
Finding Shortest Vector using
Quantum NV Sieve on Grover

Hyunji Kim1, Kyoungbae Jang1, Yujin Oh1, Woojin Seok2, Wonhuck Lee2,
Kwangil Bae2, Ilkwon Sohn2, and Hwajeong Seo1

1IT Department, Hansung University
2Korea Institute of Science and Technology Information (KISTI)

{khj1594012,starj1023, oyj0922}@gmail.com,{wjseok, livezone, d2estiny,

kibae}@kisti.re.kr, hwajeong84@gmail.com

Abstract. Quantum computers, especially those with over 10,000 qubits,
pose a potential threat to current public key cryptography systems like
RSA and ECC due to Shor’s algorithms. Grover’s search algorithm is an-
other quantum algorithm that could significantly impact current cryptog-
raphy, offering a quantum advantage in searching unsorted data. There-
fore, with the advancement of quantum computers, it is crucial to analyze
potential quantum threats.
While many works focus on Grover’s attacks in symmetric key cryptog-
raphy, there has been no research on the practical implementation of
the quantum approach for lattice-based cryptography. Currently, only
theoretical analyses involve the application of Grover’s search to various
Sieve algorithms.
In this work, for the first time, we present a quantum NV Sieve imple-
mentation to solve SVP, posing a threat to lattice-based cryptography.
Additionally, we implement the extended version of the quantum NV
Sieve (i.e., the dimension and rank of the lattice vector). Our extended
implementation could be instrumental in extending the upper limit of
SVP (currently, determining the upper limit of SVP is a vital factor).
Lastly, we estimate the quantum resources required for each specific im-
plementation and the application of Grover’s search.
In conclusion, our research lays the groundwork for the quantum NV
Sieve to challenge lattice-based cryptography. In the future, we aim to
conduct various experiments concerning the extended implementation
and Grover’s search.

Keywords: Shortest Vector Problem · Lattice based cryptography ·
Quantum NV Sieve · Quantum attack · Grover’s search.

1 Introduction

As outlined in IBM’s roadmap 1, if a stable quantum computer with more than
10,000 qubits is developed, public key algorithms (such as Rivest, Shamir, Adle-

1 https://www.ibm.com/quantum/roadmap

https://www.ibm.com/quantum/roadmap

2 Authors Suppressed Due to Excessive Length

man (RSA) and Elliptic curve cryptography (ECC)) may be decrypted within
polynomial time through Shor algorithm [1].

Additionally, If a search count of O(2k) on a classical computer is required,
Grover’s algorithm can find results with a maximum of O(

√
2n) searches.

As quantum computers developed, the current cryptography system is under
threat. Therefore, migration to a secure cryptography system and analysis of
potential quantum attacks are very important issues.

Among the categories of post-quantum cryptography, there are lattice-based
ciphers (e.g. LWE (Learning with Error)). Currently, much research has been
conducted on estimating the cost of Grover attacks on symmetric key cryptog-
raphy [2,3,4,5,6].

However, research on practical quantum attacks on lattice-based cryptogra-
phy is lacking. As mentioned earlier, to establish a secure post-quantum security
system, it is crucial to analyze potential quantum attacks on various crypto-
graphic methods. Therefore, in this paper, we propose a quantum implemen-
tation for NV Sieve that can solve SVP (Shortest Vector Problem) for lattice-
based cryptography. In addition, we present an implementation considering the
dimension and rank expansion of the lattice and estimate the quantum cost for
an attack through quantum NV Sieve.

1.1 Our Contributions

1. For the first time in our knowledge, Quantum NV Sieve imple-
mentation to solve SVP
There is theoretical research that applies Grover’s search to Sieve algorithms
to solve SVP [7]. However, as far as we know, there is no implementation for
these yet. In this work, we implement NV Sieve, an attack that can threaten
lattice-based cryptosystems by solving SVP, as a quantum circuit. Through
this, an oracle that can be applied to Grover’s search is created.

2. Extension implementation considering multiple conditions (dimen-
sion, rank) of lattice-based cryptography
In addition to the basic NV Sieve implementation, we present an extended
implementation that takes into account the dimension and rank of the lattice.
Our extended implementation can help raise the SVP upper limit that NV
Sieve can solve.

3. Resource estimation for Quantum NV Sieve logic and Grover’s
search
Grover’s search algorithm has an advantage that can compute all possibilities
at once. By applying Grover’s search to NV Sieve, a solution that satisfies
the condition can be found with quantum advantage. This approach requires
an oracle, and our implementation can be used as an oracle for Grover’s
search. In this work, we estimate the quantum cost for each case-specific
implementation.
Based on our quantum circuits, we estimate the required quantum resources
for Grover’s search (on NV Sieve). This is affected by quantum resources

Quantum NV Sieve on Grover 3

and the number of iterations. We get the appropriate iteration of Grover’s
search and also get the quantum cost of Grover’s search attack.2

1.2 Organization of the paper

The remainder of this paper is organized as follows. In Section 2, classical NV
Sieve, SVP (Shortest Vector Problem), and background for quantum implemen-
tation are described. In Section 3, the implementation of the quantum NV Sieve
is proposed. Section 4 demonstrates the results of the experiment and further
discussion about that. Finally, Section 5 concludes the paper.

2 Prerequisites

2.1 Lattice

Lattice Lattice (L) is a set of points made up of a linear combination of basis
vectors (B). Since it is made up of points, there can be more than one shortest
vector (e.g. x,−x ∈ L). Equation 1 represent a lattice, and x is an integer in
Equation 1, and (b1, ..., bn) means the basis vector.

L(b1, ..., bn) = Σn
i=1(xi · bi, xi ∈ Z) (1)

Basis As noted earlier, the lattice is based on basis vectors. A basis vector (B)
is a set of vectors that can constitute all lattice points. The vector (arrow sign)
in Figure 1 represents the basis in the lattice. Each vector (bi) constituting the
basis vector has a length of m and consists of a total of n components. Here, the
length of each vector and the number of vectors constituting the basis vector,
respectively, are called Dimension(m) and Rank(n). Generally, a full-rank lattice
is used (m = n).

Here, the basis vector consisting of one lattice is not unique. As shown in
Figure 1, the basis vectors on a lattice with the same lattice points are different.
If a lattice is created with a vector created by multiplying one basis vector by
another, the two basis vectors create the same lattice.

However, these basis vectors have a good basis and a bad basis. A good
basis is generally composed of a short vector, and a bad basis is created by
multiplying the good basis by a matrix such as an unimodular matrix3 several
times. Therefore, finding a bad basis from a good basis is easy because only
matrix multiplication several times is required. However, in the opposite case,
finding a good basis from a bad basis becomes a very difficult task. This can
be seen as similar to generating a public key from a private key in public key
cryptography. (i.e. obtaining a private key by factorizing a very large public key

2 Detailed estimation of Grover’s search while varying the parameters of the NV sieve
remains for our future work.

3 https://en.wikipedia.org/wiki/Unimodular_matrix

https://en.wikipedia.org/wiki/Unimodular_matrix

4 Authors Suppressed Due to Excessive Length

Fig. 1: Two different basis vectors generating the same lattice.

into prime factors.) Similarly, in lattice-based cryptography, a bad basis is used
as the public key, and a good basis is used as the private key. Here, the good basis
and the bad basis are basis vectors that generate the same lattice. Constructing
the public and private keys in this way makes it difficult to decrypt messages in
lattice-based encryption.

2.2 Shortest Vector Problem (SVP)

SVP, known as the basic problem of lattice-based cryptography, is the problem of
finding the shortest vector on a lattice that is not a zero vector. Miklo’s Ajtai [8]
revealed that SVP is an NP-hard problem. In addition, it was later revealed that
it had almost the same level of difficulty as the Closest Vector Problem (CVP),
which is another lattice-based problem. SVP is a problem of finding the shortest
vector by using the basis of the lattice as input. However, the solution is not
always unique because one vector can have an opposite vector with the same
size.

When a bad basis vector is used as input, the difficulty of solving the SVP
increases. If a good basis is used as an input, there is a high possibility that the
shortest vector will be included in the already input good basis. If a bad basis is
used, the opposite scenario occurs. Additionally, as the rank of the lattice (the
number of vectors constituting the lattice) increases, it becomes more difficult
to solve.

The lattice-based cryptography is generally used when the rank is 500 or
higher. Therefore, solving lattice-based cryptography is a very challenging work.
Furthermore, as mentioned earlier, one can easily derive a bad basis (public
key) from a good basis (private key). However, it is difficult to find a good
basis (private key) from a bad basis (public key) due to information asymmetry.
Thus, solving lattice-based cryptography is challenging due to its reliance on
one-wayness (the computation in one direction is straightforward but difficult in
the reverse direction).

In this way, lattice-based cryptography is based on lattice problems (SVP,
CVP, etc.), and the security level of lattice-based cryptography is based on the
difficulty of solving the lattice problem. For example, RSA’s security strength is
based on the difficulty of prime factorization. In other words, lattice-based cryp-
tography is designed by utilizing one-wayness such as information asymmetry.

Quantum NV Sieve on Grover 5

To solve such lattice-based cryptography, the lattice problem must be solved.
Solving SVP, a representative lattice problem, lattice-based cryptosystems such
as LWE can be threatened.

Algorithms to solve SVP Several algorithms, such as AKS and Sieve, have
been proposed to solve the lattice problem, which underpins lattice-based cryp-
tography. However, these algorithms generally target low-dimensional lattices
with a rank of about 50 ∼ 60. There are also algorithms that target high-
dimensional lattices, but finding the shortest vector in a high-dimensional lat-
tice is a very difficult problem. Therefore, there’s a need for an approximate
algorithm that can reduce the problem from a high-dimensional lattice to a low-
dimensional one. As a result, to solve SVP, an exact algorithm that accurately
finds the shortest vector in the low-dimensional lattice is needed and important.

Approximate algorithms that reduce high-dimensional to low-dimensional
lattice (e.g., Lenstra, Lenstra, and Lovász (LLL) [9], block Korkine-Zolotarev
(BKZ) [10]) have also been widely studied. Also, it is efficient in high-dimension
lattices. However, as shown in Figure 2, the method for finding exactly short
vectors belongs to the exact algorithm, and the best practical and theoretical
SVP solution should be accurate and efficient in low dimensions. Therefore,
for now, it is important to take an approach that accurately solves SVP in low
dimensions. It is then important to determine the upper limit (highest dimension
of lattice) that can be solved.

Fig. 2: Flow chart of approximate and exact algorithms for solving SVP.

2.3 Survey on the exact algorithms for SVP

Well-known exact algorithms include AKS [11] and NV Sieve [12]. AKS is the
most famous early exact algorithm, but it has the disadvantage of using many
parameters and having high time and space complexity. Moreover, due to the
absence of optimal parameters, actual implementation, or analysis, it is deemed
an impractical algorithm. Subsequently, NV Sieve, an exact algorithm, was in-
troduced to address these limitations of AKS. It offers benefits such as reduced
time and space complexity, practicality, and the possibility for actual imple-
mentation and evaluation. Additionally, building upon the NV Sieve algorithm,

6 Authors Suppressed Due to Excessive Length

several Sieve algorithms, including the List Sieve and Gaussian Sieve, have been
presented [13,14,15,16,17].

However, only the theoretical complexity of the Sieve algorithm on quantum
computers (using Grover’s search) has been calculated [7]. There is no practical
implementation or analysis for this.

2.4 NV Sieve algorithm

Reasons and overview for selecting the NV Sieve algorithm NV Sieve is
more practical and efficient than AKS and serves as the foundation for numerous
Sieve algorithms. So, in our work, NV Sieve is selected as an exact algorithm for
solving the SVP problem. Although there are algorithms with lower time and
space complexity than NV Sieve, quantum computing can incur significant costs
when implementing algorithms that require additional procedures. Of course, a
simple algorithm is not necessarily efficient when executed on a quantum com-
puter.

Algorithm 1: NV Sieve algorithm for finding short lattice vectors

Input: An reduced basis (B) in lattice (L) using the LLL algorithm, a sieve factor γ
(2
3
< γ < 1), S is an empty set, and a number N

Output: A non-zero short vector of L

1: for i = 1 to N do
2: S ← Sampling B using sampling algorithm
3: end for
4: Remove all zero vectors from S.
5: S0 ← S
6: Repeat
7: S0 ← S
8: S ← latticesieve(S, γR) using Algorithm 2.
9: Remove all zero vectors from S.
10: until S becomes an empty set.
11: Return v0 ∈ S0 such that ||v0|| =min||v||, v ∈ S0

Details of NV Sieve algorithm Algorithm 1 briefly shows the main process
of NV Sieve. The goal of NV Sieve is to find the shortest vector excluding zero
vectors while losing as few vectors as possible. The input is the basis vector of the
lattice reduced through the approximate algorithm (i.e., LLL), and the output is
the shortest vector, not the zero vector. As mentioned earlier, the shortest vector
may not be one. In addition, γR, the sieve factor, is a geometric element in the
range of 2

3 < γR < 1, and the closer it is to 1, the better. The reduction range
of the lattice, which will be explained later, is determined by the corresponding
sieve factor.

Quantum NV Sieve on Grover 7

The overall structure is as follows. First, a set S is generated by randomly
sampling from the basis received as input. Next, the zero vector is removed from
S to generate S0, and then the latticesieve is repeatedly performed with S
and γ as input. After this, the output vectors with zero vectors removed are
stored in S0, and the process is repeated until S becomes an empty set. Finally,
it is completed by returning the shortest vector among the vectors belonging to
S0.

Algorithm 2: The latticesieve algorithm in NV Sieve

Input: A subset S in L and sieve factor γ (0.666 < γ < 1)
Output: S′ (Short enough vector, not zero vector)

1: Initialize C, S′ to empty set.
2: R← maxv∈S ||v||
3: for v ∈ S do
4: if ||v|| ≤ γR then
5: S′ ← S′ ∪ {v}
6: else
7: if ∃c ∈ C||v − c|| ≤ γR then
8: S′ ← S′ ∪ {v − c}
9: else
10: C ← C ∪ {v}
11: end if
12: end if
13: end for
14: return S’

Fig. 3: The core logic in NV Sieve (See line 7 in Algorithm 2).

8 Authors Suppressed Due to Excessive Length

Algorithm 2 shows the lattice sieve algorithm in NV Sieve and shows the
detailed process. This sieve algorithm is the core logic of NV Sieve, and its
purpose is as follows.

– In order to minimize the loss for short vectors, a point on the lattice called c is
randomly selected. c is a sufficient number of points on the lattice belonging
to γR < x < R and belongs to the yellow area in Figure 3.

– The search range (γR) is reduced by the sieve factor γ to obtain a vector
shorter. Here, R means the maximum length among the vectors belonging
to the vector set received as input.

The core logic of the NV sieve mentioned earlier in more detail is as follows.

1. First, initialize C and S′. Afterward, vectors with a length shorter than γR
are stored in S′. (S′ is used to store vectors within the γR range.)

2. However, there will be vectors longer than γR. For this, the process as in
line 7 is performed to minimize loss for short vectors on the lattice, which is
the goal of NV Sieve.
A vector longer than γR is subtracted from a point on the lattice called c. If
the result is shorter than γR, then it is stored in S′. If the length is longer
than γR, it is stored in C. In other words, when the vector after subtraction
starts from O (origin point), if it is within the range of γR, it is stored in S′.

3. Finally, by returning S′, vectors with a length shorter than γR are selected.
By performing this process repeatedly, sufficiently short vectors are obtained,
and the shortest vector among them is found.

Important factors related to the complexity The parts that affect the
complexity of NV Sieve’s algorithm are as follows. The first part is measuring
the number of points in c. There are a sufficiently large number of points on
the lattice, and we need to find a point c that can be used to create a vector
with a length shorter than γR. Therefore, it is important to find the number
of c. Next, as the size of the initially given vector set S increases, complexity
increases. As the rank of S increases, the number of c also increases because c is
also a vector on the lattice and a subset of S. This is related to the complexity
related to the number of c mentioned above. Additionally, as mentioned earlier,
lattice problems with large ranks are difficult to solve, so the size of the target
basis vector set affects the complexity of the algorithm.

2.5 Grover’s search algorithm

Grover’s search algorithm is a quantum search algorithm for tasks with n-bit
complexity and has O(

√
2n) of complexity (O(2n) for classical). The data (n-

bit) for the target of the search must exist in a state of quantum superposition,
so given by:

H⊗n |0⟩⊗n (|ψ⟩) =
(|0⟩+ |1⟩√

2

)
=

1

2n/2

2n−1∑
x=0

|x⟩ (2)

Quantum NV Sieve on Grover 9

Thanks to quantum advantage, all search targets are computed simultane-
ously as a probability.

Grover’s algorithm consists of two modules: Oracle and Diffusion operator.
Oracle is a quantum circuit that implements logic that can return a solution to
the problem to be solved. Then it returns a solution by inverting the decision
qubit at the end of the circuit as follows.

f(x) =

{
1 if Oracleψ(n) = Solution

0 if Oracleψ(n) ̸= Solution
(3)

Afterwards, the probability of the returned solution is amplified through the
diffusion operator. By repeating this process, the probability of observing the
correct solution is increased. The number of such repetitions is expressed as
Grover iteration. The most important thing in Grover’s search is the optimal
implementation of the quantum circuit that designs the oracle.

The diffusion operator has a fixed implementation method and is often ex-
cluded from resource estimation [5,18] because the overhead is so small that
it is negligible. Therefore, the final efficiency is determined depending on the
quantum circuit in the oracle.

2.6 Quantum Circuit

Qubits A qubit (quantum bit) is the basic unit of computation in a quantum
computer and can have probabilities of 0 and 1 at the same time (superposition).
So, 2n states can be expressed with n qubits. Additionally, qubits exist in a
superposition state and are calculated, but are determined as a single classical
value the moment they are measured. In quantum computing, classical bits are
used to store the results of measuring the state of the qubit.

Quantum Gates Quantum gates operate as logical gates in quantum circuits.
By applying a quantum gate to a qubit, the state of the qubit can be controlled.
There are several quantum gates (see Figure 4). Each gate can be used to config-
ure superposition, entanglement, invert, and copy, and can be utilized to perform
various operations such as addition and multiplication.

3 Quantum NV Sieve for solving SVP

3.1 System Overview

According to the results of theoretical calculations, Quantum NV Sieve with
Grover’s search is expected to have less time complexity than classical NV Sieve
(log0.4152 to log0.3122) [7]. However, no implementation is presented. To the best of
our knowledge, our work presents the first implementation of various cases of the
NV Sieve algorithm for solving SVP using quantum circuits. However, given the
current state of quantum computers in the Noisy Intermediate-Scale Quantum

10 Authors Suppressed Due to Excessive Length

Fig. 4: Quantum gates.

(NISQ) era and the challenges encountered during implementation, achieving
results akin to the theoretical complexity remains challenging. Starting with our
work, we plan to further improve our approach, which we remain for our future
work.

As noted earlier, solving SVP, the fundamental problem of lattice-based en-
cryption, can threaten grid-based encryption systems (e.g., LWE). Furthermore,
among several algorithms, the Exact algorithm, that accurately finds short vec-
tors, is an important part of the process of solving lattice problems.

Fig. 5: Overview of Quantum NV Sieve.

We implemented the NV Sieve algorithm, which solves the SVP problem
among several lattice problems (e.g., SVP, CVP, etc.), on a quantum computer.

Quantum NV Sieve on Grover 11

Figure 5 shows the overview of the quantum NV Sieve algorithm. In other words,
this is the overall relationship between the quantum NV Sieve we present and
the configuration diagram for solving SVP on a quantum computer.

First, since Grover’s search must be applied, the logic of the NV Sieve (ora-
cle) must be implemented using the quantum circuit. In other words, since the
purpose of NV Sieve is to find the short vector c that satisfies the condition
(||v − c|| ≤ γR), the NV Sieve logic for searching c must be implemented as an
oracle. Then, Grover’s search algorithm should be performed on the implemented
oracle. The factors that determine the performance of NV Sieve in classical are
finding the number of large numbers of c and the corresponding computational
and memory complexity. However, when using quantum NV Sieve, it is possible
to calculate numerous cases for c at once. Therefore, there are advantages in
terms of computational and memory complexity.

Meanwhile, v, which is not the search target but is a vector on the lattice,
needs to be loaded from quantum memory. However, it is difficult to access
actual QRAM (Quantum RAM). In addition, many studies, such as [19], are
conducted on the premise that queries can be made to QRAM. Therefore, in
this implementation, QRAM is implemented as a very simple quantum circuit
(Explicit QRAM: data is written directly to the quantum circuit, and the value
is loaded from the corresponding memory qubit).

3.2 Implementation of NV Sieve on Quantum Circuit

We implement/design the quantum circuit for line 7 in Algorithm 2. It oper-
ates classically except where quantum NV sieve algorithms are used. In other
words, quantum is applied to operations on a sufficiently large number of c. In
a classical computer, we need to know how many c there are and perform a size
comparison on all c. However, in the implementation of the quantum NV sieve,
a size comparison is performed on all cases of c at once. Details are described in
Algorithm 3.

The overall steps in Algorithm 3 are as follows:

1. Data load from explicit QRAM (line 3): It is difficult to actually access
QRAM. Therefore, we implement a simple explicit QRAM on a quantum cir-
cuit. This is actually close to QROM (Quantum Read-only Memory) because
it can only read data to be used.

2. Prepare c in superposition state (line 4∼5): Apply the Hadamard gate
to c, Grover’s search target, and prepare it in a superposition state. Since v
is not a search target, it doesn’t make it a superposition state.

3. Prepare (sqr rR)2 (line 6): Prepare the squared γR.
4. Overflow handling (line 8∼15): To handle overflow that occurs during

the calculation process, the highest bit of the data qubit is copied to the
highest qubit. Through this, data expressed in 2-qubits is made to have the
same value even when converted to 3-qubits.

5. Complement function for signed vector (line 17∼18): For data in-
volving signed vectors, the complement operation is utilized to repurpose

12 Authors Suppressed Due to Excessive Length

Algorithm 3: The quantum NV Sieve on the quantum circuit.

Input: Quantum circuit (QNV), A subset S in L and sieve factor γ (2
3
< γ < 1)

Output: c0, c1

1: Initiate quantum registers and classical registers. ▷ carry, qflag, sqr result, etc.
2: // Input setting (Each vector is allocated 3 qubits to address the overflow)
3: v0, v1 ← Data load from memory qubits
4: QNV.Hadamard(c0)
5: QNV.Hadamard(c1)
6: QNV.x(sqr rR[i]) ▷ 0 ≤ i < 6

7: // To address the overflow of target qubits
8: vflag[0] ← QNV.cx(v0[1], vflag[0])
9: v0[2] ← QNV.cx(vflag[0], v0[2])

10: cflag[0] ← QNV.cx(c0[1], cflag[0])
11: c0[2] ← QNV.cx(cflag[0], c0[2])

12: vflag[1] ← QNV.cx(v1[1], vflag[1])
13: v1[2] ← QNV.cx(vflag[1], v1[2])

14: cflag[1] ← QNV.cx(c1[1], cflag[1])
15: c1[2] ← QNV.cx(cflag[1], c1[2])

16: // Two’s complement for subtraction using adder
17: c0 ← Two’s complement(QNV, c0, qflag0, zero)
18: c1 ← Two’s complement(QNV, c1, qflag1, zero)

19: // v + c
20: c0 ← Addition(QNV, v0, c0, carry)
21: c1 ← Addition(QNV, v1, c1, carry)

22: // Two’s complement for correct squaring
23: c0 ← Two’s complement negative(QNV, c0, qflag2, carry, zero)
24: c1 ← Two’s complement negative(QNV, c1, qflag3, carry, zero)

25: // Duplicating qubit for squaring
26: dup c0 ← QNV.cx(c0, dup c0)
27: dup c1 ←QNV.cx(c1, dup c1)

28: // Squaring elements of vectors
29: sqr result[2]← Squaring(QNV, c0, dup c0, sqr result[0], sqr result[1], sqr result[2], carry, 6)
30: sqr result[5]← Squaring(QNV, c1, dup c1, sqr result[3], sqr result[4], sqr result[5], carry, 6)

31: // Addition for squared results to calculate the size of the vector
32: sqr result[5]← Addition(QNV, sqr result[2], sqr result[5], carry, 6)

33: // Two’s complement for subtraction using adder
34: sqr result[5]← Two’s complement 6bit(QNV, sqr result[5], qflag4, carry, zero, zero1, zero2)

35: // Size comparison between (rR)2 and (||v − c||)2 ▷ ((rR)2 - (||v − c||)2)
36: sqr result[5]← Addition(QNV, sqr rR, sqr result[5], carry, 6) ▷ No square root
37: return c0, c1

Quantum NV Sieve on Grover 13

the adder as a subtractor. When comparing vector magnitudes at the con-
clusion of the quantum circuit, the complement operation is currently applied
solely to positive vectors.

6. Three-qubit addition (line 20∼21): For vector elements (v+c̄), a 3-qubit
ripple carry adder is applied between v and the complements of c.

7. Apply complement function for 3-qubits to ensure correct square
value (line 23∼24): In the complement system, 112 is –1, but if the com-
plement operation for negative numbers is not performed before the square
operation, 112 is recognized as 3. Then, the result is 9. Therefore the com-
plement operation must be applied for the correct result of squaring.

8. Duplicate the target qubits for squaring (line 26∼27): In a quantum
circuit, performing calculations on identical qubits is not feasible; therefore,
the value must be copied to a different qubit.

9. Squaring each element to calculate the size of the vector (line
29∼30): The size of a vector is the root of the sum of the squares of each
element. However, in our oracle only size comparison between γR and ||v−c||
is required. Therefore, the root operation is removed in our approach. So we
only need the squaring operation of the vector at this stage.

10. 6-qubit addition of each element of the vector after squaring (line
32): To calculate the size of a vector, a square operation is required for each
element.

11. 6-qubit complement for positive values (line 34): The value after
squaring is naturally a positive value. However, as in the previous part of
the quantum circuit, we perform a complement operation to use the adder
as a subtractor. Here, since it is the value after squaring a 3-qubit vector, a
complement operation on 6-qubits must be performed.

12. Size comparison through 6-qubit addition for (γR)2 and (||v − c||2)
(line 36): As mentioned earlier, the size of the vector can be obtained by
performing the root operation. However, in our method, since the only pur-
pose is size comparison, the root operation is not performed.

13. Check the MSB (Most Significant Bit): We have to check the MSB
of the result value performed in step 13. If MSB is 0, (γR)2 is larger than
||v − c||2. Therefore, MSB of 0 means that ||v − c||2 is a short vector that
falls within the range of the condition. Therefore, we can add vector v − c
to the list that stores short vectors (Classical).
Conversely, if MSB is 1, it means that it is a negative sign, which means that
it is a vector that does not satisfy the condition. Therefore, it is not added
to the short vector list.

Implementation details for core functions in Quantum NV Sieve

– Data load and input Setting (v, c, (γR)2): In our implementation, we
use a simple QRAM structure. After allocating a memory qubit for value
storage, the values are stored in the corresponding memory qubit. Afterward,
the cx gate is used to read the values stored in the memory qubit, and the
values are loaded into the input vector v. In other words, it is copying values

14 Authors Suppressed Due to Excessive Length

from quantum memory to input qubits for the oracle. Additionally, Grover’s
search is repeated for each v, and v is not a search target, so it is not prepared
in a superposition state.

Figure 6 shows the input setting process for c, the search target. What
must be found through Grover’s search algorithm is the c value that satisfies
the condition, and the v−c vector at that time must be returned. Therefore,
the Hadamard gate is applied to all qubits for c, generating a superposition
state with the same probability of 0 and 1.

Next, a process is needed to set (γR)2 required for the conditional expres-
sion. This applies the x gate to the qubit to express 1 (the same as setting
the v value). However, the γR is determined in each iteration. So, in our
implementation, its squaring value is calculated in a classical method and
then set as input. Therefore, since it is a square value for 2 qubit data, 4
qubits are allocated.

𝑐0

𝑐1

𝑠𝑞𝑟_𝑟𝑅

LSB

MSB

LSB

MSB

LSB

MSB

Fig. 6: Preparation c (c0 and c1) and (γR)2 (sqr rR).

– Overflow handling: In this work, we will cover cases where overflow may
occur during the NV Sieve calculation process. When the dimension is 2,
there are cases where 2-qubits are exceeded during the calculation. Therefore,
the calculation of NV Sieve is performed by upscaling to 3-qubit. Figure 7
shows the quantum circuit for the overflow handling process. For example,
if the dimension is 2, data can be represented by two qubits. Therefore, the
value of the second qubit (with an index of qubit is 1) is copied to the qflag.
Afterward, upscaling is completed by copying the qflag to the highest qubit
that is set to 0. Through this process, the value expressed through 3 qubits
can be expressed equally with 2 qubits.

– Two’s Complement (2-qubit, 4-qubit, positive and negative cases):
Figure 8 shows the quantum circuit for 2’s complement for positive values.
As mentioned earlier, an additional qubit (ancilla qubit, qflag) is needed
as a control qubit. When the target qubit to which the complement will
be applied is c, the MSB is c[1] (lowest qubit). Therefore, the value of the
lower qubit is copied to the control qubit through the cx gate. Here, bit
inversion and addition of LSB and 1 must be performed only when the value

Quantum NV Sieve on Grover 15

𝑣0

𝑞𝑓𝑙𝑎𝑔

Fig. 7: Upscaling quantum circuit to handle the overflow.

is positive. However, if MSB is zero, the value of the control qubit is 0, so the
value of the control qubit must be inverted. But, after applying the x gate to
qflag, the value of the control qubit is 1, so complement logic is performed.
After bit inversion, to add the value of 1 to the LSB, create a new qubit
array, input qflag as the lowest bit first, and then append the value of 0.
Afterwards, addition is performed through a 2 qubit adder between the 1’s
complement (2 qubits) and the new qubit array (2 qubits).

The quantum circuit for 2’s complement for the negative values is per-
formed to calculate the correct squaring on the signed data. This uses control
qubits like two’s complement when positive. However, for negative numbers,
the MSB itself is 1, so there is no need to apply the x gate to qflag (omit
the x gate for qflag). Therefore, the bit is inverted through the cx gate
without additional work. Afterward, the process for adding 1 to LSB is also
performed in the same way.

The 2’s complement quantum circuit for 4 qubits is similar to the 2-qubit
complement quantum circuit, which is performed only when the number is
positive. However, since it is 4 qubits, the MSB is c[3] (Only the index of
MSB is different). Therefore, after copying the value to qflag, apply the x
gate to invert all bits. Afterwards, a new qubit with the state of [0,0,0,1] is
assigned and a 4-qubit addition is performed. Through this, 2’s complement
operations on 4 qubits can be performed.

3-bit Adder (LSB+1)
𝑐0

𝑞𝑓𝑙𝑎𝑔

𝑧𝑒𝑟𝑜

𝑐𝑎𝑟𝑟𝑦

Fig. 8: Two’s complement quantum circuit for a positive value (3-qubit).

– Addition: Addition is a very important and basic operation among quan-
tum circuit operations. In this implementation, Ripple-Carry Adders such

16 Authors Suppressed Due to Excessive Length

as 3-qubit and 4-qubit adders are used. These are the method proposed in
Cuccaro’s paper [20].

– Squaring: The square operation is necessary to find the size of the vector.
An integer square operation is performed on the value converted to a positive
number through the 2’s complement. Figure 9 depicts the square operation.
The squaring is equivalent to multiplying the same value, so a and b are
the same value. However, operations using the same qubit repeatedly are
impossible in quantum circuits. In other words, as shown in Figure 9, the
value amust be copied to another qubit (b) through the cx gate. Additionally,
performing a multiplication on 3 qubits affects up to 6 qubits, so two 6-qubit
arrays (ab and ba) are created to store the result.

The process is as follows. First, multiply a and b, which represent the
same value, like integer multiplication. However, all elements are qubits and
therefore have a value of 0 or 1. If even one element is 0, the result value is
0, and only if both elements are 1, the result value is 1. These operations
correspond to the ccx (Toffoli) gate. Therefore, the ccx gate is applied to
all elements of a and b. Afterward, the results are saved in an appropriate
location. Here, the location where the calculation results are saved gray circle
in each array. In addition, the results of 6-qubit addition are stored in Second
and Third array in Figure 9. However, since First, Second and Third are 6-
qubit arrays, the top three qubits of First are set to 0, and the remainders of
Second are set to 0. Finally, the square operation is completed by applying a
6-qubit adder to First, Second and Third. The adder used is CDKM adder,
an in-place ripple carry adder, so the final result value is stored in Third.

Fig. 9: The integer squaring for 3-qubits.

3.3 Implementation for dimension expansion

Increasing dimension means that the range of bits that can be expressed by each
element of the vector increases. In other words, operations on 2 qubits must be
changed to operations on n (n < 2) qubits. In our work, we implement the case

Quantum NV Sieve on Grover 17

where the dimension is increased to 4. This indicates that our implementation is
scalable in terms of dimensionality. In this case, the 3-qubit adder must become
a 5-qubit adder, and the 3-qubit two’s complement must become a 5-qubit two’s
complement. Therefore, in accordance with this increased data range, the range
of functions for calculations must also be expanded.

3.4 Implementation for rank expansion

Even if the rank of the input vector increases, the formula for calculating the
size of the vector remains the same. Therefore, it is implemented by allocating
additional qubits as needed depending on the number of extended rank. Neither
the type nor the scope of the operation used changes. The same operation is
performed on the elements of the new vector. In the case of the addition, it can
be implemented by adding another vector to the result of adding two vectors.
Hence, our implementation offers scalability as the rank of the input lattice
vector increases.

4 Evaluation

4.1 Experiment Environment

Our implementation utilized Qiskit 4, a quantum computing platform. The cloud
platform provides IBM’s real hardware and simulators. Additionally, program-
ming can be possible using Python and Qiskit’s grammar, allowing access to the
quantum computing environment. We use the ’matrix product state’ simulator,
which can provide relatively large-scale qubits.

4.2 Result of Quantum NV Sieve

Table 1 shows the results of each step of our implementation for quantum NV
Sieve. The complement expression of x is x, and the abbreviation of the previous
step is sometimes used in the next step to prevent the output term from becoming
long. On the other hand, we present results for Default, Ex DIM, and Ex RANK.
The extension to dimension (Ex DIM) increases the length of the vector (v0 =
{0, 1} to v0 = {0, 0, 0, 1}). The extension to rank (Ex RANK) increases the number
of elements (V = {v0, v1} to V = {v0, ..., vn}).

Through the result of quantum NV Sieve logic, we present a scalable im-
plementation that takes into account various situations on the lattice. Correct
values are output at all steps. This allows us to verify the suitability of our
quantum NV Sieve for practical implementation. Furthermore, this extended
implementation can help raise the SVP upper limit that NV Sieve can solve. In
our work, we confirmed that the NV Sieve algorithm operates accurately on a
quantum circuit. Based on our work, we can expect that the possibility of solving
the larger problem will increase as the scale of quantum computers expands.

4 https://qiskit.org/

https://qiskit.org/

18 Authors Suppressed Due to Excessive Length

Table 1: Results from each step of quantum NV Sieve to check whether it
has been implemented correctly. (Default: 2-dimension and 2-rank, Ex DIM: 4-
dimension and 2-rank, Ex RANK: 2-dimension and 3-rank)

Output Default Ex DIM Ex RANK

v0 000 00111 000

v1 001 00011 001

v2 None None 001

c0 001 11001 001

c1 000 00101 001

c2 None None 111

(γR)2 000001 0000000001 000001

c0 (when positive) 111 11001 111

c1 (when positive) 000 11011 111

c2 (when positive) None None 111

v0 + c0: (vc0) 111 00000 111

v1 + c1: (vc1) 001 11110 000

v2 + c2: (vc2) None None 000

(vc0)
2 001 0000000000 001

(vc1)
2 001 0000000100 000

(vc2)
2 None None 000

(vc0)
2 + (vc1)

2 + (vc2)
2: (Sumvc) 000010 0000000100 000001

Sumvc 111110 1111111100 111111

γR+ Sumvc 111111 1111111101 000000

MSB 1 1 0

Shots 100

Quantum NV Sieve on Grover 19

4.3 Resource Estimation of Quantum NV Sieve

Table 2 shows the resource estimation of quantum NV Sieve. Since this is a
resource estimate for Oracle, the result also includes resources for reverse opera-
tion. Contrary to the traditional Grover’s search that identifies a single solution,
the NV Sieve yields multiple outcomes. That is, it may produce multiple short
vectors meeting the condition, with probabilities varying based on the number of
shots. Therefore, determining the correct Grover’s iteration is a very important
issue.

The required quantum resources increase as the rank and dimension of the
target vector increase. Even if the dimension is doubled, the total quantum cost
increases by about 8.38 times, and even if the rank increases by just one, the
total cost increases by about 1.98 times. However, a real lattice will have larger
dimensions and ranks. Therefore, if the dimension and rank increase simulta-
neously, the quantum cost of the quantum NV Sieve is expected to increase
enormously.

2 ·#gates · FD · iter (4)

Additionally, when applying Grover, the total number of gates (#gates) men-
tioned in Table 2 must be multiplied by full depth (FD). Then, we need to
multiply by 2 (reverse operation) and multiply by the number of Grover’s itera-
tions (iter). In other words, the formula for calculating Grover’s attack cost is as
shown in Equation 4. That is, in addition to quantum resources (i.e. the number
of gates and circuit depth), Grover’s iteration affects the attack cost. Table 3 is
calculated from Table 2 and Equation 4. Table 3 shows the required quantum
resources for Grover’s search on NV Sieve. The number of qubits in every case
increases by 1 because of the decision qubit. And, we get the appropriate iter-
ation for these cases. Therefore, we calculate Grover’s search cost on NV Sieve
(Default,Ex RANK and Ex DIM).

Table 2: Resource Estimation of Quantum NV Sieve oracle.
Case #CNOT #1qCliff #T T-depth full depth #Qubit

Default 291 69 124 396 1126 74

Ex RANK 420 90 181 576 1631 105

Ex DIM 685 224 296 878 2342 179

20 Authors Suppressed Due to Excessive Length

Table 3: Required quantum resources for Grover’s search on NV Sieve.

Case Total gates Full depth T-depth Quantum cost #Qubit

Default 972 2259 792 2195748 75

Ex RANK 1403 3271 1152 4589213 106

Ex DIM 2436 4714 1756 11483304 180

※: The appropriate iteration is 1.

4.4 Further discussion

According to our implementation mentioned above, it is expected that quantum
gain can be obtained through Grover’s search. Of course, there will certainly be
implementation challenges as follows. Also, in the current quantum computing
environment, it is believed that there will be many difficulties from an imple-
mentation perspective to derive results similar to the theoretically proposed
complexity of the quantum NV Sieve.

– Grover’s iteration: Since iteration affects the cost, finding an iteration for
a problem that has multiple solutions is the most important challenge in the
practical implementation of Quantum NV Sieve. In this work, we get the
proper iteration that ensures that only the correct answer is derived. We are
conducting experiments on other cases (other extended implementations),
and the results will be published in future research.

– Increase the upper limit: The important thing to solve the current SVP
is to accurately find short vectors and increase the upper limit of the dimen-
sion that can be solved. In other words, the Sieve algorithm belongs to the
exact algorithm, and it is important to solve it accurately starting from low
dimensions. Therefore, we should start experimenting with low dimensions
and ranks, as we do now, and then work our way up to higher limits.

– Optimizing the oracle circuit: In order to improve the efficiency of the
quantum NV Sieve and maximize the benefits that arise from applying quan-
tum, it is thought that optimal implementation of the oracle will be impor-
tant. In other words, it appears that the optimal implementation of the
oracle (NV Sieve quantum circuit), which determines the efficiency of quan-
tum costs in Grover’s search, must be progressed to solve SVP on a higher-
dimensional and rank lattice and obtain greater quantum advantages.

– NISQ era: As the resource estimation results indicate, quite a bit of at-
tack cost is required despite the small dimensions and rank. Therefore, it
is believed that there will be limitations in allowing general users to treat
lattice vectors with higher rank and dimension. In other words, it is thought
that solving SVP for high dimensions (50∼60 dimensions) such as classical
is difficult for now.

Quantum NV Sieve on Grover 21

5 Conclusion

In conclusion, there are quantum threats to traditional cryptographic systems,
especially as quantum computing technology advances. While the most of re-
search has focused on the potential impact of Grover’s algorithm on symmetric
key cryptography, the field of quantum attacks on lattice-based cryptography on
Grover’s search remains underexplored.

To address this gap and solve SVP on quantum computers, our work intro-
duces a practical implementation of Quantum NV Sieve, designed to solve the
SVP for hacking lattice-based cryptography. This implementation is an oracle
that is a vital component of Grover’s search algorithm. Furthermore, our work
extends the Quantum NV Sieve implementation to handle various conditions
(i.e., expansion of dimensions and rank of the lattice) thereby increasing its
applicability and impact.

We estimate the quantum resources required for each case-specific implemen-
tation (oracle) and predict the cost of Grover’s attacks when applied in conjunc-
tion with their Quantum NV Sieve. Like this, in a rapidly evolving quantum
field, our research addresses the new potential quantum threats practically.

In our future work, we plan to find the correct Grover’s iteration on other
extended cases in the condition that there are multiple solutions, and successfully
sieve the short vectors.

6 Acknowledgment

This work is funded by Utilizing Quantum Computing for Quantum Cryptogra-
phy Confidentiality Analysis (N-23-NM-CU03-S01).

References

1. P. W. Shor, “Algorithms for quantum computation: discrete logarithms and factor-
ing,” in Proceedings 35th annual symposium on foundations of computer science,
pp. 124–134, Ieee, 1994. 2

2. K. Jang, S. Choi, H. Kwon, H. Kim, J. Park, and H. Seo, “Grover on korean block
ciphers,” Applied Sciences, vol. 10, no. 18, p. 6407, 2020. 2

3. K. Jang, S. Choi, H. Kwon, and H. Seo, “Grover on speck: quantum resource
estimates,” Cryptology ePrint Archive, 2020. 2

4. K. Jang, G. Song, H. Kim, H. Kwon, H. Kim, and H. Seo, “Efficient implementation
of present and gift on quantum computers,” Applied Sciences, vol. 11, no. 11,
p. 4776, 2021. 2

5. K. Jang, A. Baksi, H. Kim, G. Song, H. Seo, and A. Chattopadhyay, “Quantum
analysis of aes,” Cryptology ePrint Archive, 2022. 2, 9

6. M. Rahman and G. Paul, “Grover on katan: Quantum resource estimation,” IEEE
Transactions on Quantum Engineering, vol. 3, pp. 1–9, 2022. 2

7. T. Laarhoven, M. Mosca, and J. Van De Pol, “Finding shortest lattice vectors faster
using quantum search,” Designs, Codes and Cryptography, vol. 77, pp. 375–400,
2015. 2, 6, 9

22 Authors Suppressed Due to Excessive Length

8. M. Ajtai, “The shortest vector problem in l2 is np-hard for randomized reductions,”
in Proceedings of the thirtieth annual ACM symposium on Theory of computing,
pp. 10–19, 1998. 4

9. P. Q. Nguyen and B. Vallée, The LLL algorithm. Springer, 2010. 5
10. C.-P. Schnorr and M. Euchner, “Lattice basis reduction: Improved practical al-

gorithms and solving subset sum problems,” Mathematical programming, vol. 66,
pp. 181–199, 1994. 5

11. M. Ajtai, R. Kumar, and D. Sivakumar, “A sieve algorithm for the shortest lattice
vector problem,” in Proceedings of the thirty-third annual ACM symposium on
Theory of computing, pp. 601–610, 2001. 5

12. P. Q. Nguyen and T. Vidick, “Sieve algorithms for the shortest vector problem are
practical,” Journal of Mathematical Cryptology, vol. 2, no. 2, pp. 181–207, 2008. 5

13. X. Wang, M. Liu, C. Tian, and J. Bi, “Improved nguyen-vidick heuristic sieve
algorithm for shortest vector problem,” in Proceedings of the 6th ACM Symposium
on Information, Computer and Communications Security, pp. 1–9, 2011. 6

14. F. Zhang, Y. Pan, and G. Hu, “A three-level sieve algorithm for the shortest vector
problem,” in International Conference on Selected Areas in Cryptography, pp. 29–
47, Springer, 2013. 6

15. T. Laarhoven, “Sieving for shortest vectors in lattices using angular locality-
sensitive hashing,” in Advances in Cryptology–CRYPTO 2015: 35th Annual Cryp-
tology Conference, Santa Barbara, CA, USA, August 16-20, 2015, Proceedings,
Part I 35, pp. 3–22, Springer, 2015. 6

16. A. Becker, N. Gama, and A. Joux, “Speeding-up lattice sieving without increas-
ing the memory, using sub-quadratic nearest neighbor search,” Cryptology ePrint
Archive, 2015. 6

17. D. Micciancio and P. Voulgaris, “Faster exponential time algorithms for the short-
est vector problem,” in Proceedings of the twenty-first annual ACM-SIAM sympo-
sium on Discrete Algorithms, pp. 1468–1480, SIAM, 2010. 6

18. S. Jaques, M. Naehrig, M. Roetteler, and F. Virdia, “Implementing grover or-
acles for quantum key search on aes and lowmc,” in Advances in Cryptology–
EUROCRYPT 2020: 39th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Zagreb, Croatia, May 10–14, 2020, Pro-
ceedings, Part II 30, pp. 280–310, Springer, 2020. 9

19. M. Kaplan, G. Leurent, A. Leverrier, and M. Naya-Plasencia, “Quantum differen-
tial and linear cryptanalysis,” arXiv preprint arXiv:1510.05836, 2015. 11

20. S. A. Cuccaro, T. G. Draper, S. A. Kutin, and D. P. Moulton, “A new quantum
ripple-carry addition circuit,” arXiv preprint quant-ph/0410184, 2004. 16

	Finding Shortest Vector using Quantum NV Sieve on Grover

