto-
matically invoking drop functions when the lifespan of objects within sgx tcrypto

expires, securely releasing internal references to data in the C/C++ heap, with-
out relying on unsafe calls.

In summary, the performance overhead shows that Incubator Teaclave SGX
SDK, which uses SGX-optimized APIs, is the fastest, while Fortanix EDP, which
utilizes the intermediate layer of enclave-runner, incurs the most significant per-
formance overhead.

5.2 Enclave Size

Our goal is to evaluate the confidentiality of each framework by measuring the
size of the TCB(Trusted Computing Base) that must be safeguarded within the
enclave.

In the case of Occlum, we determine the enclave’s size by assessing the size of
the generated binary. For the Rust SGX SDK, the enclave size can be determined
by examining the Enclave.so file generated during the compilation process. In the
case of Fortanix EDP, the process involves converting binary files generated using
Cargo into SGXS (SGX Stream) files, which adhere to the SGX enclave format.
The measurement of enclave size in Fortanix EDP is based on the resulting
SGXS file.
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(a) Hashmap workload runtime (b) Ring workload runtime

Fig. 2: Breakdown of benchmark execution time. (Figure 2a and Figure 2b rep-
resent charts illustrating the overall runtime of the frameworks and the runtime
within the SGX Enclave, respectively. In particular, in the Hashmap workload,
the runtime attributed to memory access increases, rendering the framework
runtime itself negligible in the representation.)

The usercall API of Fortanix EDP is included within the enclave, yet it
allows for the creation of the smallest possible enclave size. This is attributed
to the intentional design choice of keeping the usercall API minimal, which is
considered to be the reason for this outcome. The Rust SGX SDK follows the
enclave design of the Intel SGX SDK but necessitates the inclusion of various
Rust wrapper libraries depending on the nature of the workload. As a result,
it can be observed that Fortanix EDP generates a relatively larger enclave size
compared to the Rust SGX SDK.

As a result, Occlum’s Enclave size is assessed as the largest among the frame-
works. Occlum incorporates the entire LibOS within a single Enclave. Within the
LibOS, there are components such as a binary loader for verifying whether the
binary files are signed by the Occlum verifier or Occlum’s encrypted file system
to securely protect files, contributing to the larger Enclave size evaluation.

Without SGX (baseline) Occlum Incubator Teaclave SGX SDK Fortanix EDP

Framework runtime 0.011s 0.011s 0.012s 0.146s

Usercode Execution time 0.0084s 0.0090s 0.0004s 0.0965s

Enclave size N/A 4.4MB 1.4MB 1.18MB

Table 2: Hashmap workload results for each framework

6 Qunatifying engineering effort

To assess the qualitative effort in development, we describe the engineering effort
according to the characteristics of the framework and analyze the results for Lines
of Code as a factor to evaluate.
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Without SGX (baseline) Occlum Incubator Teaclave SGX SDK Fortanix EDP

Framework runtime 7.661s 7.863s 0.225s 149.037s

Usercode Execution time 7.6584s 7.8610s 0.2130s 148.9848s

Enclave size N/A 4.5MB 1.6MB 1.19MB

Table 3: Ring(sha2) workload results for each framework

Basically, Rust SGX SDK and Fortanix EDP support utilizing the Rust stan-
dard library, and Occlum utilizes the C standard library(musl libc and glibc).
However, Rust SGX SDK and Fortanix EDP have limitations of several function-
alities (e.g., environment variable, timing, networking) due to security concerns.
Therefore, development costs are incurred in that developers have to implement
these functions themselves to use. In contrast, Occlum not only utilizes using
easy-of-use command-line tools unique to Occlum but also provides several built-
in toolchains and libraries to facilitate developer porting or development tasks.
Then, developers have the disadvantage of having to spend a lot of time learning
about SGX SDK APIs, programming models, and systems. In addition, Fort-
anix EDP can implement the ability to handle memory isolation, usercalls, and
SGX instruction sets by adding only std::os::fortanix sgx proprietary modules
compared to general Rust standard libraries, and relatively reduce programmer
development costs. Fortanix EDP also has the advantage of not requiring much
experience from developers because it does not require SGX background knowl-
edge and does not require EDL files to separate trust areas.

Rust Code
EDL File

(ECALL/OCALL def)
Cargo.toml

Configuration

File

Without SGX (baseline) 12 N/A 10 N/A

Incubator Teaclave SGX SDK
modified 2 N/A 8 N/A

add 81 10 34 N/A

Occlum add 0 N/A 0 17

Fortanix EDP add 0 N/A 3 N/A

Table 4: Hashmap Workload Lines of Code

This evaluation is based on a Hashmap workload in a local environment with-
out utilizing the SGX enclave as a reference. The results of the additional Lines
of Code are summarized in Table 4 as follows. Rust’s Cargo serves as a package
manager for building and managing Rust applications. To build packages using
Cargo, the creation of a Cargo.toml configuration file is required. Additionally,
SGX also requires the Enclave.edl file with the context switch. This file defines
ECALLs for entering the reserved Enclave and OCALLs for returning from the
Enclave to the user space.
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Rust SGX SDK provides a Rust wrapper for the Intel SGX SDK, originally
written in C/C++. It uniquely distinguishes between the app and Enclave areas,
necessitating the definition of the Enclave.edl file. As a result, in the main logic
of the app layer, instead of using the pure Rust standard libraries, the developer
employed the provided sgx types and sgx urts. It also, involved writing code
for creating the Enclave, making function calls to enter the Enclave, executing
code within the Enclave, and retrieving the results. Within the Enclave, the
developer performed the Hashmap workload. Ultimately, this resulted in 2 lines
being modified and an additional 81 lines of source code being written.

Occlum offers a user-friendly Occlum-cargo command to execute Rust appli-
cations, and it provides shell scripts and yaml files for this purpose. As a result,
there was no need to modify or add significant code to the core logic of the
Hashmap workload or the Cargo.toml file. However, there was a requirement to
write 17 lines of source code for the shell scripts and yaml file.

In Fortanix EDP, a pure Rust language approach was utilized, along with
a custom ABI/API, to ensure security by not exposing the Enclave interface
to developers. This design choice allowed for the avoidance of writing an En-
clave.edl file. The core logic of the Hashmap workload was leveraged without
any modifications, thanks to the support of the Rust standard library. Instead
of using a custom ABI/API, the Cargo.toml file was configured with a build
target of x86 64-fortanix-unknown-sgx for building. As a result, only three lines
of source code were added to the Cargo.toml file.

To minimize the developer’s effort, it is evaluated as most suitable to utilize
Fortanix EDP, which allows the development of applications using only the Rust
language without requiring background knowledge of the SGX architecture.

7 Related Work

Gramine [18], previously known as Graphene, is a lightweight library operating
system designed for Linux multi-process applications. This unique library OS
facilitates the execution of existing applications within SGX enclaves without
necessitating any modifications, except for the inclusion of an enclave manifest
specifying security settings and configurations. Gramine uses this manifest to
perform authenticity and integrity verification and subsequently leverages it to
load the application along with its requisite dependencies.

SCONE [4] is a software platform designed for securely running container-
based applications using SGX within Docker containers. It offers a secure C stan-
dard library interface that automatically encrypts and decrypts input/output
(I/O) data, thereby minimizing the performance impact of thread synchroniza-
tion and system calls during the enclave transition. In addition, SCONE supports
user-level threading and asynchronous system calls to improve performance.

PANOPLY [32] represents a system designed to bridge the gap between the
standard OS abstraction and the specific requirements of SGX for commercial
Linux applications. Inspired by the principles of micro-kernels, PANOPLY has
completely rethought the logic of the OS without trying to emulate it. It achieves



14 H. Shin et al.

this by intercepting calls to the glibc API, which allows the glibc library to reside
outside the enclave’s TCB. Consequently, even if the underlying OS encounters
issues or malfunctions, PANOPLY ensures the application’s integrity attributes
remain intact, ensuring its continued proper functioning.

Among them, SCONE and PANOPLY employ thin ”shim” layers that encap-
sulate API layers like system call tables. This architectural strategy serves the
purpose of minimizing the code required within the enclave, thereby reducing
both the interface’s size and the potential attack surface between the enclave
and the untrusted OS. Gramine, SCONE, and Panoply all represent solutions
for enhancing the security of applications in container environments. They share
the common characteristic of being developed in the C programming language,
which means that they may not exhibit the same level of robust memory safety
as the Rust-based SGX frameworks examined in this paper.

Several studies have aimed to streamline the engineering effort required for
deploying applications in SGX environments, simplifying the process for develop-
ers. Glamdring [23] proposes automating the code partitioning process to utilize
SGX. Once developers annotate security-sensitive data of the target applica-
tion, Glamdring automatically splits the application into two sections: one for
the trusted enclave and the other for the untrusted, non-enclave part. Through
efficient code relocation, including the creation of SDK interface specifications
and the relocation of resource-intensive features outside the enclave via runtime
profiling, Glamdring minimizes the engineering effort involved.

Hasan et al. [11] conduct the comparison of the comparison between ‘Port’
and ‘Shim’ approaches for implementing SGX applications. The porting ap-
proach entails rewriting or modifying the application’s code to align with the
SGX environment. While it may be more complex, it typically offers superior
performance. Conversely, the shimming approach involves the creation of an in-
termediary layer that acts as an adapter between the application and the new
SGX environment. This approach requires fewer code changes due to the pres-
ence of SGX libraries but may introduce some performance overhead. The choice
between ‘Port’ and ‘Shim’ hinges on various factors, including time constraints,
available resources, and performance requirements, providing developers with
flexibility in their approach.

Existing research on SGX-related studies for enhancing application security
in container environments commonly share the characteristic of being developed
in the C programming language. However, it is essential to note that, compared
to the Rust-based frameworks analyzed in this paper, these solutions may not
be as robust in terms of memory safety, owing to their development in C/C++.
In contrast to the aforementioned studies, our studies focus on analyzing SGX
frameworks that utilize the Rust programming language to enhance the secu-
rity of user code and data from a memory safety perspective. Furthermore, we
assess the performance of these three frameworks, each with distinct methods
of supporting SGX, from the standpoint of developers. This assessment aims to
provide guidelines that can promote the adoption of SGX.
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8 Conclusion

This paper analyzes the implementation cost when developing Rust applications
with existing Rust-based SGX frameworks. Through the comparative analysis
over three frameworks, we confirm that Occlum has strength in performance,
while developing Rust applications using Fortanix EDP is effective from the
implementation cost perspective.
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