
Single Trace Analysis of Comparison Operation
based Constant-Time CDT Sampling and

Its Countermeasure

Keon Hee Choi1[0009−0007−2557−566X], Ju-Hwan Kim1[0000−0001−8762−5553],
Jaeseung Han1[0000−0001−7111−2315], Jae Won Huh1[0000−0002−6452−8002], and

Dong-Guk Han1,2[0000−0003−1695−5103]

1 Department of Financial Information Security, Kookmin University, Seoul,
Republic of Korea

2 Department of Information Security, Cryptology, and Mathematics, Kookmin
University, Seoul, Republic of Korea

{dy1637,zzzz2605,gjwodnjs987,jae1115,christa}@kookmin.ac.kr

Abstract. Cumulative Distribution Table(CDT) sampling is a Gaus-
sian sampling technique commonly used for extracting secret coefficients
or core matrix values in lattice-based Post-Quantum Cryptography (PQC)
algorithms like FrodoKEM and FALCON. This paper introduces a novel
approach: a single trace analysis(STA) method for comparison operation
based constant-time CDT sampling, as employed in SOLMAE—a candi-
date for Korean Post-Quantum Cryptography(KPQC) first-round digital
signature Algorithm. The experiment is measuring power consumption
during the execution of SOLMAE’s sampling operation on an 8-bit AVR
compiler microcontrollers unit(MCU) using ChipWhisperer-Lite. By uti-
lizing STA, this paper recovered output of comparison operation based
constant-time CDT sampling.The source of CDT sampling leakage is in-
vestigated through an in-depth analysis of the assembly code. The 8-bit
AVR MCU conducts comparison operations on values exceeding 8 bits
by dividing them into 8-bit blocks. Consequently, the execution time of
a CDT sampling operation is influenced by the outcome of each block’s
comparison operation due to conditional branching. To address these
concerns, this paper begins by summarizing trends in CDT sampling
related research to design robust countermeasures against single trace
analysis. Furthermore, a novel implementation method for comparison
operation based constant-time CDT sampling against STA is proposed.
This assembly-level implementation removes branching statements and
performs comparative operations on all data words. Through experimen-
tal validation, this paper demonstrates the safety of the proposed coun-
termeasure algorithm against STA.

Keywords: Side Channel Analysis · Single Trace Analysis · PQC ·
Gaussian sampling · CDT sampling · KPQC · SOLMAE · AVR

2 K. Choi et al.

1 Introduction

The usage of public key cryptographic algorithms, such as Public-key Encryp-
tion(PKE)/Key Encapsulation Mechanism(KEM) and Digital Signature Algo-
rithm(DSA), is widespread across various fields. However, it has been demon-
strated that these algorithms will become vulnerable in the future due to the
emergence of quantum computers and Shor’s algorithm.[1,2] To address these
security concerns, the National Institute of Standards and Technology (NIST)
initiated the PQC standardization competition in 2016. The objective of this
competition is to develop public-key cryptographic algorithms that can resist
attacks from quantum computers. Currently, a subround is in progress follow-
ing the final round of the competition. Additionally, as part of the competition,
new algorithms are being proposed that build upon the shortlisted and selected
algorithms. The competition was divided into two main areas for public-key
cryptography, namely PKE/KEM and Digital Signature. Importantly, numerous
lattice-based algorithms have been proposed in both areas. In these lattice-based
cryptographic algorithms, important values are extracted from the Gaussian dis-
tribution, and the method employed to extract them using a table is known as
CDT sampling. In other words, CDT sampling is a crucial role in lattice-based
algorithms.

There are many ways to implement CDT sampling. The first proposed CDT
sampling has been analyzed using the technique proposed by [3], resulting in
the proposal of constant-time CDT sampling. This constant-time CDT sampling
was implemented using subtraction in FrodoKEM and Lizard. Additionally, [4,5]
proposed STA for CDT sampling. then secret value of FrodoKEM was leaked.
Repeatedly, CDT sampling is very important. In this paper, we study in detail
the security of side channel analysis for comparison operation based CDT sam-
pling in MITAKA [6] and SOLMAE [7], which are a similar structure of the
Falcon. Importantly, the security of side channel analysis for these comparison
operation based CDT sampling techniques has not been studied before this work.
This paper recovery the sampling value of CDT sampling through STA for vul-
nerability that is variable the operating time of CDT sampling depending on the
results of comparative operations in 8-bit AVR MCU. To validate this vulner-
ability, the paper employs ChipWhisperer-Lite to measure power consumption
during CDT sampling on the Atmel XMEGA-128, using the AVR compiler for
the 8-bit processor. Additionally, using assembly code root cause analysis, the
paper proposes a secure constant-time CDT sampling method using comparison
operations to counter STA.

1.1 Contribution

This paper addresses the safety of comparison operation based constant-time
CDT sampling from a side-channel analysis perspective, which has not been pre-
viously studied. In addition, by analyzing the power consumption traces used in
SOLMAE, we identified the basesampler in the overall cryptographic operation

STA of Comparison Operation based Constant-Time CDT... 3

algorithm. This increases the feasibility of the STA in this paper. So, this pa-
per describes the reason for vulnerability in comparison operation-based CDT
sampling in great detail. Experiments have confirmed that CDT sampling in
8-bitAVR MCU varies in operating time depending on comparison operation
results. The cause analysis was performed using an assembly code. In the 8-bit
AVR MCU, during CDT sampling operations, when comparing values larger
than 8 bits, the process is divided into 8-bit units. The analysis reveals that the
operation concludes the moment the result is determined, resulting in a change
in execution time. In essence, not all blocks undergo comparison operations, and
this behavior is closely associated with the presence of branch statements.

A novel STA is propose for comparison operation based CDT sampling. Ad-
ditionally, a new CDT sampling implementation method is propose to resist
side-channel analysis, contributing to the development of secure algorithms for
CDT sampling. The practical implementation removes the branch statements
from the assembly code and presents a structure where all blocks can be com-
pared. Experimental verification demonstrates the resistance to STA through
power consumption trace analysis.

1.2 Organization

The remainder of this paper introduces STA for CDT sampling through a total
of five sections. In Section 2, it provides detailed explanation of lattice, LWE,
and NTRU, emphasizing the significance of Gaussian sampling. This highlights
the importance of CDT sampling, the two implementation methods, and the
imperative need to investigate the security of comparison based CDT sampling,
which has not been previously explored. Moving on to Section 3, it presents the
experimental setup and target implementation. Section 4 delves into a side chan-
nel analysis of CDT sampling based on comparison operations. Here, it detailed
describe the application method of STA and the cause of the vulnerability. In
Section 5, we present the implementation of CDT sampling in which vulnerabil-
ities are mitigated through an analysis of the underlying causes. To demonstrate
their resistance against the attack technique proposed in this paper, it collect
actual a power consumption trace. Finally, Section 6 addresses conclusions and
future research directions.

2 Backgrounds

In this section, we provide an introductory overview of lattice-based cryptography[8],
LWE, and NTRU encryption schemes. Following that, we delve into the Gaus-
sian distribution and proceed to describe CDT sampling, which is of paramount
importance as a module. We then elaborate on timing side-channel analysis con-
ducted on the original CDT sampling, followed by an in-depth description of a
STA of the subtraction operation based constant-time CDT sampling.

4 K. Choi et al.

2.1 Lattice

Definition 1. Lattice: Given n linearly independent vectors b1,b2, ...,bn ∈
Rm, the lattice L(b1,b2, ...,bn) is defined as the set of all linear combinations
of b1,b2, ...,bn with integer coefficients, i.e.,

L(b1,b2, ...,bn) =

{
n∑

i=1

xibi | xi ∈ Z

}
.

We refer to b1,b2, ...,bn as a basis of the lattice.
Equivalently, if we define B as the m×n matrix whose columns are b1,b2, ...,bn,

then the lattice generated by B is

L(B) = {Bx | x ∈ Zn} .

2.2 NTRU and LWE

The first public key cipher based on Lattice was proposed by A.M. in 1997, and
since then, various studies have been conducted to create efficient encryption
algorithms [9]. In Lattice-based encryption, efficiency primarily refers to speed
and key size. NTRU, proposed by Hoffstein et al. in 1996 [10], is known for
its fast encryption process. Falcon, MITAKA, and SOLMAE are examples of
NTRU-based encryption algorithms [6,11,12].

Definition 2. NTRU: Let q be a positive integer, and z(x) ∈ Z be a
monic polynomial. Then, a set of NTRU secrets consists of four polynomials
f, g, F,G ∈ Rq which satisfy the NTRU equation:

fG− gF ≡ q mod z(x).

And define h as h← g · f−1 mod q. Then, given h, find f and g.
LWE was proposed by Regev in 2005 [13]. LWE is known to be NP-hard,

even when adding small values of noise. CRYSTAL-KYBER and CRYSTAL-
Dilithium are examples of LWE-based cryptographic algorithms [12,14].

Definition 3. LWE: Let n and q be positive integers, and let χ be a dis-
tribution over Z. For a vector s ∈ Zn

q , the LWE distribution As,χ over Zn
q × Zq

obtained by choosing a ∈ Zn
q and an integer error e from χ. The distribution

returns the pair (a, ⟨a, s⟩+ e mod q).

There are two important concepts of LWE.

– Search-LWE problem: Given m independent samples (ai, bi) ∈ Zn
q × Zq

drawn from As,χ, find s.
– Decision-LWE problem: Given m independent samples (ai, bi) ∈ Zn

q ×Zq,
distinguish whether each sample is drawn from the uniform distribution or
from As,χ.

STA of Comparison Operation based Constant-Time CDT... 5

2.3 Discrete Gaussian Distribution

In this paper, CDT sampling is the method to extract random values from Gaus-
sian distribution. Prior to CDT sampling, the definition of the discrete Gaussian
distribution on the lattice is given as follows.

Definition 4. Discrete Gaussian Distribution over Lattice: Let ∀c ∈
Rn, σ ∈ R+,

∀x ∈ Rn, ρσ,c(x) = exp(
−π∥ x− c ∥2

σ2
).

Then, for ∀c ∈ Rn, σ ∈ R+, n-dimensional lattice L, define the Discrete Gaussian
Distribution over L as:

∀x ∈ L,DL,σ,c(x) =
ρσ,c(x)

ρσ,c(L)
.

2.4 CDT Sampling

Some lattice-based schemes based on LWE extract the error from a Gaussian
distribution. Similarly, certain lattice-based schemes based on NTRU create es-
sential values from a Gaussian distribution. CDT sampling is an efficient method
for extracting values from these Gaussian distributions, and ensuring the security
of such CDT sampling is of utmost importance. The CDT table stores specific
probability values of the Gaussian distribution. CDT sampling is an algorithm
that randomly generates probability values and determines the range within
which the generated values fall among those stored in the table. The value to
be sampled at this point corresponds to the determined index. There are several
ways to implement CDT sampling, and this paper deals with the safety study
of implementing CDT sampling based on comparison operations.

Algorithm 1 The CDT sampling vulnerable to timing attack
Input : CDT table Ψ , σ, τ

Output : Sampled value S
1: rnd← [0, τσ) ∩ Z uniformly at random
2: sign← [0, 1] ∩ Z uniformly at random
3: i← 0
4: while (rnd > Ψ [i]) do
5: i++
6: end while
7: S ← ((−sign) ∧ i) + sign
8: return S

The initially proposed CDT sampling Algorithm 1 was found to be vulner-
able to the timing attack proposed by [3]. This vulnerability arises due to the

6 K. Choi et al.

different timing of the while loop termination. As a remedy, constant-time CDT
sampling utilizes for statements. There are two ways to implement this: CDT
sampling based on comparison operations and CDT sampling based on subtrac-
tion operations.

Algorithm 2 The subtraction operation based CDT sampling

Input : CDT table Ψ of length ℓ, σ, τ
Output : Sampled value S

1: rnd← [0, τσ) uniformly at random
2: sign← [0, 1] ∩ Z uniformly at random
3: S ← 0
4: for i = 0 to ℓ− 1 do
5: S += (Ψ [i]− rnd)≫ 63
6: end for
7: S ← ((−sign) ∧ S) + sign
8: return S

Both methods are available for schemes that use CDT sampling. However,
only subtraction based CDT sampling has been suggested to be vulnerable. Algo-
rithm 2 is an example of subtraction operation based CDT sampling. LWE-based
lattice-based schemes commonly employ this algorithm [15,16]. Additionally, it
has been proposed to perform STA by the power differences between negative
and positive numbers [4,5]. Moreover, an attack to find the secret key of a cryp-
tographic algorithm has been proposed using this method.

Algorithm 3 The comparison operation based CDT sampling: half-Gaussian table
access CDT

Input : CDT table Ψ of length ℓ, σ, τ
Output : Sampled value S

1: rnd← [0, τσ) uniformly at random
2: sign← [0, 1] ∩ Z uniformly at random
3: S ← 0
4: for i = 0 to ℓ− 1 do
5: S += (rnd ≥ Ψ [i])
6: end for
7: S ← ((−sign) ∧ S) + sign
8: return S

On the other hand, NTRU-based lattice-based schemes often utilize CDT
sampling based on comparison operations, especially in [6,7,17] which employs
hybrid sampling. Algorithm 3 is the comparison based CDT sampling. Unlike

STA of Comparison Operation based Constant-Time CDT... 7

conventional methods, it performs sampling from Gaussian distribution using
comparison operations.

3 Experiment Setup

In this section, the experimental environment and the CDT sampling code em-
ployed in the STA experiments are described. The C code of SOLMAE, a can-
didate from the KPQC Round 1 digital signature category, was implemented in
the AtmelXMEGA128 environment. Power consumption traces were collected
during the operation for analysis.

3.1 Implimentation of comparison operation based CDT sampling

The BaseSampler function implemented in SOLMAE and MITAKA employs a
comparison operation based CDT sampling approach. Thus, this paper utilizes
the reference code of SOLMAE, which was proposed as a candidate for KPQC
Round 1 digital signature. Specifically, our focus is on the BaseSampler func-
tion within the code. The sampling technique in SOLMAE follows the sampling
outlined in [17] and employs a table to generate values from a half-Gaussian
distribution. The BaseSampler function is illustrated in Listing 1.1. The CDT
table contains 13 values arranged in ascending order, which are sequentially com-
pared against the randomly selected value "r" from the reference code.

int base_sampler()
{
uint64_t r = get64(); //get randomly 64 bits from RNG.
int res = 0;
for (int i = 0; i < TABLE_SIZE; i++)
res += (r >= CDT[i]);

return res;
}

Listing 1.1: BaseSampler function C code

3.2 Target Device of Experiment

The board utilized in this paper consists of an AtmelXMEGA128 (8-bit proces-
sor) and Chipwhisperer-Lite. The AtmelXMEGA128 is an 8-bit AVR MCU.
The BaseSampler function implemented in SOLMAE operates on the At-
melXMEGA128 board, while Chipwhisperer-Lite is employed to collect the power
consumption data during the BaseSampler function operation Figure 1.

The experimental steps conducted in this paper are as follows:

8 K. Choi et al.

– Collection of power consumption data during the comparison operation-
based CDT sampling.

– Analysis of the assembly language, considering different compiler optimiza-
tion levels, to identify vulnerabilities in the comparison operations.

– Investigation of comparison operation vulnerabilities using real-world traces.
– Acquisition of output values for the newly proposed CDT sampling algorithm

through STA.

Fig. 1: AtmelXMEGA128(8-bit AVR MCU) and Chipwhisperer-Lite

This paper demonstrates that vulnerable implementations of comparison op-
erations, which could be realistic in a commercialized environment, can expose
the actual values of CDT sampling. Furthermore, a CDT sampling algorithm
resistant to side-channel attacks is proposed.

4 Side Channel Analysis of Comparison Operation based
Constant-Time CDT Sampling

4.1 Description of the Cause of Vulnerability

The security of comparison operations heavily depends on the specific implemen-
tation technique and enviroment like compiler. Let us consider the comparison
of two multi-word numbers, denoted as A and B in Figure 2.

Various methods can be employed to compare these numbers. One common
approach is to initiate the comparison with the most significant words. Compare
A and B as follows:

1. Check if A0 is greater than B0. If so, A > B.
2. Check if A0 is less than B0. If true, A < B.

STA of Comparison Operation based Constant-Time CDT... 9

3. Check if A0 and B0 are equal. If true, continue to compare the next word
until the comparison ends.

Fig. 2: The comparison of two multi-word numbers, denoted as A and B. A and
B are each 8 blocks.

This implementation is vulnerable to side channel analysis. For instance, let’s
consider two scenarios: (1) A0 > B0 and (2) A0 = B0, A1 < B1. In these situa-
tions, the execution time of the comparison operations may differ. As a result,
timing vulnerabilities arise, which can be exploited through STA to distinguish
between the two scenarios. Therefore, a comparison algorithm resistant to STA
is required.

<base_sampler>:
...
24c: ldi r22, 0x00
24e: ldi r23, 0x00
250: ldd r24, Z+7
252: cp r25, r24
254: brcs .+74 ; 0x2a0 <base_sampler+0x92>
256: cp r24, r25
258: brne .+66 ; 0x29c <base_sampler+0x8e>
25a: ldd r24, Z+6
25c: cp r20, r24
25e: brcs .+64 ; 0x2a0 <base_sampler+0x92>
260: cp r24, r20
262: brne .+56 ; 0x29c <base_sampler+0x8e>
...
29c: ldi r22, 0x01 ; 1
29e: ldi r23, 0x00 ; 0
2a0: add r18, r22
2a2: adc r19, r23
...

Listing 1.2: Base Sampler() assembly code

In this section, the vulnerabilities associated with various implementations of
weak comparison operations are explored. The assembly code of the BaseSampler

10 K. Choi et al.

function used in SOLMAE is examined for various optimization levels (Level:
0, 1, 2, 3, s) provided by the AtmelXMEGA128. The assembly code depicted
in Listing 1.2 illustrates the part of BaseSampler function for the optimized
s-level. It is evident that the comparisons are performed sequentially, word by
word. Notably, vulnerabilities in the word based comparison method are evi-
dent. The process of performing comparison operations for each optimization
level follows a similar pattern as shown in Listing 1.2. Subsequent instructions
are dependent on the results of the word comparisons, leading to variations in
executed operations and resulting in distinct power consumption patterns man-
ifested as differences in power traces.

In more detail, the first word is compared in lines 252, 254, and the next
operation varies depending on the result. First, calculate r25 − r24. If a carry
occurred, then branch to line 2a0. This indicates that r24 was a greater number
than r25. If no carry has occurred, go to lines 256, 258. Then, calculate r24 −
r25. If the values are not the same between r24 and r25, branch to line 29c.
This means that r25 was a greater number than r24. If the values were the
same, compare the next two words by executing the following lines. Repeat
this process until the comparison operation is finally completed. In other words,
the vulnerability appears in the fact that the processing method in the branch
statement varies depending on the result of the comparison operation. This is
an important point to understand for design of countermeasure.

4.2 Single Trace Analysis on the Comparison Operation based
Constant-time CDT Sampling

Fig. 3: The power consumption trace of maximum r on uint64_t

The BaseSampler function utilized in SOLMAE implements CDT sampling
through comparison operations, as depicted in Listing 1.1. The comparison oper-
ations are performed between two operands of the uint64_t data type: a random
variable r and each the 13 values stored in the CDT table. On an 8-bit processor,
these comparison operations are performed by dividing them into 8 words. The

STA of Comparison Operation based Constant-Time CDT... 11

aforementioned comparison operations have two vulnerabilities. First, the num-
ber of comparisons depends on the values being compared. Second, the value
being added depends on the result of each comparison operation, i.e., an addi-
tional operation is required to add 1. Therefore, it is risky to work with data
types larger than word.

Figure 3 shows the power consumption trace of the CDTsampling when r
is set to the maximum value of the uint64_t data type (i.e., 264 − 1). From
the power consumption trace, it is evident that the number of comparisons with
each CDT table differs, indicating variations in computation time based on the
compared values.

Fig. 4: Two power consumption traces differ by only one in sampling values. They
differ by only one in r values

Figure 4 shows two power consumption traces with only a difference of 1 in
the values of ’r.’ More precisely, the return values, sampled by the difference in
’r’ values, also differ by one. The noted discrepancy is a result of the optional
addition operation, leading to evident distinctions between the two traces. This
is also related to the data type of the resulting value returned. Since the returned
data type is a unit larger than the word, a difference also occurs in the addition
operation.These discrepancies in power consumption traces enable the visual
detection of any divergence in assembly instructions.

An increment of 1 of the sampling result occurs when r is greater than or
equal to value of table in the comparison between r and the value of table.

12 K. Choi et al.

Furthermore, the values in the CDT table are arranged in ascending order. Con-
sequently, once r becomes smaller than a particular value in the CDT table, the
resulting value remains unchanged. This implies that if a comparison operation
with a CDT table value greater than r is identified, the output of CDT sam-
pling can be obtained. The power consumption traces of the first word in the
comparison operation, as depicted in Figure 5, exhibit distinct shapes for the
scenarios where r is greater than, equal to, and less than the value in the CDT
table, respectively. The visual distinctiveness of these power traces facilitates
the acquisition of the CDT sampling value. This vulnerability arises from the
inherent characteristics of the weak comparison operation, as discussed earlier.

Fig. 5: The power consumption traces of CDT sampling have different shapes
for each r value: (a) A0 < B0, (b) A0 = B0, and (c) A0 > B0 where Ai and Bi

represent individual words.

5 Countermeasure

In the previous section, we highlighted the vulnerability of comparison operations
when processing data larger than the word size of the processor. To address this
issue and ensure the safety of comparison operation based constant-time CDT
sampling, we propose a novel implementation method with countermeasure.

Before introducing the proposed countermeasure, we first provide an overview
of trends in countermeasures related to CDT sampling. First, in [4] the CDT
sampling method using Table was proposed. But it requires a large storage space.

STA of Comparison Operation based Constant-Time CDT... 13

In addition, there is also the protection of sampling through the masking method
proposed by [18] and the random shuffling method proposed by [19,20]. However,
But these have memory overheads and time overheads. And analysis techniques
related to these are being proposed.[21]. However, since there have not been
many studies related to sampling using comparison operation, a new concept of
implementing CDT sampling using comparison operation has been attempted.

In previous sections, the cause of vulnerability mentioned in this paper were
attributed to the varying number of clock cycles depending on the branch state-
ment in the 8-bit AVR MCU environment. Hence, the countermeasure proposed
an implementation method that eliminates the discrepancy in the number of
clock cycles. The proposed secure CDT sampling algorithm in this paper is de-
noted as Algorithm 4. The algorithm processes the r and the CDT table in
word-sized blocks, corresponding to the processing units of the processor. The
values in r, CDT table that exceed the word size are divided into n word blocks.
Comparison operations are performed identically each block. However, if the
outcome of a comparison operation is determined in the previous block, subse-
quent operations are only performed, i.e., it does not affect the result. Due to the
inherent nature of comparison operations, methods employing them may result
in branching. Branching commands such as ’brne’ and ’brcc’ are commonly used.
In AVR instruction sets, ’brne’ and ’brcc’ differ by only 1 with respect to true
and false conditions, allowing for an equal adjustment in the number of clock
cycles for the operation. However, this implementation approach can be consid-
ered risky. Therefore, this paper introduces an assembly code that effectively
eliminates the need for branch commands while implementing Algorithm 4.

Algorithm 4 STA-Resistant CDT sampling
Input : -

Output : Sampled value z
1: z ← 0
2: ri

$← [0, 2word size) uniformly random with i = 0 to n
3: for i = 0 to Table_size− 1 do
4: gt← 0, lt← 0
5: for j = 0 to n− 1 do
6: gt |= (¬(gt | lt))&(rj > CDTi,j)
7: lt |= (¬(gt | lt))&(rj < CDTi,j)
8: end for
9: z += 1⊕ lt

10: end for
11: return z

14 K. Choi et al.

<STA-Resistant CDT sampling>:
...
278: ldi r18, 0x00 ; 0
27a: cp r22, r23
27c: adc r18, r18
27e: and r24, r18
280: or r19, r24
282: mov r24, r19
284: or r24, r25
286: com r24
288: ldi r18, 0x00 ; 0
28a: cp r23, r22
28c: adc r18, r18
...

Listing 1.3: The comparison operation of assembly implementation code of
countermeasure

Fig. 6: The traces that overlap all three types of STA-Resident CDT sampling.
And (a) A0 < B0, (b) A0 = B0, and (c) A0 > B0 where Ai and Bi represent
individual words.

Listing 1.3 is a parts of the assembly code, representing the comparison op-
eration in the proposed countermeasure. The blue and red lines in Listing 1.3
correspond to the comparison operations in Algorithm 4. Lines 278 and 288 ini-
tialize the value of register r18, where the result of the comparison operation

STA of Comparison Operation based Constant-Time CDT... 15

will be stored, to zero. Lines 27a and 28a perform comparisons between registers
r22 and r23 using ’cp’ commands, respectively, and store the results in the carry
flag. Lines 27c and 28c execute an addition operation on the initialized r18 using
the ’adc’ (add with carry) instruction. During this operation, the stored carry
values are combined, resulting in the storage of the comparison operation’s re-
sult within r18. This approach allowed me to eliminate the need for branching
instructions, thus removing the vulnerabilities previously mentioned.

Figure 6 illustrates the power consumption traces of 3 different types of the
Listing 1.3 operating in the 8-bit AVR MCU. The power consumption traces (a),
(b), and (c), which are fully examined by overlapping with a, b, and c, represent
the corresponding power consumption traces. Similar to Figure 5, (a), (b), and
(c) signify whether the most significant block of ’r’ is greater than, equal to,
or less than the value in the CDT table. The trace reveals that there are no
discernible variations in the comparison time across different values. This serves
as compelling evidence that CDT sampling demonstrates resistance against STA.

6 Conclusion and Futurework

This paper introduces a secure implementation of CDT sampling for Gaussian
sampling techniques. CDT sampling is used by many algorithms to generate im-
portant values. And this paper presents an analysis of a previously unexplored
vulnerability that STA in comparison operation-based CDT sampling. This pa-
per identifies a vulnerability in which the operation time varies depending on
the results of the comparison operation in 8-bit AVR MCU. The cause of the
vulnerability was demonstrated through different of the number of instruction
at the assembly stage. It was investigated that it was a vulnerability due to the
difference in the number of clocks.

The feasibility of extracting CDT sampling outputs in real-world environ-
ments, such as AtmelXMEGA128, is demonstrated. AtmelXMEGA128 is an
8-bit AVR MCU and is used in various environments. We also employed dif-
ferent compiler options (0, 1, 2, 3, s) provided by Chipwhisperer in the At-
melXMEGA128 environment and verified the presence of the vulnerability across
all of them. In this paper, we utilized the example of compiler option level ’s,’
which is set as the default among several available options. In this paper, we
did not show power consumption traces for other options, as we observed that
all options exhibited the same or even greater leakage. In addition, this paper
deals with vulnerabilities that depend on the processor’s word size and com-
piler. During our investigation, we observed that the number of clock cycles
varied depending on the branch instruction employed. It also showed the im-
pact of the attack by recovering the sampling value. This finding sheds light on
the potential risks associated with future cryptographic algorithms that employ
CDT sampling with vulnerable comparison operations, using SOLMAE as a case
study. We conducted an analysis of power consumption traces to pinpoint the
sections of the SOLMAE algorithm utilizing CDT sampling. This demonstrated
the practical applicability of STA.

16 K. Choi et al.

To address these concerns, a robust CDT sampling design is proposed, en-
suring security against STA in real-world. To address these issues, our proposed
countermeasure for CDT sampling in this paper aims to stabilize the number
of clock cycles, irrespective of the branch statement used. So, First we delved
into the countermeasure algorithms for CDT sampling that were previously ex-
plored. Our investigation revealed the existence of algorithms employing table-
based comparison operations, masking methods, and shuffling techniques. And
we present a method for implementing comparison operation based constant-
time CDT sampling, designed to mitigate the security risks associated with the
previously proposed STA. The algorithm is crafted to segment and store data
in units processed by the processor, facilitating comparisons across all blocks.
This design allows for sampling without reliance on the results of comparison
operations.

In real-world implementations, caution is warranted branch statements. Branch
statements, such as ’brne’ and ’brcc’ commands in 8-bit AVR MCU, introduce
variability in clock cycles depending on the outcome of comparison operations.
If the result of the branch leads to a distant address, the number of clock cy-
cles will vary based on the outcome. In essence, it is the need for caution in
employing branch statements. To address this variability, we propose a compar-
ison operation based constant-time CDT sampling implementation method at
the actual assembly code level. Instead of using branch statements, the results
of comparison operations are stored in the result register using instructions that
’cp’ and ’adc’. This approach ensures uniform operation time without relying
on the specific outcome of the comparison operation. Additionally, this paper
showed the power consumption traces using Chipwhisperer-Lite when operating
proposed countermeasure algorithm in AtmelXMEGA128(8-bit AVR MCU) to
demonstrate safety against STA.

The experimental environment of this paper is 8-bit AVR MCU. In the future,
we plan to investigate the possibility of STA for comparison operation based
constant-time CDT sampling in various environments.

References

1. P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete log-
arithms on a quantum computer,” SIAM review, vol. 41, no. 2, pp. 303–332, 1999.

2. M. Mosca, “Cybersecurity in an era with quantum computers: Will we be ready?,”
IEEE Security & Privacy, vol. 16, no. 5, pp. 38–41, 2018.

3. P. C. Kocher, “Timing attacks on implementations of diffie-hellman, rsa, dss, and
other systems,” in Advances in Cryptology—CRYPTO’96: 16th Annual Interna-
tional Cryptology Conference Santa Barbara, California, USA August 18–22, 1996
Proceedings 16, pp. 104–113, Springer, 1996.

4. S. Kim and S. Hong, “Single trace analysis on constant time cdt sampler and its
countermeasure,” Applied Sciences, vol. 8, no. 10, p. 1809, 2018.

5. S. Marzougui, I. Kabin, J. Krämer, T. Aulbach, and J.-P. Seifert, “On the feasi-
bility of single-trace attacks on the gaussian sampler using a cdt,” in International
Workshop on Constructive Side-Channel Analysis and Secure Design, pp. 149–169,
Springer, 2023.

STA of Comparison Operation based Constant-Time CDT... 17

6. T. Espitau, P.-A. Fouque, F. Gérard, M. Rossi, A. Takahashi, M. Tibouchi, A. Wal-
let, and Y. Yu, “Mitaka: a simpler, parallelizable, maskable variant of falcon,” in
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pp. 222–253, Springer, 2022.

7. K. Kim, M. Tibouchi, A. Wallet, T. Espitau, A. Takahashi, Y. Yu, and S. Guilley,
“Solmae algorithm specifications.” https://kpqc.or.kr/1, 2020.

8. O. Regev, “Lecture notes of lattices in computer science, taught at the computer
science tel aviv university,” 2009.

9. M. Ajtai and C. Dwork, “A public-key cryptosystem with worst-case/average-case
equivalence,” in Proceedings of the twenty-ninth annual ACM symposium on Theory
of computing, pp. 284–293, 1997.

10. J. Hoffstein, J. Pipher, and J. H. Silverman, “Ntru: A ring-based public key cryp-
tosystem,” in International algorithmic number theory symposium, pp. 267–288,
Springer, 1998.

11. P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin, T. Prest,
T. Ricosset, G. Seiler, W. Whyte, Z. Zhang, et al., “Falcon: Fast-fourier lattice-
based compact signatures over ntru,” Submission to the NIST’s post-quantum cryp-
tography standardization process, vol. 36, no. 5, pp. 1–75, 2018.

12. S. Bai, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Silder,
and D. Stehlé, “Crystals-dilithium: Algorithm specifications and supporting docu-
mentation,” 2020.

13. O. Regev, “On lattices, learning with errors, random linear codes, and cryptogra-
phy,” Journal of the ACM (JACM), vol. 56, no. 6, pp. 1–40, 2009.

14. R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck,
P. Schwabe, G. Seiler, and D. Stehlé, “Crystals-kyber algorithm specifications and
supporting documentation,” NIST PQC Round, vol. 2, no. 4, pp. 1–43, 2019.

15. J. Bos, C. Costello, L. Ducas, I. Mironov, M. Naehrig, V. Nikolaenko, A. Raghu-
nathan, and D. Stebila, “Frodo: Take off the ring! practical, quantum-secure key
exchange from lwe,” in Proceedings of the 2016 ACM SIGSAC conference on com-
puter and communications security, pp. 1006–1018, 2016.

16. J. H. Cheon, D. Kim, J. Lee, and Y. Song, “Lizard: Cut off the tail! a practical post-
quantum public-key encryption from lwe and lwr,” in International Conference on
Security and Cryptography for Networks, pp. 160–177, Springer, 2018.

17. J. Howe, T. Prest, T. Ricosset, and M. Rossi, “Isochronous gaussian sampling: From
inception to implementation: With applications to the falcon signature scheme,”
in Post-Quantum Cryptography: 11th International Conference, PQCrypto 2020,
Paris, France, April 15–17, 2020, Proceedings 11, pp. 53–71, Springer, 2020.

18. T. Schneider, C. Paglialonga, T. Oder, and T. Güneysu, “Efficiently masking
binomial sampling at arbitrary orders for lattice-based crypto,” in Public-Key
Cryptography–PKC 2019: 22nd IACR International Conference on Practice and
Theory of Public-Key Cryptography, Beijing, China, April 14-17, 2019, Proceed-
ings, Part II 22, pp. 534–564, Springer, 2019.

19. D. E. Knuth, Art of computer programming, volume 2: Seminumerical algorithms.
Addison-Wesley Professional, 2014.

20. R. A. Fisher and F. Yates, Statistical tables for biological, agricultural and medical
research. Hafner Publishing Company, 1953.

21. K. Ngo, E. Dubrova, Q. Guo, and T. Johansson, “A side-channel attack on a masked
ind-cca secure saber kem implementation,” IACR Transactions on Cryptographic
Hardware and Embedded Systems, pp. 676–707, 2021.

https://kpqc.or.kr/1

	Single Trace Analysis of Comparison Operation based Constant-Time CDT Sampling and Its Countermeasure

