
Depth-Optimized Quantum Implementation of
ARIA

Yujin Yang, Kyungbae Jang, Yujin Oh, and Hwajeong Seo

Division of IT Convergence Engineering, Hansung University, Seoul, South Korea

yujin.yang34@gmail.com, starj1023@gmail.com, oyj0922@gmail.com,
hwajeong84@gmail.com

Abstract. The advancement of large-scale quantum computers poses
a threat to the security of current encryption systems. In particular,
symmetric-key cryptography significantly is impacted by general attacks
using the Grover’s search algorithm. In recent years, studies have been
presented to estimate the complexity of Grover’s key search for symmetric-
key ciphers and assess post-quantum security. In this paper, we propose
a depth-optimized quantum circuit implementation for ARIA, which is a
symmetric key cipher included as a validation target the Korean Cryp-
tographic Module Validation Program (KCMVP). Our quantum circuit
implementation for ARIA improves the depth by more than 88.8% and
Toffoli depth by more than 98.7% compared to the implementation pre-
sented in Chauhan et al.’s SPACE’20 paper. Finally, we present the cost
of Grover’s key search for our circuit and evaluate the post-quantum secu-
rity strength of ARIA according to relevant evaluation criteria provided
NIST.

Keywords: Depth-Optimized Quantum Circuit · Korean Block Ciphers
· ARIA · Grover’s Search Algorithm.

1 Introduction

Quantum computers, built upon principles of quantum mechanics like quantum
superposition and entanglement, have the capability to solve specific problems
at a faster rate compared to classical computers. As a result, many companies
and research institutions are concentrating on quantum computer development.
However, it is known that the advancement of large-scale quantum computers has
the potential to pose a threat to the security of current cryptographic systems.
In particular, symmetric-key cryptography can be significantly compromised
by general attacks using the Grover’s search algorithm, which can reduce the
data search complexity. As a result, in recent years, studies have been presented
to estimate the complexity of recovering secret keys in existing symmetric-key
ciphers using the Grover’s search algorithm and evaluate post-quantum security
based on these findings [8, 10,11,14,15,22,25].

ARIA is a symmetric-key cryptography algorithm optimized for ultra-light
environments and hardware implementation, and is included as a validation

target in the Korean Cryptographic Module Validation Program (KCMVP). This
means that ARIA is widely used in verified cryptographic modules, so it is very
important to measure ARIA’s quantum security strength for future preparedness
against emerging threats. Fortunately, there is already a study that measured
the quantum security strength of ARIA in 2020 [2]. However, since [2] primarily
focuses on qubit optimization, there is also a need for research that addresses
the recent emphasis on optimizing depth.

In a document guiding evaluation criteria for post-quantum cryptography
standardization, NIST provided a criteria for estimating quantum attack complex-
ity and proposed a parameter called MAXDEPTH, which refers to the maximum
circuit depth that a quantum computer can execute. In order to evaluate the
strength of quantum security, not only the quantum attack complexity but also
the MAXDEPTH related to execution must be considered. Further elaboration
on this topic can be found in Sections 2.4 and 4.

The paper is structured as follows. Section 2 offers the background for this
paper. Section 2.1 provides an introduction to ARIA. In Section 2.2, the quantum
gates utilized to implement quantum circuits are covered. In Section 2.3 Grover’s
key search is examined because it relates to measuring quantum resources, and in
Section 2.4, NIST post-quantum security and MAXDEPTH are covered because
they are crucial for estimating security strength. Following this, in Sections 3, the
design of quantum circuits for ARIA is suggested, drawing upon the information
presented in Section 2. Section 4.2 presents the cost of Grover’s key search for
our circuit and evaluates ARIA’s post-quantum security strength based on the
estimates. Lastly, Section 5 delves into the summarizing conclusions and outlines
potential directions for future research.

1.1 Our Contribution

This paper makes the following contributions:

1. Low depth quantum implementation of ARIA. In our implementation
of the ARIA quantum circuit, our main focus is minimizing the Toffoli depth
and ensuring full depth. We achieve a reduction in Toffoli depth and full
depth through various techniques for optimization.

2. Various techniques for optimization. We utilize various techniques for
optimization to reduce the depth. For optimizing binary field operations, we
choose a multiplication optimizer that implements the Karatsuba algorithm
in parallel and a squaring method using linear layer optimization methods
(PLU factorization, XZLBZ). Furthermore, we enhance implementing parallel
processing for applicable components.

3. Evaluation of post-quantum security. We estimate the resources required
for implementing quantum circuits for ARIA. The resource estimation for the
ARIA quantum circuit also includes the comparison with previous research.
Furthermore, we evaluate the quantum security of ARIA by estimating the
cost of Grover’s key search based on the implemented quantum circuit and
comparing them with the security levels provided by NIST.

2

2 Background

2.1 ARIA Block Cipher

ARIA [17], which stands for Academy, Research Institute, and Agency, is a
Korean symmetric key block cipher jointly developed by the three organizations
mentioned above. Since the adoption of ARIA as a national standard encryption
algorithm in 2004, it has been widely used for secure communication and data
protection. Especially, ARIA holds significance as symmetric key ciphers included
in the validation subjects of the KCMVP. ARIA has an interface similar to
AES, a symmetric key block cipher standard, because its designers considered
the design principles of AES during its development. It has an Involutional
Substitution-Permutation Network (ISPN) structure optimized for lightweight
hardware implementation. The input/output size of ARIA is fixed at 128-bit,
and only the key size is different as 128, 192, and 256-bit.

Round Function The round function is made of three main operations: Ad-
dRoundKey, Substitution layer, and Diffusion layer.

In the AddRoundKey, the round key suitable for each round is XORed to
intermediate state.

In the Substitution layer, the input 128-bit state is divided into 8-bit units,
and substitutions are performed using the S-boxes. ARIA employs a total of four
S-boxes (S1, S

−1
1 , S2, S

−1
2) , which include the inverse S-boxes. The S1, S

−1
1 are

identical to the ones used in AES, and the S2, S
−1
2 are newly designed S-boxes

specifically for ARIA. These S-boxes used in ARIA are generated by applying an
affine transformation to the functions x−1 and x247 over GF (28). The S-boxes
S1(x), S2(x) are obtained by performing multiplication between 8×8 non-singular
matrix (A or B) and the function(x−1 or x247), followed by XOR with 8 × 1
vector. This can be expressed as follows:

S1(x) = A · x−1 ⊕ [1, 1, 0, 0, 0, 1, 1, 0]T,

S2(x) = B · x247 ⊕ [0, 1, 0, 0, 0, 1, 1, 1]T

where A =

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

and B =

0 1 0 1 1 1 1 0
0 0 1 1 1 1 0 1
1 1 0 1 0 1 1 1
1 0 0 1 1 1 0 1
0 0 1 0 1 1 0 0
1 0 0 0 0 0 0 1
0 1 0 1 1 1 0 1
1 1 0 1 0 0 1 1

(1)

ARIA features two types of S-box layers consisting of four S-boxes. Type 1
comprises four 32-bit sets consisting of S1, S2, S

−1
1 , and S−1

2 in this order. Since
the two types are the inverse relationship to each other, Type 2 is the inverse of

3

Type 1 (i.e., Type1−1 = Type2). Type 1 is used for odd rounds and Type 2 for
even rounds in the round function. The two types of S-box layers in ARIA are
shown in Figure 1.

8		 8		 8		 8		 8		 8		 8		 8		 8		 8		 8		 8		 8		 8		 8		 8		

𝑆! 𝑆" 𝑆!#! 𝑆"#! 𝑆! 𝑆" 𝑆!#! 𝑆"#! 𝑆! 𝑆" 𝑆!#! 𝑆"#! 𝑆! 𝑆" 𝑆!#! 𝑆"#!

𝑎 Type 1

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

𝑏 Type 2

𝑆!#! 𝑆"#! 𝑆! 𝑆" 𝑆!#! 𝑆"#! 𝑆! 𝑆" 𝑆!#! 𝑆"#! 𝑆! 𝑆" 𝑆!#! 𝑆"#! 𝑆! 𝑆"

8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8

8		 8		 8		 8		 8		 8		 8		 8		 8		 8		 8		 8		 8		 8		 8		 8		

Fig. 1: Two types of S-box layers in ARIA

The Diffusion layer performs byte-wise matrix multiplication by multiplying
the given 16 × 16 involution binary matrix with the output of the substitution
layer. The involution binary matrix does not require a separate implementation
of the inverse matrix during the decryption process, as its inverse matrix is the
same as itself.

The detailed composition of the round function differs depending on whether
the round is odd, even, or final. The main difference between odd and even rounds
lies in the type of the S-box layer used: odd rounds use a Type 1, whereas even
rounds use a Type 2. In the final round, the diffusion step is omitted and the
AddRoundKey is performed once more. A brief outline of the round function of
ARIA is shown in Figure 2.

⨁ 𝑒𝑘

Diffusion layer

128

128

⨁ 𝑒𝑘

Diffusion layer

128

128

⨁ 𝑒𝑘

128

⨁ 𝑒𝑘
128

S-box layer (type 1) S-box layer (type 2) S-box layer (type 2)

𝑎 	𝐹! 𝑏 	𝐹" 𝑐 	𝐹#

Fig. 2: Brief outline of round function of ARIA.

4

Key Schedule In the key initialization step (Figure 3), 128-bit initial constants
W0,W1,W2, and W3 are generated as essential components for generating a
round key . During this step, the round functions Fo and Fe are utilized.

KL||KR =MK||0 · · · 0. (2)

Equation 2 represents the formula used to generate the input values KL and
KR in the key initialization step. This equation is derived from the master key
MK. Since the concatenated result of KL and KR, which are each 128-bit, is
fixed to 256-bit (i.e., KL||KR), if MK is smaller than 256, padding is performed
to match the size by filling the insufficient bits with 0s. The 128-bit initial round
constant keys CK1,2,3 are the 128-bit constant values of the rational part of π−1.
The order of using the 128-bit initial round constant keys CK1,2,3 depends on
the length of MK. Figure 3 shows the key initialization step.

𝐶𝐾!

⨁

𝑊"

𝐾𝐿 𝐾𝑅

𝐹#

𝐶𝐾$

⨁

𝐹%

𝐹%

𝐶𝐾&

⨁

𝑊!

𝑊$

𝑊&

Fig. 3: Key Initialization of ARIA

In the key generation phase, a round key is generated and used as the key for
each round. The round keys ek1∼17 are obtained by applying rotations (≪,≫)
and XOR operations to the initial constants W0∼3 generated during the key
initialization step.

The round key in all ARIA instances has a size of 128 bits. The number of
rounds for ARIA-128, 192, and 256 are 12, 14, and 16, respectively. Additionally,

5

an extra round key is used in the AddRoundKey operation for the final round,
resulting in a total of 13, 15, and 17 round keys for ARIA-128, 192, and 256,
respectively. The round keys eki are generated as follows:

ek1 = (W0)⊕ (W1 ≫ 19), ek2 = (W1)⊕ (W2 ≫ 19)
ek3 = (W2)⊕ (W3 ≫ 19), ek4 = (W0 ≫ 19)⊕ (W3)
ek5 = (W0)⊕ (W1 ≫ 31), ek6 = (W1)⊕ (W2 ≫ 31)
ek7 = (W2)⊕ (W3 ≫ 31), ek8 = (W0 ≫ 31)⊕ (W3)
ek9 = (W0)⊕ (W1 ≪ 61), ek10 = (W1)⊕ (W2 ≪ 61)
ek11 = (W2)⊕ (W3 ≪ 61), ek12 = (W0 ≪ 61)⊕ (W3)
ek13 = (W0)⊕ (W1 ≪ 31), ek14 = (W1)⊕ (W2 ≪ 31)
ek15 = (W2)⊕ (W3 ≪ 31), ek16 = (W0 ≪ 31)⊕ (W3)
ek17 = (W0)⊕ (W1 ≪ 19)

(3)

2.2 Quantum Gates

Since in the quantum computer environment they do not provide logic gates such
as AND, OR, and XOR, quantum gates are used as replacements for logic gates.
This section describes commonly used quantum gates (Figure 4) for implementing
quantum circuits of block ciphers (note that this is not an exhaustive list of all
possible gates that can be used).

The X gate acts like a NOT operation on a classical computer, reversing
the state of the qubit that goes through it. The Swap gate exchanges the states
of two qubits. The CNOT gate behaves like an XOR operation on a classical
computer. In CNOT(a, b), the input qubit a is the control qubit, and b is the
target qubit. When the control qubit a is in the state 1, the target qubit b is
flipped. As a result, the value of a⊕ b is stored in the qubit b (i.e., b = a⊕ b),
while the state of qubit a remains unchanged. The Toffoli gate, represented as
Toffoli(a, b, c), acts like an AND operation on a classical computer. It requires
three input qubits, with the first two qubits (a and b) serving as control qubits.
Only when both control qubits are in the state 1, the target qubit c is flipped.
The result of the operation a & b is XORed with the qubit c (i.e., c = c⊕ (a &
b)), while the states of qubits a and b are preserved. The Toffoli gate consists of
8 Clifford gates and 7 T gates. The T -count of the standard Toffoli gate [18] is 7
and the T -depth is 6. Many studies are reporting the implementation of Toffoli
gate circuits with minimized depth and T -depth [1, 7, 16,21,23].

2.3 Grover’s Key Search

Grover’s search algorithm is a quantum algorithm that enables rapid searching
for specific data within an unstructured database set N , reducing the search
complexity from O(N) to O(

√
N). When applied to an n-bit secret key search in

symmetric key encryption, it reduces the search complexity from O(2n) resulting
from a brute-force attack to O(2n/2), halving the security level in theory. Grover’s
key search algorithm operates in three sequential steps as follows:

6

a X ∼ a a × b

b × a

a • a

b a⊕ b

a • a

b • b

c c⊕ (a · b)

Fig. 4: Quantum gates: X (left top), Swap (right top), CNOT (left bottom) and Toffoli
(right bottom) gates.

1. Initialization: Input the n-qubit key into the Hadamard gate to create a
superposition of states |ψ⟩ in which all 2n computational basis states have
equal amplitudes.

H |0⟩ =
(|0⟩+ |1⟩√

2

)
(4)

|ψ⟩ = (H |0⟩)⊗n =
(|0⟩+ |1⟩√

2

)⊗n

=
1√
2n

2n−1∑
x=0

|x⟩ (5)

2. Oracle Operator : The quantum circuit for the target cipher encrypts the
known plaintext using keys (prepared keys) generated through a superposition
of states in the Oracle and produces ciphertext for all key values. Within the
Oracle operator (Uf), the function f(x) in Equation 6 compares the ciphertext
generated by the circuit to the known ciphertext. The function f(x) returns
0 if the generated ciphertext and the known ciphertext do not match and 1
if they do. When a match is identified, the state of the corresponding key in
Equation 7, i.e., its amplitude, becomes negative because f(x) is equal to 1.
If no match is found, (−1)0 equals 1, so the amplitude remains positive.

f(x) =

{
1 if Enckey(p) = c

0 if Enckey(p) ̸= c
(6)

Uf (|ψ⟩ |−⟩) = 1√
2n

2n−1∑
x=0

(−1)f(x) |x⟩ |−⟩ (7)

3. Diffusion Operator : The diffusion operator (D) serves the purpose of trans-
forming a key state (target key state) with a negative amplitude into a
symmetric state. This transformation involves computing the average value
of all key states (|s⟩) and then subtracting this average value from each key
state element (I). During the second step, if the amplitude of the key state is
initially negative, subtracting a negative number results in a positive value,
thereby amplifying only the amplitude of that value.

D = 2 |s⟩ ⟨s| − I (8)

7

In order to increase the probability of measuring the solution key, steps 2 and
3 must be repeated sufficiently. In general, when the number of repetitions is
π
4

√
2k, it has the highest measurement probability.

2.4 NIST Post-quantum Security and MAXDEPTH

In order to analyze the algorithms submitted during the post-quantum cryptog-
raphy standardization, NIST provided security standards based on the security
strength range specified in the existing NIST standard for symmetric cryptogra-
phy in a related document [19, 20]. This post-quantum security baseline is based
on the complexity of quantum attacks against AES and SHA-2/3 variants. The
following is a summary of the criteria for estimating the complexity of quantum
attacks provided in NIST’s document [20] :

• Level 1: Any attempt to compromise the applicable security definition
should demand computational resources that are equal to or exceed the
resources needed to conduct a key search on a 128-bit key block cipher, such
as AES-128.

• Level 3: Any attempt to compromise the applicable security definition
should demand computational resources that are equal to or exceed the
resources needed to conduct a key search on a 192-bit key block cipher, such
as AES-192.

• Level 5: Any attempt to compromise the applicable security definition
should demand computational resources that are equal to or exceed the
resources needed to conduct a key search on a 256-bit key block cipher, such
as AES-256.

Grover’s search algorithm is recognized as one of the most efficient quantum
attacks for targeting symmetric key ciphers, and NIST also acknowledges this
fact. The difficulty presented by attacks at Levels 1, 3, and 5 is assessed according
to the cost needed for Grover’s key search on AES-128, 192, and 256, respectively.
This cost is determined by multiplying the total gate count by the depth of
Grover’s key search circuit. Through studies published over the past few years
that optimized AES quantum circuits to reduce Grover’s key search costs, NIST
has defined the costs for Levels 1, 3, and 5 as 2157, 2221, and 2285, respectively
in their recent document [20] by citing the costs of depth-optimized quantum
circuit implementations for AES [15] presented by Jaques et al. at Eurocrypt’20.

It should be mentioned that the quantum circuit implementation by Jaques
et al. [15] has a few programming-related problems. Nevertheless, Jang et al.
addressed and examined these issues in their research [11], showing that the cost
values mentioned in [15] can be roughly achieved using their optimized AES
quantum circuits. As far as our current understanding goes, the most notable
outcomes are detailed in [11] (Level 1, 3, and 5 cost 2157,2192,2274).

Additionally, we must also consider an approach called MAXDEPTH. NIST
introduced a parameter called MAXDEPTH, which signifies the maximum circuit
depth the quantum computer is able to execute, as an excessively large depth can

8

lead to execution challenges in terms of time. The depth limits (i.e. MAXDEPTH)
for quantum attacks provided by NIST range as follows: (no more than 240, 264,
296).

3 Proposed Quantum Implementation of ARIA

This section describes our optimized quantum circuit implementation of ARIA.
We compare the results of the previous work [2], which implemented ARIA as a
quantum circuit, and examine the optimized components.

3.1 Implementation of S-box

In classical computers, the S-box of most block ciphers, including AES, employs
a predefined look-up table. However, in a quantum computing environment, it is
more efficient to implement the S-box using multiplicative inversion and affine
transformation, primarily because of the limited number of qubits [5].

While the tool LIGHTER-R [6] efficiently constructs quantum circuits based
on existing S-boxes, it has a limitation in its applicability, as it can only be
used with 4-bit S-boxes, making it unsuitable for ARIA’s S-box. The recent
studies [4, 26] aim to enhance LIGHTER-R tools to build quantum circuits for
S-boxes that are previously beyond its reach. However, since these tools also
concentrate on 4-bit S-boxes, they cannot be employed to implement quantum
circuits for ARIA’s S-box. Therefore, it is necessary to obtain the multiplicative
inverse and perform the affine transformation to implement the quantum circuit
of ARIA’s S-box.

In order to find ARIA’s S-box S1 and S2, The inverse of x (i.e., x−1) and the
exponentiation value x247 of Equation 1 in Section 2.1 must be obtained. x247

in S2 can be expressed as follows using the primitive polynomial m(x) in the
environment of GF (28):

x247 ≡ (x−1)8 ≡ (((x−1)2)2)2 mod m(x)
m(x) = x8 + x4 + x3 + x+ 1

(9)

Likewise, the multiplicative inverse of x in the environment of GF (28) is
equal to x254 The multiplicative inverse can be efficiently obtained using the
Itoh-Tsujii algorithm [9]. Therefore, by applying the Itoh-Tsuji algorithm, it can
be expressed as an expression consisting of square and multiplication as follows:

x−1 = x254 = ((x · x2) · (x · x2)4 · (x · x2)16 · x64)2 (10)

In order to increase the operation speed, the squaring operation is generally
performed by converting the irreducible polynomial having linearity through
modular reduction into a matrix form. Since this corresponds to a linear operation,
it can be implemented as an in-place structure using only the XOR operation
by using the XZLBZ [24], a heuristic search algorithm based on factorization in
binary matrices.

9

The squaring operation in ARIA is implemented using CNOT gates and
SWAP gates through modular reduction and XZLBZ [24]. This implementation
utilizes 10 CNOT gates and has a circuit depth of 7. Figure 5 depicts the quantum
circuit for the squaring operation in ARIA.

x0 x0

x1 x4

x2 x1

x3 x5

x4 • • • x2

x5 • • • x6

x6 • • x3

x7 • • x7

Fig. 5: Quantum circuit implementation for Squaring in F28/(x
8 + x4 + x3 + x+ 1)

For multiplication, Jang et al.’s Toffoli-depth optimized Karatsuba quantum
multiplication [13], first announced at WISA’22, is used. By employing the
Karatsuba algorithm, which is known for reducing the number of multiplications,
the number of Toffoli gates required for a multiplication can be reduced. Jang et
al.’s multiplication applies the Karatsuba algorithm recursively to perform all
multiplications, i.e., AND operations, independently. In order to achieve a Toffoli
depth of 1, more ancilla qubits are allocated to execute Toffoli gates in parallel.
This method is only used for multiplications between quantum-quantum values.

Compared to the previous quantum implementation of ARIA [2], squaring
uses the same method, so the resources used are the same, but the multiplication
operation differs. In [2], the authors employed the schoolbook multiplication
method [3]. In contrast, in our work, by adopting the Toffoli-depth optimized
Karatsuba multiplication [13], we achieve a significant reduction in quantum
resources. Table 1 compares the quantum resources required for multiplication by
adopting different methods [3,13]. In Table 1, we can see that overall quantum
resources have been reduced, and, in particular, Toffoli-depth have been optimized.

Table 1: Quantum resources required for multiplication.

Source #Clifford #T Toffoli depth Full depth

CMMP [2] 435 448 28 195

J++ [13] 390 189 1 28

※: The multiplication size n is 8.

10

After obtaining the exponentiation values, matrix-vector multiplication be-
tween the exponentiation and the matrix is computed by applying the XZLBZ
methods because it involves the product of classical and quantum values. Mul-
tiplying vector would have originally required applying 8 CNOT gates, but by
taking advantage of the fact that the given vector is a constant, resources are
saved by applying X gates only to the positions where inversion is necessary.

3.2 Implementation of Diffusion Layer

ARIA’s diffusion function A : GF (28)16 → GF (28)16 is expressed as a 16 × 16
binary matrix multiplication. Since one element of the binary matrix is a byte,
in order to multiply with the input bit, the byte must be converted to a bit unit
and the calculation proceeded. To do so, the calculation proceeds assuming that
the element 0 in the matrix represents an 8× 8 zero matrix, and the element 1 in
the matrix represents an 8× 8 identity matrix. For implementing matrix-vector
multiplication in quantum, we can use linear layer optimization methods (i.e. PLU
Factorization, Gauss-Jordan elimination etc.) [2] employed PLU factorization. In
contrast, we applied XZLBZ [24] to optimize the implementation of the linear
layer for increased efficiency. Table 2 compares the quantum resources used in the
implementation of the Diffusion layer between [2] and our approach. In the case
of [2], since 96 CNOT operations are required per byte, a total of 768 (= 96× 8)
CNOT gates are used. In contrast, for XZLBZ, since 47 CNOT operations are
required per byte, 376 (= 47× 8) CNOT gates are used in total. Consequently,
Table 2 demonstrates a reduction of 51.04% and 45.16% in CNOT gates and
depths, respectively, while maintaining the same number of qubits.

Table 2: Quantum resources required for Diffusion layer.

Source #CNOT qubit Depth

CMMP [2] 768 128 31

XZLBZ [24] 376 128 17

3.3 Implementation of Key Schedule

In the key initialization phase, the 128-qubit W1,W2, and W3 are generated
using round functions. Since KL is used only for the generation of W0, instead
of allocating new qubits for W0, KL is utilized as a substitute, resulting in a
reduction of 128 qubits. In addition, when performing the XOR operation of
KR and W1∼3, since KR is a constant, the X gate are applied to W1 only when
the bit of KR is 1. By replacing the CNOT gates with cheaper X gates, the
number of gates and gate cost are reduced. In contrast, our implementation in
the key initialization stage employs 192 X gates and 87544 CNOT gates, leading

11

to a reduction of approximately 49% in X gates and about 45% in CNOT gates
compared to [2].

In the key generation stage, a round key ek used as an encryption key for
each round is generated using W0∼3. If W0 is used in the generation of ek, we
reduce the gate cost by applying the X gates instead of the CNOT gates as in
the generation of W0.

Since the value of ek is different for each round, new qubits must be allocated
and stored each time. However, instead of allocating new qubits for ek every
round, we initialize and reuse the qubits by performing a reverse operation on
the round key generation at the end of every round. Since the reverse operation
on key generation, which is related to CNOT gates and X gates, has little effect
on the depth, it is more efficient to perform the reverse operation than to allocate
128 ancilla qubits every round.

Algorithm 1: Quantum circuit implementation of key schedule for ARIA.

Input: master key MK, key length l, vector a, b, ancilla qubit anc, round number r
Output: round key ek

▷ Key Initialization
1: W1 ← Fo(MK[: 128], a, b, anc) ▷ MK[: 128] is KL
2: Constant XOR(W1[l − 128 : 128], MK[l − 128 : l]) ▷ MK[l − 128 : l] is KR

3: W2 ← Fe(W1, a, b, anc)
4: W2 ← CNOT128(MK[: 128],W2)

5: W3 ← Fo(W2, a, b, anc)
6: W3 ← CNOT128(W1,W3)

7: num = [19, 31, 67, 97, 109] ▷ Key Generation
8: for i← 0 to r do
9: if i = 0 (mod 4) then
10: Constant XOR(ek, MK[: 128])

11: else
12: ek ←CNOT128(W(i%4), ek)

13: ek ← CNOT128(W(i+1)%4 ≫ num[i%4], ek)

14: return ek

4 Evaluation

In this section, we estimate and analyze the quantum circuit resources for ARIA.
The proposed quantum circuits cannot yet be implemented in large-scale quantum
computers. Therefore, we use ProjectQ, a quantum programming tool, on a
classical computer instead of real quantum computer to implement and simulate

12

quantum circuits. A large number of qubits can be simulated using ProjectQ’s
own library, ClassicalSimulator, which is restricted to simple quantum gates
(such as X, SWAP, CNOT, and Toffoli). With the aid of this functionality, the
ClassicalSimulator is able to test the implementation of a quantum circuit by
classically computing the output for a particular input. For the estimation of
quantum resources, another internal library called ResourceCounter is needed.
ResourceCounter solely counts quantum gates and circuit depth, doesn’t run
quantum circuits, in contrast to ClassicalSimulator.

4.1 Performance of the Proposed Quantum Circuit

Table 3 and 4 represent the quantum resources required to implement our proposed
quantum circuits for ARIA. These tables compare the quantum resources between
the quantum circuit proposed by Chauhan et al. [2] and our proposed quantum
circuit. Table 3 shows quantum resources for ARIA at the NCT (NOT, CNOT,
Toffoli) gate level, while Table 4 presents quantum resources for ARIA at the
Clifford+T level, achieved by decomposing the Toffoli gate. In [2], the decomposed
quantum resources were not explicitly provided, so the quantum resources in
Table 4 are extrapolated based on the information provided in the paper [2].
Furthermore, our implementation places a primary emphasis on circuit depth
optimization while carefully considering the balance with qubit utilization. We
conduct assessments that encompass circuit complexity metrics, such as TD-M
cost and FD-M cost, where TD-M cost represents the multiplication of Toffoli
depth (TD) and the number of qubits (M), while FD-M cost signifies the
multiplication of Full depth (FD) and the number of qubits (M).

Table 3: Required quantum resources for ARIA quantum circuit implementation

Cipher Source #X #CNOT #Toffoli Toffoli depth #Qubit Depth TD-M cost

ARIA-128
CS [2] 1,595 231,124 157,696 4,312 1,560 9,260 6,726,720

This work 1,408 272,392 25,920 60 29,216 3,091 1,752,960

ARIA-192
CS [2] 1,851 273,264 183,368 5,096 1,560 10,948 7,949,760

This work 1,624 315,144 29,376 68 32,928 3,776 2,239,104

ARIA-256
CS [2] 2,171 325,352 222,208 6,076 1,688 13,054 10,256,288

This work 1,856 352,408 32,832 76 36,640 4,229 2,784,640

4.2 Evaluation of Grover’s Search Complexity

In this section, we evaluate the quantum security of ARIA by estimating the
cost of Grover’s key search for this algorithm. As described in Section 2.3, the
overhead of the diffusion operator can be considered insignificant compared to
the overhead of the oracle, so it is disregarded when estimating the cost of the

13

Table 4: Required decomposed quantum resources for ARIA quantum circuit imple-
mentation

Cipher Source #Cliford #T T -depth #Qubit Full depth

ARIA-128
CS [2]♢ 1,494,287 1,103,872 17,248 1,560 37,882

This work 481,160 181,440 240 29,216 4,241

ARIA-192
CS [2]♢ 1,742,059 1,283,576 20,376 1,560 44,774

This work 551,776 205,632 272 32,928 5,083

ARIA-256
CS [2]♢ 2,105,187 1,555,456 24,304 1,688 51,666

This work 616,920 229,824 304 36,640 5,693

♢ Extrapolated result

Grover’s key search. Therefore, the optimal number of iterations for Grover’s key
search for a cipher using a k-bit key is approximately ⌊π

4

√
2k⌋.

According to [15], finding a unique key requires r plaintext–ciphertext pairs,
where r needs to be at least ⌈key size/block size⌉. To calculate the quantum
resources required for Grover’s key search in the block cipher, the decomposed
quantum resources need to be multiplied by 2, r, and ⌊π

4

√
2k⌋.

In the case of ARIA with the key size of 192 or 256 bits, the value of r is 2,
indicating that the multiplication by r cannot be omitted. Therefore, the Grover’s
key search cost for ARIA is approximately Table 4 ×r × 2× ⌊π

4

√
2k⌋(see Table

5).

Table 5: Cost of the Grover’s key search for ARIA

Cipher Source Total gates Full depth
Cost

#Qubit TD-M cost
(complexity)

ARIA-128
CS [2] 1.946 · 285 1.816 · 279 1.767 · 2165 1,561 1.26 · 286

This work 1.985 · 283 1.626 · 276 1.614 · 2160 29,217 1.313 · 284

ARIA-192
CS [2] 1.133 · 2119 1.073 · 2113 1.216 · 2232 3,121 1.489 · 2118

This work 1.135 · 2117 1.949 · 2109 1.106 · 2227 65,857 1.677 · 2116

ARIA-256
CS [2] 1.627 · 2150 1.238 · 2145 1.007 · 2296 3,377 1.921 · 2150

This work 1.268 · 2149 1.092 · 2142 1.385 · 2291 73,281 1.043 · 2149

Cost is an indicator that can be compared with the security criteria provided
by NIST. After comparing with the quantum attack cost (2157, 2221, and
2285) described in Section 2.4, it can be confirmed that all instances of ARIA
attain the suitable level of security for their respective key sizes. We conduct
evaluations, including metrics such as TD-M cost, where TD-M cost represents
the multiplication of Toffoli depth(TD) and qubit count(M), to assess these
trade-offs.

14

To take NIST’s MAXDEPTH (mentioned in Section 2.4) into account, one
cannot disregard parallelization. When comparing Full depth(FD) and NIST
MAXDEPTH in Table 5, only ARIA-128 meets the MAXDEPTH requirement
(ARIA-128 < 296). If the full depth (FD) exceeds MAXDEPTH, as in the
case of ARIA-192 and ARIA-256, reducing FD by FD/MAXDEPTH requires
Grover instances to operate in parallel by a factor of FD2/MAXDEPTH2. In
this scenario, while MAXDEPTH can be decreased, M increases by a factor of
FD2/MAXDEPTH2, resulting in a final value of (FD2/MAXDEPTH2) ×M .
Ultimately, FD2 −M represents the cost of FD−M , considering parallelization
for Grover search. Similar to FD2 − M , FD2 − M also denotes the cost of
TD − M , considering parallelization for Grover search. However, according
to [12,15], parallelization of Grover’s key search is highly inefficient; therefore, ,
instead of directly imposing a MAXDEPTH limit on the cost, the focus is on
minimizing the costs of relevant metrics (e.g., FD2 −M , TD2 −M).

5 Conclusion

In this paper, we propose optimized quantum circuit for ARIA, focusing on
circuit depth optimization. We utilize various techniques such as optimized
multiplication and squaring methods in binary fields, along with parallelization,
to reduce both Toffoli and full depths while ensuring a reasonable number of
qubits. As a result, our quantum circuit implementation for ARIA achieves the
depth improvement of over 88.8% and Toffoli depth by more than 98.7% compared
to the implementation proposed in Chauhan et al.’s SPACE’20 paper [2]. Based
on our quantum circuits, we estimate the quantum resources and the cost of
Grover’s attacks for the proposed circuit. We then evaluate the security strength
based on the criteria provided by NIST. We demonstrate that ARIA achieves
post-quantum security levels 1, 3, and 5, respectively, for all key sizes: 128, 192,
and 256 bits (according to the recent standards [20]). Additionally, we have shown
that only ARIA-128 satisfies the MAXDEPTH limit.

Our future plan involves optimizing ARIA’s quantum circuits further, with
greater consideration for the MAXDEPTH limit.

6 Acknowledgment

This work was supported by the National Research Foundation of Korea(NRF)
grant funded by the Korea government(MSIT).(No. RS-2023-00277994, Quan-
tum Circuit Depth Optimization for ARIA, SEED, LEA, HIGHT, and LSH of
KCMVP Domestic Cryptographic Algorithms, 80%) and this work was supported
by Institute of Information & communications Technology Planning & Evalu-
ation (IITP) grant funded by the Korea government(MSIT) (No.2022-0-00627,
Development of Lightweight BIoT technology for Highly Constrained Devices,
20%).

15

References

1. Amy, M., Maslov, D., Mosca, M., Roetteler, M., Roetteler, M.: A meet-in-the-middle
algorithm for fast synthesis of depth-optimal quantum circuits. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 32(6) (Jun 2013)
818–830 6

2. Chauhan, A.K., Sanadhya, S.K.: Quantum resource estimates of grover’s key
search on aria. In: Security, Privacy, and Applied Cryptography Engineering: 10th
International Conference, SPACE 2020, Kolkata, India, December 17–21, 2020,
Proceedings 10, Springer (2020) 238–258 2, 9, 10, 11, 12, 13, 14, 15

3. Cheung, D., Maslov, D., Mathew, J., Pradhan, D.K.: On the design and optimization
of a quantum polynomial-time attack on elliptic curve cryptography. In: Workshop
on Quantum Computation, Communication, and Cryptography, Springer (2008)
96–104 10

4. Chun, M., Baksi, A., Chattopadhyay, A.: Dorcis: Depth optimized quantum
implementation of substitution boxes. Cryptology ePrint Archive (2023) 9

5. Chung, D., Lee, S., Choi, D., Lee, J.: Alternative tower field construction for
quantum implementation of the aes s-box. IEEE Transactions on Computers 71(10)
(2021) 2553–2564 9

6. Dasu, V.A., Baksi, A., Sarkar, S., Chattopadhyay, A.: Lighter-r: optimized reversible
circuit implementation for sboxes. In: 2019 32nd IEEE International System-on-Chip
Conference (SOCC), IEEE (2019) 260–265 9

7. Fedorov, A., Steffen, L., Baur, M., da Silva, M.P., Wallraff, A.: Implementation of
a Toffoli gate with superconducting circuits. Nature 481(7380) (2012) 170–172 6

8. Grassl, M., Langenberg, B., Roetteler, M., Steinwandt, R.: Applying Grover’s
algorithm to AES: quantum resource estimates (2015) 1

9. Itoh, T., Tsujii, S.: A fast algorithm for computing multiplicative inverses in gf
(2m) using normal bases. Information and computation 78(3) (1988) 171–177 9

10. Jang, K., Baksi, A., Kim, H., Seo, H., Chattopadhyay, A.: Improved quantum
analysis of speck and lowmc (full version). Cryptology ePrint Archive (2022) 1

11. Jang, K., Baksi, A., Song, G., Kim, H., Seo, H., Chattopadhyay, A.: Quantum
analysis of aes. Cryptology ePrint Archive (2022) 1, 8

12. Jang, K., Kim, D., Oh, Y., Lim, S., Yang, Y., Kim, H., Seo, H.: Quantum
implementation of aim: Aiming for low-depth. Cryptology ePrint Archive (2023) 15

13. Jang, K., Kim, W., Lim, S., Kang, Y., Yang, Y., Seo, H.: Optimized implementation
of quantum binary field multiplication with toffoli depth one. In: International
Conference on Information Security Applications, Springer (2022) 251–264 10

14. Jang, K., Song, G., Kim, H., Kwon, H., Kim, H., Seo, H.: Efficient implementation
of present and gift on quantum computers. Applied Sciences 11(11) (2021) 4776 1

15. Jaques, S., Naehrig, M., Roetteler, M., Virdia, F.: Implementing grover oracles for
quantum key search on aes and lowmc. In: Advances in Cryptology–EUROCRYPT
2020: 39th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Zagreb, Croatia, May 10–14, 2020, Proceedings, Part II
30, Springer (2020) 280–310 1, 8, 14, 15

16. Jones, C.: Low-overhead constructions for the fault-tolerant toffoli gate. Physical
Review A 87(2) (2013) 022328 6

17. Kwon, D., Kim, J., Park, S., Sung, S.H., Sohn, Y., Song, J.H., Yeom, Y., Yoon,
E.J., Lee, S., Lee, J., et al.: New block cipher: Aria. In: Information Security and
Cryptology-ICISC 2003: 6th International Conference, Seoul, Korea, November
27-28, 2003. Revised Papers 6, Springer (2004) 432–445 3

16

18. Nielsen, M.A., Chuang, I.: Quantum computation and quantum information (2002)
6

19. NIST.: Submission requirements and evaluation criteria for the post-
quantum cryptography standardization process (2016) https://csrc.

nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/

call-for-proposals-final-dec-2016.pdf. 8
20. NIST.: Call for additional digital signature schemes for the post-quantum cryp-

tography standardization process (2022) https://csrc.nist.gov/csrc/media/

Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.

pdf. 8, 15
21. Ralph, T., Resch, K., Gilchrist, A.: Efficient Toffoli gates using qudits. Physical

Review A 75(2) (2007) 022313 6
22. Roy, S., Baksi, A., Chattopadhyay, A.: Quantum implementation of ascon linear

layer. Cryptology ePrint Archive (2023) 1
23. Selinger, P.: Quantum circuits of t-depth one. Physical Review A 87(4) (2013)

042302 6
24. Xiang, Z., Zeng, X., Lin, D., Bao, Z., Zhang, S.: Optimizing implementations of

linear layers. IACR Transactions on Symmetric Cryptology (2020) 120–145 9, 10,
11

25. Yang, Y., Jang, K., Kim, H., Song, G., Seo, H.: Grover on sparkle. In: International
Conference on Information Security Applications, Springer (2022) 44–59 1

26. Yongjin, J., Baek, S., Kim, J.: A novel framework to construct quantum circuits of
s-boxes: Applications to 4-bit s-boxes. (2023) 9

17

https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf

	Depth-Optimized Quantum Implementation of ARIA

