
Optimized Quantum Implementation of SEED

Yujin Oh, Kyungbae Jang, Yujin Yang, and Hwajeong Seo

Division of IT Convergence Engineering, Hansung University, Seoul, South Korea

oyj0922@gmail.com, starj1023@gmail.com, yujin.yang34@gmail.com,
hwajeong84@gmail.com

Abstract. With the advancement of quantum computers, it has been
demonstrated that Grover’s algorithm enables a potential reduction in
the complexity of symmetric key cryptographic attacks to the square root.
This raises increasing challenges in considering symmetric key cryptogra-
phy as secure. In order to establish secure post-quantum cryptographic
systems, there is a need for quantum post-quantum security evalua-
tions of cryptographic algorithms. Consequently, NIST is estimating the
strength of post-quantum security, driving active research in quantum
cryptographic analysis for the establishment of secure post-quantum
cryptographic systems.
In this regard, this paper presents a depth-optimized quantum circuit
implementation for SEED, a symmetric key encryption algorithm included
in the Korean Cryptographic Module Validation Program (KCMVP).
Building upon our implementation, we conduct a thorough assessment
of the post-quantum security for SEED. Our implementation for SEED
represents the first quantum circuit implementation for this cipher.

Keywords: Quantum Circuit · SEED · Korean Block Cipher · Grover
Algorithm.

1 Introduction

Quantum computers are the new and upcoming computing paradigm which are
based on quantum mechanical principles (such as superposition and entangle-
ment), and will be able to solve certain classes of problems significantly faster
than the classical computers. Quantum computers are being developed by many
top-tier companies and research institutions.

The introduction of the Shor algorithm [1], which is known for its ability
to solve the integer factorization problem and the discrete logarithm problem
in polynomial time, poses significant risks to public-key cryptography designed
based on these problems. Similarly, the Grover search algorithm [2], known for
its ability to reduce the complexity of data search by a square root factor, can
have a significant impact on the security of symmetric key cryptography.

NIST has proposed criteria for estimating the quantum attack complexity
on the AES family and a parameter called MAXDEPTH, which represents the
maximum circuit depth that a quantum computer can execute, in its evaluation

2 Yujin Oh, Kyungbae Jang, Yujin Yang, and Hwajeong Seo

criteria document for post-quantum cryptography standardization [3, 4]. Both of
these aspects need to be considered to evaluate the quantum security strength of
a cipher. Detailed explanations on these topics will be provided in Section 2.4, 5.

Based on these NIST criteria, continuous efforts have been made to estimate
the complexity of Grover’s key search for symmetric-key ciphers and evaluate
post-quantum security [5, 6, 7]. In addition to AES, research has also been con-
ducted on estimating quantum resources for well-known lightweight block ciphers
such as SPECK, GIFT, and PRESENT [8, 9, 10], as well as lightweight block
ciphers selected as finalists in the Lightweight Cryptography (LWC) competition,
including SPARKLE [11,12] and ASCON [13,14].

In this paper, we propose an optimized quantum circuits for SEED, which
is a symmetric key encryption algorithms included as validation subjects in
the Korean Cryptographic Module Validation Program (KCMVP). Since these
cryptographic algorithms are widely used in cryptographic modules in Korea, it
is of great importance to estimate quantum resources and measure the quantum
security strength of these ciphers. Using the proposed quantum circuit as a basis,
we assess the post-quantum security strength of SEED in accordance with NIST
criteria.

1.1 Our Contribution

The contribution in this paper is manifold and can be summarized as follows:

1. Quantum Circuit Implementation of SEED. We demonstrate the first
implementation of a quantum circuit for SEED, which is the one of Korean
cipher.

2. Low-Depth Implementation of SEED. In our quantum circuit implemen-
tation of SEED, we focus to optimize a low Toffoli depth and full depth. We
implement the Itoh-Tsujii algorithm for S-box optimization. For the imple-
mentation, we utilize the WISA’22 quantum multiplication, and a squaring
based on PLU factorization. Further, we enhance the efficiency of depth
optimization by using an optimal quantum adder(which is called CDKM
adder) and implementing parallelization for applicable components.

3. Post-quantum Security Assessment of SEED. We estimate the cost
of Grover’s key search using an our implemented quantum circuit for SEED
in order to assess the quantum security of SEED. During this assessment,
we compare the estimated cost of Grover’s key search for SEED with the
security levels defined by NIST.

2 Preliminaries

2.1 SEED Block Cipher

SEED is a block cipher of Feistel structure operates on 128-bit block and 128-bit
key. It consists of 16 rounds and each round has a round function F .

Optimized Quantum Implementation of SEED 3

A 128-bit block is divided into 64-bit blocks, and the right 64-bit block (R0)
serves as the input to the F function with 64-bit round key. The output of F
function is XORed to the left 64-bit block (L0). The overall structure of SEED
cipher is shown in Figure 1.

Fig. 1: Overall structure of SEED cipher.

F Function The input of F function (Figure 2) is 64-bit block and 64-bit round
key RKi = (Ki,0,Ki,1). The 64-bit block is divided into two 32-bit blocks (C,D)
and each block is XORed with the round key. The F function consists of XOR
operations (⊕), modular additions (⊞), and G functions.

Fig. 2: Process of the F function.

4 Yujin Oh, Kyungbae Jang, Yujin Yang, and Hwajeong Seo

G Function The 32-bit input block of the G function (Figure 3) is divided into
8-bit blocks (X0−3) and each block becomes input for the S-boxes.

To compute the output of an S-box, it involves exponentiation of x ∈ F28/(x
8+

x6 + x5 + x+ 1), matrix-vector multiplication, and XORing a single constant.
Specifically, two distinct S-boxes (S1 and S2) are employed, each using its own
corresponding set of matrices (A(1) or A(2)), exponentiation values (x247 or x251),
and constant values (169 or 56), which are as follows:

S1(x) = A(1) · x247 ⊕ 169, S2(x) = A(2) · x251 ⊕ 56 (1)

The output values of the S-boxes are ANDed (&) with the constants m0−3,
and the results of these AND operations are XORed with each other to compute
the final output (i.e., Z0−3).

Fig. 3: Process of the G function.

Key Schedule In the key schedule (Figure 4), the 128-bit key is divided into four
blocks (A∥B∥C∥D, where ∥ denotes concatenation), and key constnt values(KCi)
are utilized. Additionally, operations such as shift (≫, ≪), modular addition,
modular subtraction (⊟), and G function are applied.

Optimized Quantum Implementation of SEED 5

Fig. 4: Process of the key schedule

2.2 Quantum Gates

This section describes commonly used quantum gates (Figure 5) for implementing
quantum circuits of block ciphers (note that this is not an exhaustive list of all
possible gates that can be used).

The X gate acts like a NOT operation on a classical computer, reversing
the state of the qubit that goes through it. The Swap gate exchanges the states
of two qubits. The CNOT gate behaves like an XOR operation on a classical
computer. In CNOT(a, b), the input qubit a is the control qubit, and b is the
target qubit. When the control qubit a is in the state 1, the target qubit b is
flipped. As a result, the value of a⊕ b is stored in the qubit b (i.e., b = a⊕ b),
while the state of qubit a remains unchanged. The Toffoli gate, represented as
Toffoli(a, b, c), acts like an AND operation on a classical computer. It requires
three input qubits, with the first two qubits (a and b) serving as control qubits.
Only when both control qubits are in the state 1, the target qubit c is flipped.
The result of the operation a & b is XORed with the qubit c (i.e., c = c⊕ (a &
b)), while the states of qubits a and b are preserved.

2.3 Grover’s Key Search

Grover’s algorithm searches for a specific data from an unsorted set of N with a
search complexity of O(

√
N). In cryptography, for an encryption scheme that

uses a k-bit key, a classical computer requires a search of O(2k) complexity for
exhaustive key search. However, using Grover’s algorithm, a quantum computer
can perform this search with a complexity of only O(

√
2k), which is reduced by

a square root. In this section, we divide the progress of Grover’s key search into

6 Yujin Oh, Kyungbae Jang, Yujin Yang, and Hwajeong Seo

a X ∼ a a × b

b × a

a • a

b a⊕ b

a • a

b • b

c c⊕ (a · b)

Fig. 5: Quantum gates: X (left top), Swap (right top), CNOT (left bottom) and Toffoli
(right bottom) gates.

three stages: Input Setting, Oracle, and Diffusion Operator, and describe them as
follows.

1. Input Setting : Prepare a k-qubit key in a superposition state using Hadamard
gates. In this case, equal amplitudes are generated for all 2k possible states.

H⊗k |0⟩⊗k
= |ψ⟩ =

(|0⟩+ |1⟩√
2

)
=

1

2k/2

2k−1∑
x=0

|x⟩ (2)

2. In the oracle, the target encryption algorithm(Enc) is implemented through
a quantum circuit. This circuit encrypts a known plaintext(p) in a superposi-
tion state using a pre-prepared key (as set in the input setting), producing
ciphertexts for every possible key value. Subsequently, these generated cipher-
texts are compared with the known ciphertexts (performed in f(x)). Upon
discovering a match (i.e., when f(x) = 1 in Equation (3)), the sign of the
desired key state to be recovered is negated (i.e., (−1)f(x) in Equation (4)).
Finally, the implemented quantum circuit reverses the generated ciphertexts
back to the known plaintext for the next iteration.

f(x) =

{
1 if Enckey(p) = c

0 if Enckey(p) ̸= c
(3)

Uf (|ψ⟩ |−⟩) = 1

2k/2

2k−1∑
x=0

(−1)f(x) |x⟩ |−⟩ (4)

3. The Diffusion Operator serves to amplify the amplitude of the target key state
indicated by the oracle, identifying it by flipping the sign of said amplitude
to negative. The quantum circuit for the diffusion operator is typically
straightforward and does not require any special techniques to implement.
Additionally, the overhead of the diffusion operator is usually negligible
compared to the oracle, and therefore it is generally ignored when estimating
the cost of Grover’s algorithm [5,7,15]. Lastly, the Grover’s algorithm provides
a high probability of measuring the solution key by performing a sufficient
number of iterations of the oracle and the diffusion operator to amplify the
amplitude of the target key state.

Optimized Quantum Implementation of SEED 7

2.4 NIST Security Criteria

NIST establishes security levels and estimates the required resources for block
cipher and hash function attack costs for post-quantum security [3]. The estimates
provided by NIST for the security levels defined and the number of classical and
quantum gates for the attacks are as follows:

– Level 1: Any attempt to breach the defined security standards should
necessitate computational capabilities equal to or greater than those required
to perform a key search on a 128-bit key block cipher, such as AES128.
(2170 → 2157).

– Level 3: Any attempt to breach the defined security standards should
necessitate computational capabilities equal to or greater than those required
to perform a key search on a 192-bit key block cipher, such as AES192.
(2233 → 2221).

– Level 5: Any attempt to breach the defined security standards should
necessitate computational capabilities equal to or greater than those required
to perform a key search on a 256-bit key block cipher, such as AES256.
(2298 → 2285).

Level 1, 3, and 5 are based on the Grover’s key search cost for AES, while
Level 2 and 4 rely on the collision attack cost for SHA3. Additionally, for Levels
2 and 4, estimates are provided only for classical gates, not quantum attacks.
In our implementation of SEED, which is a symmetric key cipher, we primarily
focus on Levels 1, 3, and 5.

NIST sets the Grover’s key search cost for AES-128, 192, and 256 based on
the quantum circuits implemented by Grassl et al. [5], resulting in Levels 1, 3,
and 5. During the execution of the Grover’s key search, the number of gates
and depth continue to increase, while the number of qubits remains constant.
Therefore, the estimates provided by NIST are derived from the product of the
total gates and total depth of the quantum circuit, excluding the number of
qubits(AES-128, 192, and 256 as 2170, 2233, 2298, respectively).

The estimates for Grover’s key search on the quantum circuit from [5], which
NIST used as a basis for setting security levels, are notably high. Subsequent
efforts to optimize AES quantum circuits have led to a reduction in the cost of
quantum attacks. In 2019, Jaques et al. presented optimized quantum circuits for
AES at Eurocrypt ’20 [16]. Based on this, NIST redefines the quantum attack
costs for AES-128, 192, and 256 as 2157, 2221, 2285, respectively [4].

Moreover, NIST proposes a restriction on circuit depth known as MAXDEPTH.
This restriction stems from the challenge of executing highly prolonged sequential
computations. In other words, it arises from the challenge of prolonged calculations
due to sequential repetitions of quantum circuits in Grover’s key search (especially
in the Grover oracle). The MAXDEPTH specified by NIST is as follows. (240 <
264 < 296)

8 Yujin Oh, Kyungbae Jang, Yujin Yang, and Hwajeong Seo

3 Proposed Quantum Implementation of SEED

In this section, we present our optimized quantum circuit implementation of
SEED. Our optimization goal in implementation is to minimize the depth while
allowing a reasonable number of qubits.

3.1 Implementation of S-box

In quantum computers,the utilization of look-up table-based methods for imple-
menting S-boxes is not appropriate. Thus, we employ quantum gates to implement
the S-boxes based on Boolean expression of Equation 1. We use x247 or x251 in
the S-box implementation, and these values can be expressed using primitive
polynomials in F28/(x

8 + x6 + x5 + x+ 1) as follows: The S-boxes are in GF(28),
so they can be modified with inversion as follows:

(x−1)8 ≡ x247 mod p(x)

(x−1)4 ≡ x251 mod p(x)

p(x) = x8 + x6 + x5 + x+ 1

(5)

We can obtain the value by multiplying the inverse by the square. And then,
following the Itoh Tsujii inversion algorithm [17], the x−1 can be computed:

x−1 = x254 = ((x · x2) · (x · x2)4 · (x · x2)16 · x64)2 (6)

To compute the inversion of x, squaring and multiplication are used (as
shown in Equation 6). In squaring, modular reduction can be employed PLU
factorization because it is a linear operation. By using PLU factorization, it
can be implemented without allocating additional ancilla qubits (i.e., in-place),
using only the CNOT gates. Upon applying the PLU factorization, we obtain
the following:

0 0 0 0 1 1 1 0
0 0 0 0 1 1 0 0
0 1 0 0 0 1 0 1
0 0 0 0 0 1 1 0
0 0 1 0 0 0 1 0
0 0 0 0 1 1 0 1
0 0 0 1 1 1 0 1
0 0 0 0 0 1 0 0

=

1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0

·

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 1 1 0
0 0 0 0 1 0 0 1

·

1 0 0 0 1 1 1 0
0 1 0 0 0 1 0 1
0 0 1 0 0 0 1 0
0 0 0 1 1 1 0 1
0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

(7)

These three matrices consist of a permutation matrix, a lower triangular
matrix, and an upper triangular matrix, respectively. Figure 6 demonstrates the
implementation of quantum circuit of squaring using only CNOT gates, utilizing
these three matrices.

Optimized Quantum Implementation of SEED 9

x0 x0

x1 x2

x2 x4

x3 x6

x4 • • • x1

x5 • • • • • x3

x6 • • • x7

x7 • • x5

Fig. 6: Squaring in F28/(x
8 + x6 + x5 + x+ 1)

For implementing multiplication in quantum, we adopt the method proposed
in [18], which employs the Karatsuba multiplication instead of schoolbook multi-
plication [19]. The Karatsuba algorithm, when applied in the context of quantum
computers, can lead to a reduction in the number of Toffoli gates (as it decrease
the number of AND operations). This efficiency makes it a valuable technique
for quantum computing.

In [18], a special Karatsuba algorithm is used, which enables the quantum
multiplication with a Toffoli depth of one. By applying the Karatsuba algorithm
recursively, all the AND operations for multiplication become independent. Ad-
ditionally, by allocating more ancilla qubits, it becomes possible to operate all
Toffoli gates in parallel, leading to a Toffoli depth of one.

Actually, allocating additional ancilla qubits is a known overhead in their
method [18]. However, it is important to note that their method is more effective
when used in conjunction with other operations rather than as a stand-alone
multiplication. The authors of [18] mention that the ancilla qubits allocated for
multiplication can be initialized (i.e., clean state) using reverse operations. This
means that if it is not a stand-alone multiplication, the ancilla qubits can be
reused in ongoing operations.

In Equation 6, multiple multiplications are performed to compute the inverse
of the input x. Indeed, the method proposed in [18] is well-suited for implementing
quantum circuits for inversion. Concretely, in our implementation, ancilla qubits
are allocated only once for the initial multiplication (x · x2), and for subsequent
multiplications, the initialized ancilla qubits are reused without incurring any
additional cost.

As a result, we successfully optimize the number of qubits and the Toffoli-
related metrics such as, the number of Toffoli gates, Toffoli depth, and full
depth1.

Using these methods of squaring and multiplication, we can obtain the
exponentiation values (x247 and x251). And then, we compute the multiplication
of the exponentiation values (x247 and x251) and the matrices (A(1) and A(2)).
Since the matrices A(1) and A(2) are constant, the matrix-vector multiplication
(classical-quantum) can be implemented in-place without requiring additional

1The full depth is naturally reduced thanks to the reduction in the Toffoli depth.

10 Yujin Oh, Kyungbae Jang, Yujin Yang, and Hwajeong Seo

qubits. We apply the PLU factorization to the matrices A(1) and A(2), similar to
how we implemented the quantum circuit for squaring (Equation 7).

3.2 Implementation of G function

In the G function, four S-boxes (two S1 and two S2) are used, and the imple-
mentation of these S-boxes follows the method described in Section 3.1. Each
S-box requires 38 ancilla qubits, which can be initialized using reverse operations,
enabling their reuse. Therefore, if the four S-boxes are implemented sequentially,
the number of ancilla qubits can be saved by using only 38 of them. However, in
this case, the depth of the circuit increases due to the sequential operations. Thus,
considering the trade-off, we implement the four S-boxes in parallel to reduce
the circuit depth. This is achieved by allocating a total of 152 (38× 4) ancilla
qubits at first. Additionally, these ancilla qubits are initialized (i.e., returning
to 0), allowing the 4 sets of ancilla qubits to be reused in the G function of the
next round.

3.3 Implementation of Key Schedule

Algorithm 1 describes the proposed quantum circuit implementation of the key
schedule. In the key schedule, two 32-qubit subkeys (Ki,0 and Ki,1) are generated.
To reduce the circuit depth, the implementation is parallelized by operating two
processes simultaneously. For this, we allocate two sets of 152 ancilla qubits to
implement two G functions in parallel. Also, for parallel processing, the operations
with KeyConstant values of quantum state also need to be implemented in parallel.
To enable parallel processing, two pairs of qubits (32 × 2) are allocated to store
the KeyConstant values (using on Ki,0,Ki,1 respectively) in our implementation.

Due to the different KeyConstant values used in each round, it is necessary
to allocate and store new qubits every time. Instead of allocating new qubits in
each round, we utilize reverse operations to initialize and reuse the qubits. The
reverse operation for the KeyConstant of quantum state involves only X gates,
which have a trivial overhead on the circuit depth. Thanks to this approach, we
can effectively parallelize the quantum circuit for the key schedule, resulting in a
reduced circuit depth while using a reasonable number of qubits.

For implementing addition in quantum, we utilize the CDKM adder [20], an
enhanced version of the quantum ripple-carry adder, which is implemented using
X, CNOT, and Toffoli gates. The CDKM adder proves to be effective for n-qubit
addition when n ≥ 4, making it a suitable choice for SEED, where n = 8. This
adder requires only one ancilla qubit and optimizes the circuit depth. Specifically,
it utilizes one ancilla qubit, (2n− 3) Toffoli gates, (5n− 7) CNOT gates, (2n− 6)
X gates, and achieves a circuit depth of (2n+ 3).

In Shift operation, it can be implemented using swap gates, but in our
approach, we utilize logical swaps that change the index of qubits, avoiding the
use of quantum gates.

Optimized Quantum Implementation of SEED 11

Algorithm 1: Quantum circuit implementation of SEED Key Schedule.

Input: A, B, C, D, c0, c1 ancilla0, ancilla1

Output: key0, key1, C, D
//Each operation in parallel.
1: for 0 ≤ i ≤ 16 do
2: KC Q0 ← Constant XOR(KC[i], KC Q0)
3: KC Q1 ← Constant XOR(KC[i], KC Q1)

4: C2 ← allocate new 32 qubits
5: D2 ← allocate new 32 qubits

6: C2 ← Copy32(C, C2)
7: D2 ← Copy32(D, D2)

8: C2 ← CDKM(A, C2,c0)
9: D2 ← CDKM minus(B, D2, c1)

10: C2 ← CDKM minus(KC Q0, C2, c0)
11: D2 ← CDKM(KC Q1, D2, c1)

12: key0 ← G function(C2, ancilla0)
13: key1 ← G function(D2, ancilla1)

14: //Initialize qubitsthrough reverse to reuse.
15: KC Q0 ← Constant XOR(KC[i], KC Q0)
16: KC Q1 ← Constant XOR(KC[i], KC Q1)

17: if i % 2 == 0 then
18: RightShift(A, B) ▷ logical Swap
19: else
20: LeftShift(C, D) ▷ logical Swap

21: return key0, key1, C, D

4 Performance of the Proposed Quantum Circuits

In this part, we present the performance of our SEED quantum circuit imple-
mentation. Our proposed quantum circuits of cryptographys are implemented
using the ProjectQ tool provided by IBM. ProjectQ provides ClassicalSimula-
tor, which can simulate simple quantum gates mentioned in Section 2.2, and
ResourceCounter, which can measure circuit resources, as internal libraries. Clas-
sicalSimulator has the advantage of providing enough quantum resources to run
our proposed quantum circuit. Real quantum computers still provide limited
quantum resources that are not sufficient to run cryptography. Therefore, the
circuits are run through the simulator provided by ProjectQ and the quantum
resources are measured.

Table 1 and 2 show the quantum resources required to implement our SEED
quantum circuits. Table 1 provides a comprehensive analysis of quantum resources

12 Yujin Oh, Kyungbae Jang, Yujin Yang, and Hwajeong Seo

Table 1: Required quantum resources for SEED quantum circuit implementation

Cipher #X #CNOT #Toffoli Toffoli depth #Qubit Depth TD-M cost

SEED 8116 409,520 41,392 321 41,496 11,837 13,320,216

Table 2: Required decomposed quantum resources for SEED quantum circuit imple-
mentation

Cipher #Clifford #T T -depth #Qubit Full depth FD-M cost

SEED 748,740 289,680 1,284 41,496 34,566 1,434,350,736

at the NCT (NOT, CNOT, Toffoli) level. The Toffoli gate can be decomposed
into 8 Clifford gates and 7 T gates and Table 2 presents the decomposed quantum
resource costs for the quantum circuit implementation of SEED. Additionally,
our implementation focuses on optimizing the circuit depth while considering the
trade-off for using qubit, and we also perform metrics to evaluate these trade-offs
such as Toffoli depth × qubit count (TD ×M) and full depth × qubit count
(FD ×M).

5 Evaluation of Grover’s Search Complexity

We adopt the methodology detailed in Section 2.3 to estimate the cost of Grover’s
key search for SEED. Grover’s search can be estimated based on our implemented
SEED quantum circuit. Since the overhead of the diffusion operator can be
considered insignificant compared to the oracle when most of the quantum
resources are used for implementing the target cipher in the quantum circuit, it
can be disregarded.

Additionally, the Grover oracle is comprised of two consecutive executions
of the SEED quantum circuit. The first one constitutes the encryption circuit,
while the second one is the reverse operation of encryption circuit to return
back to the state prior to encryption. Therefore, the oracle requires twice the
cost of implementing a quantum circuit, not including of qubits. The number
of iterations of Grover key search for k-bit key length is about

√
2k. In [21],

Grover’s key search algorithm was analyzed in detail and the optimal number of
iterations was suggested to be ⌊π

4

√
2k⌋. In conclusion, including Grover iterations,

the Grover’s key search cost for SEED is approximately Table 2 ×2× ⌊π
4

√
2k⌋,

as shown in Table 3.

6 Conclusion

We can assess the post-quantum security of SEED based on the cost of Grover’s
key search obtained earlier (in Section 5). In 2016, NIST defined post-quantum
security levels by considering the estimated costs of Grover’s key search attacks
on AES-128, 192, and 256. Nevertheless, with the declining costs of AES attacks,

Optimized Quantum Implementation of SEED 13

Table 3: Cost of the Grover’s key search for SEED

Cipher Total gates Total depth
Cost

#Qubit TD-M cost FD-M cost
(complexity)

SEED 1.559 · 284 1.657 · 279 1.291 · 2164 41,497 1.246 · 288 1.049 · 295

NIST revised the cost assessments to align with the respective security levels in
2019.

According to Table 3, the Grover’s key search attack cost for SEED is
calculated to be 1.291 · 2164. This leads to the assessment that SEED attains
post-quantum security Level 1.

In summary, this paper presents the first implementation of a quantum circuit
for SEED. We focus on optimizing Toffoli and full depths utilizing parallelization
and optimized multiplication, squaring and an adder. By analyzing the cost of
Grover’s key search attack, we confirm that SEED achieves post-quantum security
Level 1. Furthermore, we provide TD ×M and FD ×M costs to consider the
trade-off between depth and qubits.

7 Acknowledgment

This work was supported by the National Research Foundation of Korea(NRF)
grant funded by the Korea government(MSIT).(No. RS-2023-00277994, Quan-
tum Circuit Depth Optimization for ARIA, SEED, LEA, HIGHT, and LSH of
KCMVP Domestic Cryptographic Algorithms, 80%) and this work was supported
by Institute of Information & communications Technology Planning & Evalu-
ation (IITP) grant funded by the Korea government(MSIT) (No.2022-0-00627,
Development of Lightweight BIoT technology for Highly Constrained Devices,
20%).

References

1. P. Shor, “Algorithms for quantum computation: discrete logarithms and factoring,”
in Proceedings 35th Annual Symposium on Foundations of Computer Science,
pp. 124–134, 1994. 1

2. L. K. Grover, “A fast quantum mechanical algorithm for database search,” in
Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of
Computing, Philadelphia, Pennsylvania, USA, May 22-24, 1996 (G. L. Miller, ed.),
pp. 212–219, ACM, 1996. 1

3. NIST., “Submission requirements and evaluation criteria for the post-
quantum cryptography standardization process,” 2016. https://csrc.

nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/

call-for-proposals-final-dec-2016.pdf. 2, 7

https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf

14 Yujin Oh, Kyungbae Jang, Yujin Yang, and Hwajeong Seo

4. NIST., “Call for additional digital signature schemes for the post-quantum cryp-
tography standardization process,” 2022. https://csrc.nist.gov/csrc/media/

Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.

pdf. 2, 7
5. M. Grassl, B. Langenberg, M. Roetteler, and R. Steinwandt, “Applying Grover’s

algorithm to AES: quantum resource estimates,” 2015. 2, 6, 7
6. S. Jaques, M. Naehrig, M. Roetteler, and F. Virdia, “Implementing grover oracles

for quantum key search on aes and lowmc.” Cryptology ePrint Archive, Report
2019/1146, 2019. https://eprint.iacr.org/2019/1146. 2

7. K. Jang, A. Baksi, G. Song, H. Kim, H. Seo, and A. Chattopadhyay, “Quantum
analysis of aes,” Cryptology ePrint Archive, 2022. 2, 6

8. K. Jang, G. Song, H. Kim, H. Kwon, H. Kim, and H. Seo, “Efficient implementation
of present and gift on quantum computers,” Applied Sciences, vol. 11, no. 11,
p. 4776, 2021. 2

9. K. Jang, A. Baksi, H. Kim, H. Seo, and A. Chattopadhyay, “Improved quantum
analysis of speck and lowmc (full version),” Cryptology ePrint Archive, 2022. 2

10. R. Anand, A. Maitra, and S. Mukhopadhyay, “Evaluation of quantum cryptanalysis
on speck,” in Progress in Cryptology – INDOCRYPT 2020 (K. Bhargavan, E. Oswald,
and M. Prabhakaran, eds.), (Cham), pp. 395–413, Springer International Publishing,
2020. 2

11. Y. Yang, K. Jang, H. Kim, G. Song, and H. Seo, “Grover on sparkle,” in International
Conference on Information Security Applications, pp. 44–59, Springer, 2022. 2

12. A. Jagielski and K. Kanciak, “Quantum resource estimation for a nist lwc call
finalist,” Quantum Information and Computation, vol. 22, no. 13&14, pp. 1132–1143,
2022. 2

13. S. Roy, A. Baksi, and A. Chattopadhyay, “Quantum implementation of ascon linear
layer,” Cryptology ePrint Archive, 2023. 2

14. Y. Oh, K. Jang, A. Baksi, and H. Seo, “Depth-optimized implementation of ascon
quantum circuit,” Cryptology ePrint Archive, 2023. 2

15. S. Jaques, M. Naehrig, M. Roetteler, and F. Virdia, “Implementing grover oracles
for quantum key search on aes and lowmc.” Cryptology ePrint Archive, Report
2019/1146, 2019. https://eprint.iacr.org/2019/1146. 6

16. S. Jaques, M. Naehrig, M. Roetteler, and F. Virdia, “Implementing grover oracles for
quantum key search on aes and lowmc,” in Advances in Cryptology–EUROCRYPT
2020: 39th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Zagreb, Croatia, May 10–14, 2020, Proceedings, Part II
30, pp. 280–310, Springer, 2020. 7

17. T. Itoh and S. Tsujii, “A fast algorithm for computing multiplicative inverses in gf
(2m) using normal bases,” Information and computation, vol. 78, no. 3, pp. 171–177,
1988. 8

18. K. Jang, W. Kim, S. Lim, Y. Kang, Y. Yang, and H. Seo, “Optimized implementation
of quantum binary field multiplication with toffoli depth one,” in International
Conference on Information Security Applications, pp. 251–264, Springer, 2022. 9

19. D. Cheung, D. Maslov, J. Mathew, and D. K. Pradhan, “On the design and
optimization of a quantum polynomial-time attack on elliptic curve cryptography,”
in Workshop on Quantum Computation, Communication, and Cryptography, pp. 96–
104, Springer, 2008. 9

20. S. A. Cuccaro, T. G. Draper, S. A. Kutin, and D. P. Moulton, “A new quantum
ripple-carry addition circuit,” arXiv preprint quant-ph/0410184, 2004. 10

21. M. Boyer, G. Brassard, P. Høyer, and A. Tapp, “Tight bounds on quantum searching,”
Fortschritte der Physik, vol. 46, p. 493–505, Jun 1998. 12

https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://eprint.iacr.org/2019/1146
https://eprint.iacr.org/2019/1146

	Optimized Quantum Implementation of SEED

