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Abstract. It is well known that in ECDSA signatures, the secret key
can be recovered if more than a certain number of tuples of random
nonce partial information, corresponding message hash values, and sig-
natures are leaked. There exist two established methods for recovering a
secret key, namely lattice-based attack and Fourier analysis-based attack.
When using the Fourier analysis-based attack, the number of signatures
required for the attack can be evaluated through a precise calculation
of the modular bias even if the leaked nonce contains errors. Previous
works have focused on two cases: error-free cases and the case for the
first MSB has errors among all of the nonce leakage. In this study, we
extend the technique to the noisy multiple bits case to calculate the pre-
cise value of the modular bias for the case that multiple bits (say, l bits
from MSB) have errors. Aranha et al. (ACM CCS 2020) introduced a
linear programming problem with parameters to evaluate the number
of signatures, time, and memory required for a Fourier analysis-based
attack. They also employed a SageMath module to optimize the number
of signatures and time required for the attack. Furthermore, we show
by experiments that 131-bit ECDSA is vulnerable when the first MSB
of the nonce is leaked without error and when 2 MSBs are leaked with
an error rate 0.1 each, which implies that total error rate is about 0.19.
We then show that the latter case requires less signatures to recover the
secret key.

Keywords: ECDSA · Fourier analysis-based attack · Side-channel at-
tack

1 Introduction

The Elliptic Curve Digital Signature Algorithm (ECDSA) is a digital signature
algorithm that utilizes elliptic curves. It is widely used in various systems such
as SSH, SSL/TLS, Bitcoin, and others. Therefore, evaluating the potential for
leakage of secret information and the effect it may have on the overall security
of a system is critical.

A nonce (Number used only ONCE) is secret information that is randomly
generated during the signing process. However, it is possible to leak nonces
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through side-channel attacks. An attack is reduced to the Hidden Number Prob-
lem (HNP) if a certain number of pairs of nonce partial bits, corresponding
message hash values, and signatures are available [5]. Lattice-based and Fourier-
analysis-based attacks are known as methods that solve HNPs.

A lattice-based attack can find a secret key with a relatively small number of
signatures if the MSBs of the nonce are known without errors. If the secret key is
160-bit and the 2 bits in a nonce is leaked [1][7][9]; if the secret key is 256-bit and
the 3 bits in a nonce is leaked [1][9]; or if the secret key is 384-bit and the 4 bits
in a nonce is leaked [1][9], then several dozens to several thousands of signatures
can be used to recover the secret key in a few minutes to hours. Lattice-based
attacks require more than 2 bits of nonce information without errors but do not
require many signatures.

In a Fourier analysis-based attack, recovering the secret key is possible when
the MSBs of the nonce are known without errors. If the key length is 192-bit [3] or
256-bit [11], the signatures can be solved with a 1 or 2 bits leak with small errors,
respectively. It was reported that several hundreds of millions of signatures and
several days were required to solve the problem using workstations and clusters
in those cases. In addition, the attack can also be successful if more MSBs are
obtained with errors, but it requires many signatures, computational cost and
time.

Aranha et al. [3] found vulnerabilities in OpenSSL 1.0.2 and 1.1.0, etc.,
against side-channel attacks that leak the MSB of ECDSA nonce, and used
these vulnerabilities in their attacks. They estimated the number of signatures
and costs of time, and memory of an attack when the 1 bit nonce is leaked with
errors by estimating the modular bias. The number of signatures, cost of time,
and memory required for the attack are also obtained by using the 4-list sum
algorithm for linear combination, which is critical in Fourier analysis-based at-
tacks. They then reduced the problem of optimizing the number of signatures
to a linear programming problem and solved it using the Mixed Integer Linear
Program module of SageMath to optimize the number of signatures, costs of
memory, and time required for the attack [10].

1.1 Our contributions

In this paper, we estimate the number of signatures, costs of time, and memory
required for an attack in the case of multiple bits by estimating the modular bias
when multiple MSBs with errors are obtained. In previous studies, modular bias
has only been formulated for MSB leakage with errors or multiple bit leakage
without errors. We have successfully generalized the formulation of the module
bias. This allows us to estimate the modular bias in any case and to obtain an
estimate of the number of signatures needed to recover a secret key.

We also focus on changes to the number of signatures when the error rate
changes. Then, the optimal parameters are selected based on the evaluation of
the number of obtained signatures. We extend their optimization program with
a generalized modular bias to find the number of signatures required to recover
the secret key. We also perform an actual attack against 131-bit ECDSA and
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confirm that it is possible to recover the secret key. Furthermore, we show from
both theoretical analysis for modular bias and experiment that the secret key
is successfully recovered with fewer signatures when each of the 2 bits is leaked
with an error rate of 0.1 than when the nonce is leaked with 1 bit without error.

2 Preliminaries

2.1 ECDSA signature generation algorithm

The set of solutions (x, y) ∈ F×F of an elliptic curve E defined over a field F with
an infinity point O is a commutative group derived from the chord-and-tangent
rule.

The signature generation algorithm of the ECDSA is shown in Algorithm 1.
The secret key sk is λ-bit. The secret information (i.e., nonce k) is randomly
generated in the first line of Algorithm 1. In this study, we consider the case in
which the MSBs of k are leaked.

Algorithm 1 ECDSA signature generation
Input: prime number q, secret key sk ∈ Zq, message msg ∈ {0, 1}∗, base point on

elliptic curve G, and cryptographic hash function H : {0, 1}∗ → Zq

Output: valid signatures (r, s)
1: k is chosen at random from Zq

2: R = (rx, ry)← kG; r ← rx mod q
3: s ≡ (H (msg) + r · sk) /k mod q
4: return (r, s)

2.2 Hidden number problem with errors

The function MSBn (x) returns the top n bits of x for a positive integer x.
Let b be a positive integer, {0, 1}b be a fixed distribution on χb, and the error
bit sequence e be sampled from χb. The probabilistic algorithm EMSBχb

(x)
takes x, b as input and returns MSBb (x) ⊕ e. For each i = 1, . . . ,M , let zi be
zi ≡ ki − hi · sk mod q and hi, ki be uniform random values on Zq. The HNP is
the problem of finding sk that satisfies the aforementioned equations given the
hi, zi,EMSBχb

(ki) obtained for each i = 1, . . . ,M .
The ECDSA signature (r, s) is generated according to Algorithm 1, nonce

k ∈ Zq is chosen uniformly at random, and s ≡ (H (msg) + r · sk) /k (mod q) is
satisfied. This yields the following equation.

H (msg) /s ≡ k − (r/s) · sk mod q

If the MSBs of k are obtained, we obtain an instance of HNP as z ≡ H (msg) /s
(mod q) and h ≡ r/s (mod q),
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2.3 Bias function and sample bias

We follow the idea of [3] and first show definitions of bias function and sample
bias.

Definition 1. Let K be a random variable over Zq. The modulus bias Bq (K)
is defined as

Bq (K) = E [exp ((2πK/q) i)]

Let E (K) denote the expected value of random variable K and let i be an imag-
inary unit. In the same way, the sample bias of the set of points K = {ki}Mi=1 in
Zq is defined as

Bq (K) =
1

M

M∑
i=1

exp ((2πki/q) i) (1)

By fast Fourier transform (FFT), the computational complexity is O (M logM).
For some positive integer l, let the higher l bits of K be fixed to a certain
constant, and the remaining (λ− l) bits be random. The following equation is
given in [11].

lim
q→∞

|Bq (K) | = 2l

π
· sin

( π

2l

)
(2)

If no bits are fixed, its absolute value of sample bias is estimated as 1/
√
M . In

addition, we can easily see that liml→∞ limq→∞ |Bq (K)| = 1 from Equation (2).
The following lemma is given in [3].

Lemma 1. Suppose that the random variable K follows the following distribu-
tion on Zq for b ∈ {0, 1}, all ε ∈ [0, 1/2] and even q > 0.{

Pr [K = ki] = (1− b) · 1−ε
q/2 + b · ε

q/2 if 0 ≤ ki < q/2

Pr [K = ki] = b · 1−ε
q/2 + (1− b) · ε

q/2 if q/2 ≤ ki < q

Letting Kb be a uniform distribution over [bq/2, (b+ 1) q/2), the modular bias
of K is given by

Bq (K) = (1− 2ε)Bq (Kb) . (3)

It can be easily verified that |Bq (K0)| = |Bq (K1)|. Note that Equation (3)
considers only 1 bit leakage. The absolute value of Bq (K) is given by

|Bq (K)| = (1− 2ε) · 2
π
sin

π

2
. (4)

2.4 Fourier analysis-based attack

Bleichenbacher introduced Fourier analysis based attack in [4]. First, we consider
a naive search method to obtain the secret key sk using the bias function, which
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is shown in Algorithm 2. Let M be the number of signatures obtained. In the
case in which the input sample {(zi, hi)}Mi=1 is biased Ki, we randomly select
a candidate secret key w ∈ Zq and then calculate Kw = {zi + hiw mod q}Mi=1.
Next, we compute |Bq (Kw)| under Equation (1). If w = sk, then Kw is biased
and |Bq (Kw)| has the peak. Then finding the correct key sk is possible. However,
this method is inefficient because it must search w in all Zq.

Algorithm 2 Naive search
Input: (hi, zi)

M
i=1: HNP samples over Zq

Output: Correct secret key sk
1: // Select a candidate w for the secret key.
2: for w = 1 to q − 1 do
3: Calculate Kw = {zi + hiw mod q}Mi=1.
4: Calculate |Bq (Kw)|.
5: end for
6: return w which maximizes |Bq (Kw)|.

De Mulder et al. [8] and Aranha et al. [2] proposed a method to efficiently
search for a secret key without performing an exhaustive search. Their methods
perform a linear combination of input samples to satisfy h′

j < LFFT until M ′

samples are obtained. Consequently, a new linear combined sample
{(

h′
j , z

′
j

)}M ′

j=1

is generated. The width of the peak w is extended from 1 to approximately
q/LFFT, showing that recovering the higher logLFFT bits of the secret key is
possible. In a Fourier analysis-based attack, the entire secret key is recovered by
repeating this process.

Let λ′ be the number of already recovered bits in sk. At the first step of
Fourier analysis-based attack, λ′ = logLFFT. Letting the higher λ′ bits of sk
be skhi and the unknown lower (λ− λ′) bits be sklo, sk can be expressed as
sk = 2λ−λ′

skhi + sklo. Thus, the new HNP formula for the case in which the
higher λ′ bits of sk has already been recovered can be rewritten as

k ≡ z + h ·
(
2λ−λ′

skhi + sklo

)
mod q

k ≡ z + h · 2λ−λ′
skhi + h · sklo mod q

k ≡ ẑ + h · sklo mod q,

where ẑ = z+h ·2λ−λ′
skhi. Thus, we obtain the new HNP samples {(ẑi, hi)}Mi=1.

When the Fourier analysis-based attack is repeated, λ′ increases. The ẑ is up-
dated in each repetition and, finally, the whole of sk can be recovered.

Algorithm 3 shows Bleichenbacher’s attack framework for a Fourier analysis-
based attack. The range reduction phase of the algorithm considers two con-
straints on linear combinations for efficient key searches, namely, small and
sparse linear combinations.
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Algorithm 3 Bleichenbacher’s attack framework
Input: {(hi, zi)}Mi=1: Sample of HNP over Zq. M ′: Number of linear combinations to

find. LFFT: FFT table size.
Output: MSB(sk)logLFFT

.
1: Range reduction
2: For all j ∈ [1,M ′], the coefficients are ωi,j ∈ {−1, 0, 1}, and the linear combination

pairs are denoted as
(
h′
j , z

′
j

)
=

(∑
i ωi,jhi,

∑
i ωi,jzi

)
. In this case, we generate M ′

sample
{(

h′
j , z

′
j

)}M′

j=1
that satisfies the following two conditions.

(1) Small : 0 ≤ h′
j < LFFT.

(2) Sparse : |Bq (K) |Ωj ≫ 1/
√
M ′, where Ωj :=

∑
i |ωi,j | for all j ∈ [1,M ′].

3: Bias computation
4: Z := (Z0, . . . ZLFFT−1)← (0, . . . , 0)
5: for j = 1 to M ′ do
6: Zh′

j
← Zh′

j
+ exp

((
2πz′j/q

)
i
)

7: end for
8: Let wi = iq/LFFT, {Bq (Kwi)}

LFFT−1
i=0 ← FFT (Z)

=
(
Bq (Kw0) , Bq (Kw1) , . . . , Bq

(
KwLFFT−1

))
.

9: Find i that maximizes |Bq (Kwi) |.
10: return MSB(wi)logLFFT

.

In the small linear combination constraint, it should be satisfied that ωi,j ∈
{−1, 0, 1} and h′

j =
∑M

i=1 ωi,jhi < LFFT. This constraint is used to reduce the
search range by linear combinations. To enable h′

j to be smaller, we can take lin-
ear combinations with a greater number of hi (i.e., a fewer number of ωi,j = 0).
The fewer the number of linear combinations, the smaller LFFT becomes, and
thus the width of the peak, q/LFFT increase. However, if too many linear combi-
nations are taken, the peak value decreases exponentially. Although the original
peak value is |Bq (K)|, the peak bias after linear combinations is |Bq (K)|Ωj , due
to constraint, which exponentially decreases if we take Ωj linear combinations.
If the peak value is sufficiently larger than the average of the noise 1/

√
M ′, it

can be distinguished. Therefore, constraints are imposed as sparse linear combi-
nations to distinguish them from noise values.

The constraints of sparse linear combinations limit the number of linear com-
binations that can be taken such that the peak value is prevented from becoming
too small. Now, estimating the number of samples M ′ after the linear combina-
tion (assuming that Ωj is constant) depends only on |Bq (K)|, and finding the
modular bias in a rigorous manner is critical. In a Fourier analysis-based attack,
bias computation is performed using FFT, which has a computational complex-
ity of O (LFFT logLFFT) and can thus be calculated efficiently. However, range
reduction is not known to be inefficient and requires considerable computational
time. Table 3 in [3] shows that the bias computation (FFT) consumes 1 hour,
but range reduction (collision) consumes 42 hours when the key length is 162-bit,
and the nonce is 1 bit leak with ε = 0.027.
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2.5 K-list sum problem

Let the birthday problem be the problem of choosing x1 ∈ L1 and x2 ∈ L2

from 2 lists L1 and L2 with random n bits elements that satisfy x1 ⊕ x2 = 0.
In addition, given a list of K with n bits values, the problem of selecting 1
of elements from each list and finding a pair of values for which the XOR of
those K values is 0 is known as the Generalized Birthday Problem (GBP). In
[12], Bleichenbacher observed similarities between GBP and the Fourier analysis-
based attack [4]. The K-list sum algorithm solves K-list sum problem [6] which
is the GBP subproblem.

Aranha et al. [3] used the K-list sum algorithm to increase the number of
samples while increasing the widths of peaks through linear combination. Al-
gorithm 4 shows a 1-fold 4-list sum algorithm. Algorithm 4 first finds the pairs
from two of the given four lists such that the higher a bits of the sum is a certain
value, and it stores the sum in sorted lists L′

1 and L′
2. Next, from L′

1 and L′
2,

select a pair (x′
1, x

′
2) whose higher n bits are equal and calculate the absolute dif-

ference |x′
1 − x′

2|, where the higher n bits are 0. We then obtain sorted lists with
(λ− n) bits elements. Because the higher a bits are first chosen to be equal, we
only need to check whether (a− n) bits are equal. The algorithm increases the
M = 2m = 2a+2 sequences of length λ received as input to 23a+v−n sequences
of length (λ− n) by linear combination.

Algorithm 4 Parameterized 4-list sum algorithm based on Howgrave–Graham–
Joux
Input: {Li}4i=1: Sorted list of uniform random samples of λ bits uniform random

samples of length 2a. n: Number of higher bits to be discarded in each round.
v ∈ [0, a]: Parameter

Output: L′: List of (λ− n)-bit samples
1: For each c ∈ [0, 2v):

(a) Search for a pair (x1, x2) ∈ L1 × L2 satisfying MSBa (x1 + x2) = c. Output a
new sorted list L′

1 with x1 + x2 as 2a · 2a · 2−a = 2a elements. Similarly, for
L3,L4, the sorted list L′

2 is obtained.
(b) Search for a pair (x′

1, x
′
2) ∈ L′

1×L′
2 satisfying MSBn (|x′

1 − x′
2|) = 0. Output a

new sorted list L′ with |x′
1 − x′

2| as 2a · 2a · 2−(n−a) = 23a−n elements.

2: return L′

Algorithm 5 is an iterative 4-list sum algorithm that calls Algorithm 4 as a
subroutine. If 2a is the length of each sublist, it can be expressed as M = 2m =
4 · 2a = 2a+2. Let n be the number of higher bits to be nullified, and let N = 2n.
M ′ = 2m

′
< 22a is the number of samples output with the higher n bits as 0.

In addition, v is the number of iterations in range reduction with v ∈ [0, a], and
T = 2t = 2a+v and T is the time complexity. From [6], it holds that TM2 = N .
Now, the N is 24M ′N and therefore the following holds.

24M ′N = TM2 (5)
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From Equation (5), we obtain

m′ = 3a+ v − n (6)

Let r be the number of times the attacker repeats the 4-list sum algorithm.
By iterating, find a small linear combination of 4r integers that satisfies the
budget parameter of the FFT table so that it is less than LFFT = 2ℓFFT and so
that the FFT computation is tractable. In this case, the trade-off equation for
each round i = 0, . . . , r − 1 can be rewritten as

m′
i = 3ai + vi − ni, (7)

where mi+1 = m′
i. The output of the i-th round is used for the input of the

i+ 1-th round.
Table 1 lists the constraints of a linear programming problem when Al-

gorithm 5 is optimized in terms of time, memory, and the number of signa-
tures. Consider the optimization case in which min is minimized. Let tmax be
the maximum time spent in each round, mmax be the maximum memory, and
ℓFFT = logLFFT be the memory size for the FFT. These are quantities deter-
mined by the amount that can be spent (i.e., cost). The α is a slack parameter
that enables the peak to be more observable and depends on the maximum pos-
sible noise value. This value can be estimated by examining the distribution of{
h′
j

}M ′

j=1
and is given by approximately

√
2 ln (2LFFT/ε) [3].

Letting mr := logM ′, mr = 2 (logα− 4r log |Bq (K)|) is derived from the
constraint of sparse linear combinations. Estimating |Bq (K)| is sufficient to es-
timate the number of samples M ′ required after linear combination. In addition,
|Bq (K)| is the only value related to the number of bits l in the leaked nonce.
Depending on the length λ of the secret key, each ni is differently chosen and
the choice of nis affects other parameters.

Algorithm 5 Iterative HGJ 4-list sum algorithm
Input: L: List of M = 4×2a uniforml random λ-bit samples. {ni}r−1

i=0 : The number of
higher bits to be discarded in each round. {vi}r−1

i=0 : Parameters where vi ∈ [0, ai].
Output: L′: List of

(
λ−

∑r−1
i=0 ni

)
-bit samples with length 2mr .

1: Let a0 = a.
2: For each i = 0, . . . , r − 1 :

(a) Divide L into four lists L1,L2,L3,L4 of length 2ai and sort each list.
(b) Give parameters ni and vi and {Li}4i=1 to Algorithm 4. Obtain a single list L′

of length 2mi+1 = 23ai+vi−ni . Let L := L′ and ai+1 = mi+1/4.

3: return L′
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Table 1. Linear programming problem based on iterative HGJ 4-list sum algorithm
(Algorithm 5). Each column is a constraint to optimize time and space and data [3].

Time Space Data
minimize t0 = . . . = tr−1 m0 = . . . = mr−1 min

subject to — ti ≤ tmax ti ≤ tmax

subject to mi ≤ mmax — mi ≤ mmax

subject to

mi+1 = 3ai + vi − ni i ∈ [0, r − 1]
ti = ai + vi i ∈ [0, r − 1]
vi ≤ ai i ∈ [0, r − 1]
mi = ai + 2 i ∈ [0, r − 1]
mi+1 ≤ 2ai i ∈ [0, r − 1]
min = m0 + f

λ ≤ ℓFFT + f +
∑r−1

i=0 ni

mr = 2 (logα− 4r log (|Bq (K) |))

3 Modular bias for multiple bit leakage

Aranha et al. [3] discussed the security of ECDSA only for 1 bit noisy leakage.
Considering practical circumstances, more bit leakage can be obtained. This
section will analyze the security for the case where more noisy bits are obtained.

3.1 Modular bias for 2 bits leakage

We extend the evaluation of the modular bias for a single noisy bit case pre-
sented in Equation (3) to one when the nonce leaks multiple bits with errors.
We begin with the most simple case: modular bias for l = 2 and extend the result
for general l. The modular bias is also given for the case in which each bit has
a different error rate. The nonce obtained by a side-channel attack is not nec-
essarily completely error-free. Thus far, evaluation of the case of nonce leakage
with errors has been limited to the case of 1 bit leakage as done by Aranha et
al. [3]. This work allows us to evaluate and discuss the security of the ECDSA in
more detail by estimating the modular bias in the case of multiple bit leakage.

Lemma 2 (Modular bias for l = 2). Suppose that the random variable K
follows the following distribution over Zq for b ∈ {0, 1, 2, 3}, ε1, ε2 ∈ [0, 1/2] and
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even q > 0.

Pr [K = ki] = (1−b)(2−b)(3−b)
6 · (1−ε1)(1−ε2)

q/4 + b(2−b)(3−b)
2 · ε1ε2

q/4

−b (1− b) (3− b) · ε1(1−ε2)
q/4 + b(1−b)(2−b)

6 · (1−ε1)ε2
q/4 if 0 ≤ ki < q/4

Pr [K = ki] = (1−b)(2−b)(3−b)
6 · (1−ε1)ε2

q/4 + b(2−b)(3−b)
2 · (1−ε1)(1−ε2)

q/4

−b (1− b) (3− b) · ε1ε2
q/4 + b(1−b)(2−b)

6 · ε1(1−ε2)
q/4 if q/4 ≤ ki < q/2

Pr [K = ki] = (1−b)(2−b)(3−b)
6 · ε1(1−ε2)

q/4 + b(2−b)(3−b)
2 · (1−ε1)ε2

q/4

−b (1− b) (3− b) · (1−ε1)(1−ε2)
q/4 + b(1−b)(2−b)

6 · ε1ε2
q/4 if q/2 ≤ ki < 3q/4

Pr [K = ki] = (1−b)(2−b)(3−b)
6 · ε1ε2

q/4 + b(2−b)(3−b)
2 · ε1(1−ε2)

q/4

−b (1− b) (3− b) · (1−ε1)ε2
q/4 + b(1−b)(2−b)

6 · (1−ε1)(1−ε2)
q/4 if 3q/4 ≤ ki < q

Let Kb be a uniform distribution over [bq/4, (b+ 1) q/4). The modular bias of
K is then given by

Bq (K) = {(1− 2ε1) (1− ε2) + i (1− 2ε1) ε2}Bq (Kb) .

Proof. See Appendix A.

Remark 1. We now consider the case in which ε2 = 0.5, (i.e., the same case in
which no bias exists in the second bit, which is completely random). In this case,
the absolute value of the bias is given by

|Bq (K)| = |(1− 2ε1)× 0.5 + i (1− 2ε1)× 0.5| · 2
2

π
sin

π

22
= (1− 2ε1) ·

21

π
sin

π

21
.

We can easily verify that the value is equal to Equation (4), which is the expres-
sion for l = 1. In addition, it is better to point out that the bias is 0 regardless
of the value of ε2 in the case of ε1 = 0.5.

3.2 Generalization to modular bias for multiple bit leakage

We next generalize the modular bias to the case in which the higher l bits of the
nonce leaks with errors. To simplify the discussion, consider the case where each
bit contains an error with probability ε. Given l, let Kb be a uniform distribution
over

[
bq/2l, (b+ 1) q/2l

)
. b ∈

{
0, 1, . . . , 2l − 1

}
. We can easily verify that all of

|Bq (Kb)| are equal regardless of the value of b. Therefore, it is enough to obtain
Bq (K0). Let H (j) be the Hamming weight when j is expressed in binary. If the
higher l bits of the nonce are all 0 and no errors occur, K0 corresponding to
b = 0 is uniformly distributed over

[
0, q/2l

)
. When an error is contained in each

bit with probability ε, each bit is 1 with probability ε. Thus, the number of bits
containing errors is the same as the number of 1 bits and can be expressed in
terms of Hamming weights. In addition, the number of error-free bits is l−H (j).
From this, for the higher l bits, if an error occurs in each bit with an error rate
of ε, the modular bias is expressed as

2l−1∑
j=0

exp

(
2jπ

2l
i

)
εH(j) (1− ε)

l−H(j)

Bq (K0) . (8)
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We next simplify the term
∑2l−1

j=0 exp
(
2jπi/2l

)
εH(j) (1− ε)

l−H(j) appeared
in Equation (8).

2l−1∑
j=0

exp

(
2j

2l
πi

)
εH(j) (1− ε)

l−H(j)

=

2l−1−1∑
j=0

exp

(
4j

2l
πi

)
εH(2j) (1− ε)

l−H(2j)
+

2l−1−1∑
j=0

exp

(
4j + 2

2l
πi

)
εH(2j+1) (1− ε)

l−H(2j+1)

=

2l−1−1∑
j=0

exp

(
2j

2l−1
πi

)
εH(2j) (1− ε)

l−1+1−H(2j)

+

2l−1−1∑
j=0

exp

(
2j

2l−1
πi +

2

2l
πi

)
εH(2j)+1 (1− ε)

l−(H(2j)+1)

=

2l−1−1∑
j=0

exp

(
2j

2l−1
πi

)
εH(j) (1− ε)

l−1−H(j) ×
{
(1− ε) + ε exp

(
2

2l
πi

)}

=

l∏
j=1

(
(1− ε) + ε exp

(
2πi

2j

))
During the equation transformation, we use the equation H (2j + 1) = H (j)+1
for a non-negative integer j. Note that in the case of b = 0, we just consider
the Hamming distance to the binary representation 00 · · · 0 of the l-bit. In the
general b case, we slightly modify to consider the Hamming distance to the binary
representation of b. From this, the bias with error is expressed by the following
theorem.

Theorem 1. The modular bias for the l-bit nonce leakage with error rate ε is
given by

l∏
j=1

(
(1− ε) + ε exp

(
2πi

2j

))
Bq (Kb) . (9)

For the absolute value of the modular bias, the following holds and can be
expressed without using complex numbers.

Corollary 1. The absolute value of the modular bias for the l-bit nonce leakage
with error rate ε is given by∣∣∣∣∣∣

l∏
j=1

(
(1− ε) + ε exp

(
2πi

2j

))∣∣∣∣∣∣ |Bq (Kb)|

=

√√√√ l∏
j=1

(
1− 4ε (1− ε) sin2

π

2j

)
|Bq (Kb)| . (10)
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Here, a simple calculation confirms that the absolute value of the modular bias
is 0 in Equation (8)–(10) if ε = 0.5.

Corollary 1 can be used to find the absolute value of the modular bias for a
given number of bits and the leakage error rate. The concrete values are shown
in Table 2. Each column is the number of bits leaked by the nonce, and each row
is the value of the nonce’s error rate.

Only the values for ε = 0 are shown in Table 1 of [8]. Only the values for l = 1
are shown in Lemma 4.2 of [3]. With the help of Corollary 1, we can calculate
the precise absolute value of the modilar bias for arbitrary ε and l (as shown in
yellow in the table).

These values are extended to Figure 1 shows the modular bias plotted for
each error rate. We can find that the value increases as l increases and depends
on the error rate. It converges to some value that depends on the error rate ε
at approximately l = 6. Moreover, we can see that the graph for ε = 0.01 has
almost the same shape as that for ε = 0. In [3], they attacked in ε = 0.01 and
ε = 0.027 cases and succeeded in recovering the secret keys.

The modular bias for ε = 0.1 and l ≥ 2 is larger than that for ε = 0 and
l = 1. This means that the number of signatures for a 2 bits leak with an error
rate of 0.1 is less than that for a 1-bit leak with no errors. Thus, fewer signatures
are required for a successful attack. We give experimental reults comaring two
cases in 4.2.

Table 2. Absolute values of modular bias

l 1 2 3 4 5 6

ε = 0 0.6366 0.9003 0.9749 0.9935 0.9983 0.9999

ε = 0.01 0.6238 0.8735 0.9427 0.9605 0.9649 0.9660

ε = 0.1 0.5092 0.6522 0.6870 0.6957 0.6978 0.6984

ε = 0.3 0.2546 0.2742 0.2780 0.2788 0.2790 0.2791

ε = 0.4 0.1273 0.1298 0.1302 0.1303 0.1304 0.1304

3.3 Case for different error rate of each bit

Equation (10), as presented in Section 3.2, shows the absolute value of the mod-
ular bias for which the error rates of each bit are equal (say, ε). We next show
the modular bias for the different error rates of each bit.

Again, we consider K0 and we attempt to update the value corresponding
to

∏l
j=1

(
(1− ε) + ε exp

(
2πi/2j

))
in Equation (9). The values up to j = 1 and

j = 2 are (1− ε) − ε and ((1− ε)− ε) ((1− ε) + εi), respectively. Thus, we are
considering cases when the MSBs do not contain errors and when MSBs con-
tain errors. Multiplying by 1 − ε and εi enables us to consider those cases in
which the second MSB error is not included and when it is included, respec-
tively. In general j, 1− ε and ε exp

(
2πi/2j

)
can be considered as the error-free
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Fig. 1. Modular bias under multiple bit leakage with errors.

bits and error-containing bits, respectively. In other words, at the j-th factor,
((1− ε)− ε) · · ·

(
(1− ε) + ε exp

(
2πi/2j

))
is considered as each 2j−1 combina-

tion of the (j − 1) bits from the MSB to the (j − 1)-th bit, with and without
errors. Therefore, to establish the case in which the j-th bit does not include
an error, we multiply by 1 − ε. To create the case where the j-th bit contains
an error, we multiply by ε exp

(
2πi/2j

)
. From this, we can say that the j-th ε

represents the error rate of the j-th bit from the MSB. If the error rate of each
leaked bit in the nonce is different, we denote εj as the error rate of the j-th
MSB. The modular bias in the case in which the error rate is different for each
bit of Theorem 1 is as in the following theorem.

Theorem 2. The modular bias when the nonce leaks l-bit with an error rate εj
is given by

l∏
j=1

(
(1− εj) + εj exp

(
2πi

2j

))
Bq (Kb) . (11)

In the case of l = 2, it matches Lemma 2.
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The absolute value of the modular bias for the different error rates of each
bit is given by √√√√ l∏

j=1

(
1− 4εj (1− εj) sin

2 π

2j

)
|Bq (K)| . (12)

If εj = ε for all j, Equation (12) is equal to Equation (10). As Equation (12)
shows, the error rates of the higher bits have a greater effect on the modular
bias. Table 3 shows the values of sin2

(
π/2j

)
for each j. This shows that the

contribution for j = 1 is much greater than for the other cases. Figure 2 shows
the exact values of the modular bias when the error rates between the first bit
and second and after bits are different. The figure indicates that the absolute
value of the bias is greater when the error rate of the first bit is smaller than
that of the second and subsequent bits as compared to when the error rate of the
first bit is greater than that of the second and subsequent bits. In other words,
if the error rate is different for each bit of the nonce, the modular bias is highly
dependent on the first MSB. This can be seen from the approximated equation,
since for small x, sin2 x is approximated as x2. That is, sin2

(
π/2j

)
≈ π2/22j if

j ≥ 5. A visual explain of the bias function for multi-bit leakage associated with
this value is shown in Appendix B.

Table 3. Values of sin2 π

2j
at each j.

j 1 2 3 4 5 6 · · · 10

sin2(π/2j) 1 0.5 0.146 0.038 0.009 0.002 · · · 0.000009

The term
√

1− 4εj (1− εj) sin
2 (π/2j) in Equation (12) can be expressed as√

1− 4εj (1− εj) (π2/22j) (13)

from the above approximation. We can see that this term rapidly converges to
1 as l → ∞, regardless of the value of εj .

Intuitively, the proof of Lemma 2 shows that Pr [K = ki] is designed so that
one term of each Pr [K = ki] remains depending on the value of b. Related figures
are shown in Figures 3 and 4. Figure 3 shows the modular bias for the 2 bits case,
and Figure 4 shows the modular bias for the 3 bits case. The sum of the absolute
values of the four or eight vectors is 1, respectively. The absolute value of the
sum of these vectors is the absolute value of the modular bias. An interesting
fact is that a vector with 2 or 3 bits wrong has a smaller effect on the absolute
value of the modular bias than a vector with only 1 bits wrong. In addition,
Figures 3 and 4 show the sum of the vectors is 0 if ε1 = 0.5, which is mentioned
at the end of Remark 1.
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Fig. 2. Modular bias for different error rate for each bit of nonce

3.4 The number of signatures required for key-recovery and error
rates

The constraint of sparse linear combinations is given by |Bq (K) |Ωj ≫ α/
√
M ′.

Suppose that |Bq (K) | α are given for this inequality. We can satisfy the in-
equality by choosing smaller Ωj , which is the number of linear combinations, or
larger M ′, which is the number of samples after linear combination. The num-
ber of samples after linear combination required for r rounds is given by the
following equation based on the error rate and bias.

M ′ ≫ α/

√√√√ l∏
j=1

(
1− 4εj (1− εj) sin

2 π

2j

)
|Bq (Kb) |

2×4r

(14)

From the fact that vi ≤ ai in the input of Algorithm 5 and Equation (7), we
obtain mi+1 ≤ 4mi − ni − 8. We then have the following.

m′ = mr ≤ 4rm0 −
r−1∑
i=0

4r−i−1ni −
8

3
(4r − 1) (15)

In the 4-list sum algorithm, it holds that ti = ai+vi, mi = ai+2, and vi ≤ ai in
the input of Algorithm 5. Accordingly, the inequations ti ≤ 2mi−4 are obtained.
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Fig. 4. Modular bias illustrated on the unit
circle with 3 bits leakage.

We then have the sum of time complexity as follows.

r−1∑
i=0

ti ≤ 2

r−1∑
i=0

mi − 4r (16)

From Equations (14) and (15), the estimated number of signatures required for
the attack is bounded by

M ≥ 1∏l
j=1

(
1− 4εj (1− εj) sin

2 (π/2j)
) × 1

{(2l/π) · sin (π/2l)}2
× 2A, (17)

where

A =

r−1∑
i=0

4−i−1ni +
8

3

(
1− 4−r

)
. (18)

From Equation (17), we can see that a higher error rate increases the num-
ber of signatures required and that an increase in the length of the known nonce
reduces the number of signatures required. For example, from Table 2, a com-
parison of ε = 0.01 and ε = 0.1 when l = 2 reveals that 0.87252/0.65222 ≈ 1.79
times increase. In addition, comparing l = 3 and l = 1 for ε = 0.01, we see that
0.94272/0.62382 ≈ 2.284 times increase in the number of signatures. Further-
more, we find that the error rate and size of the bias do not affect the number
of signatures required, whereas the number of rounds is varied. Note that the
values for l = 1 are completely consistent with the evaluation of Aranha et al.

To understand Equation (17), we can break it down into three separate parts
and analyze each one individually.

Third term, represented by 2A, remains constant regardless of any changes to
l or ε. By utilizing Equations (17) and (18), we can determine that the number
of required signatures for an attack is solely dependent on r and nis, provided
that l and ε remain unchanged. These values are utilized in the calculation of A.
Moreover, if r is fixed, it depends only on nis. Therefore, the number of signatures
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required for the attack depends on the value of ni. Here, ni is represented by
constraints such as mi+1 = 3ai + vi − ni and λ− ℓFFT − f ≤

∑r−1
r=0 ni as given

in Table 1. M is minimized if the equality holds. It is also multiplied by the
square of the inverse of the modular bias. Considering each value in Table 2, we
find that the number of signatures required increases significantly for high error
rates.

The initial component of Equation (17) is referred to as the penalty term,
which is always greater than 1, except when all εj values are zero. Moreover,
as the value of εj increases, this term also increases, ultimately leading to an
increase in M . This aligns with our natural intuitions.

The value of the second term is determined solely by the parameter l. As l
increases, this term gradually decreases and approaches 1, but it always remains
greater than 1. As l increases, the required signatures decrease, which intuitively
makes sense. The penalty term prevents the second term from reducing M , and
its significance increases with an increase in εj . However, it does not completely
eliminate the possibility of the second term reducing M .

Combing Equation (17) with Equation (13), we can estiamte the contribution
j-th MSB leakage. We can see that as l becomes larger, M will decrease, but its
rate of decrease will be negligibly small.

4 Experimental results

4.1 Extension to multiple bit leakage with errors

Aranha et al. [3] have posted a script on GitHub [10] for solving linear program-
ming problems based on Table 1. In this script, ε is freely changeable. On the
other hand, the number l of nonce bits to leak is fixed to l = 1. In a Fourier
analysis-based attack, the leakage bit length and error rate affect only |Bq (K)|
in the constraints of Table 1. Therefore, we can easily obtain the script for multi-
ple bits leakage by replacing the |Bq (K)| evaluation equation for the [10] script
with Equation (10).

We first naively optimize the number of signatures for multiple bit leakage
with errors using a script with only |Bq (K)| modifications. Figure 5 shows the
optimal number of signatures for each ε and l. Here, λ = 162, mmax = 40,
ℓFFT = 40, tmax = 80, r = 2. In addition, α depends only on the value of ε
because LFFT is fixed.

4.2 Attack experiment

For 131-bit ECDSA, we recover the secret key when nonces have 1 bit leakage
without error and when 2 bits leakage, each with an error rate of 0.1. The
computer used in the experiments has Intel Xeon Silver 4214R CPU ×2 and
256GB of DDR4 RAM. The parameters for the l = 1, ε = 0 and l = 2, ε = 0.1
cases are shown in Table 4. Table 5 shows the obtained M ′ = 2m

′
= 2m2 ,

mean value of bias and peak bias as a result of range reduction. In both cases,
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Fig. 5. The number of signatures required for the extended [3] script.

the top 29 bits were successfully recovered. The experimental results show that
l = 2, ε = 0.1 successfully recovers the secret key with a smaller bias value. Note
that the error rate of 2 bits is 0.19, since the error rate of each bit is 0.1.

Table 4. Paramenters of attack experiment.

a0 a1 v0 v1 n0 n1

(l, ε) = (1, 0) 22 24 18 18 48 55

(l, ε) = (2, 0.1) 22 24 18 16 48 55

From the experimental results, when l = 2, ε = 0.1, the secret key was
successfully recovered with about 1/16 of the number of samples after linear
combination than when l = 1, ε = 0. Furthermore, the time required for range
reduction is about 0.26 times smaller. Although the value of M ′ is changed by
the parameter v in this case, the number of signatures required can be changed
by changing other parameters, and it can be inferred that the 2 bits leakage
requires a smaller number of signatures.

Next, the parameters in Table 4 were changed to a0 = 20, a1 = 23, and
v1 = 18 to confirm the experiment in the case with errors. As a result, M ′ = 223.0,
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Table 5. Experiment result.

M ′ Average noise Peak bias Range reduction time (sec)
(l, ε) = (1, 0) 228.1 1.5× 10−5 1.5× 10−4 5957
(l, ε) = (2, 0.1) 222.1 2.0× 10−6 1.7× 10−5 1555

the time was 1984 seconds, and the secret key is successfully recovered. This
shows that l = 2, ε = 0.1 can be recovered with fewer signatures and in less time
than without errors.

5 Conclusion

We first evaluated the number of signatures by finding the formula of the modular
bias for multiple bit leakage in the nonce. The modular bias as indicated by De
Mulder et al. [8] and Aranha et al. [3] was extended to the case in which the
MSBs of the nonce were leaked with multiple errors. We then proved Theorem 1.
As the modular bias can now be calculated for any l, ε, we can now estimate the
required number of signatures using a linear combination algorithm. In addition,
the absolute value of the modular bias was given by Corollary 1. This corollary
indicates that the error rate of the first MSB of the nonce has a greater effect
on the modular bias than the error rates of the other bits. We then provided an
estimate of the number of signatures required for various error rates.

We evaluated the number of signatures and computation time by obtaining
the parameters of the 4-list sum algorithm. Then, we performed an attack on
131-bit ECDSA with l = 2, ε = 0.1, and succeeded in recovering the secret key
with fewer signatures with l = 1, ε = 0.
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A Proof of Lemma 2

The proof for b = 0 is as follows. Note that for simplicity, we denote exp (2πiki/q)
by Eq (ki).

Bq (K) = E [exp (2πiK/q)] =
∑

ki∈Zq

Eq (ki) · Pr [K = ki]

=
(1− ε1) (1− ε2)

q/4

∑
ki∈[0,q/4)

Eq (ki) +
(1− ε1) ε2

q/4

∑
ki∈[q/4,q/2)

Eq (ki)

+
ε1 (1− ε2)

q/4

∑
ki∈[q/2,3q/4)

Eq (ki) +
ε1ε2
q/4

∑
ki∈[3q/4,q)

Eq (ki)

=
(1− ε1) (1− ε2)

q/4

∑
ki∈[0,q/4)

Eq (ki) +
(1− ε1) ε2

q/4

∑
k
(1)
i ∈[0,q/4)

Eq
(
k
(1)
i + q/4

)

+
ε1 (1− ε2)

q/4

∑
k
(2)
i ∈[0,q/4)

Eq
(
k
(2)
i + q/2

)
+

ε1ε2
q/4

∑
k
(3)
i ∈[0,q/4)

Eq
(
k
(3)
i + 3q/4

)

=
(1− ε1) (1− ε2)

q/4

∑
ki∈[0,q/4)

Eq (ki) + i
(1− ε1) ε2

q/4

∑
k
(1)
i ∈[0,q/4)

Eq
(
k
(1)
i

)
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− ε1 (1− ε2)

q/4

∑
k
(2)
i ∈[0,q/4)

Eq
(
k
(2)
i

)
− i

ε1ε2
q/4

∑
k
(3)
i ∈[0,q/4)

Eq
(
k
(3)
i

)

=
(1− 2ε1) (1− ε2)

q/4

∑
ki∈[0,q/4)

Eq (ki) + i
(1− 2ε1) ε2

q/4

∑
ki∈[0,q/4)

Eq (ki)

= {(1− 2ε1) (1− ε2) + i (1− 2ε1) ε2}Bq (Kb)

B Visual explanation of the bias function for multi-bit
leakage

In this appendix, Equation (9) is represented graphically. In Equation (9), at
each j, (1− ε)+exp

(
2πi/2j

)
can be understood as a point in the complex plane

with 1 and exp
(
2πi/2j

)
endowed by 1 − ε : ε. The endpoints in the complex

plane at j = 1, 2 and j = 3, 4 in Figures 6 and 7, respectively, are indicated by
red dots. ε and 1− ε in the figures represent ratios. When j = 1, the two points
1 and −1 are endowed by 1− ε : ε, and the red point is in the complex plane at
coordinates 1 − 2ε. When j = 2, we endow 1 and i, and when j = 3, we endow
1 and exp (πi/4) with 1− ε : ε.

As j increases, exp
(
2πi/2j

)
approximates 1. Therefore, exp

(
2πi/2j

)
and the

interior point of 1 also approximates 1. Figures 6 and 7 also show that the interior
point approximates 1 in the complex plane. The absolute value also approximates
1.

Table 2 shows that as l increases, the value does not readily increase. As
explained in Section 3.3, this is because sin2

(
π/2j

)
is closer to 0. This can also

be observed in Figures 6 and 7.
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Fig. 6. When the first and second bits
leak.
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Fig. 7. When the third and fourth bits
leak.


